summaryrefslogtreecommitdiff
path: root/Modern_Physics_By_G.Aruldas
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:40:35 +0530
committerkinitrupti2017-05-12 18:40:35 +0530
commitd36fc3b8f88cc3108ffff6151e376b619b9abb01 (patch)
tree9806b0d68a708d2cfc4efc8ae3751423c56b7721 /Modern_Physics_By_G.Aruldas
parent1b1bb67e9ea912be5c8591523c8b328766e3680f (diff)
downloadPython-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.gz
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.tar.bz2
Python-Textbook-Companions-d36fc3b8f88cc3108ffff6151e376b619b9abb01.zip
Revised list of TBCs
Diffstat (limited to 'Modern_Physics_By_G.Aruldas')
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter1.ipynb311
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter10.ipynb434
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter10_1.ipynb434
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter10_2.ipynb434
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter11.ipynb114
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter11_1.ipynb114
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter11_2.ipynb114
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter12.ipynb285
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter12_1.ipynb285
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter12_2.ipynb285
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter13.ipynb250
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter13_1.ipynb250
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter13_2.ipynb250
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter14.ipynb107
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter14_1.ipynb107
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter14_2.ipynb107
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter15.ipynb203
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter15_1.ipynb203
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter15_2.ipynb203
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter16.ipynb114
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter16_1.ipynb114
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter16_2.ipynb114
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter17.ipynb293
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter17_1.ipynb293
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter17_2.ipynb293
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter18.ipynb366
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter18_1.ipynb366
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter18_2.ipynb366
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter19.ipynb291
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter19_1.ipynb291
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter19_2.ipynb291
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter1_1.ipynb311
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter1_2.ipynb311
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter2.ipynb295
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter20.ipynb119
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter20_1.ipynb119
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter20_2.ipynb119
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter21.ipynb106
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter21_1.ipynb106
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter21_2.ipynb106
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter2_1.ipynb295
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter2_2.ipynb295
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter3.ipynb197
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter3_1.ipynb197
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter3_2.ipynb197
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter4.ipynb193
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter4_1.ipynb193
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter4_2.ipynb193
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter6.ipynb208
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter6_1.ipynb208
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter6_2.ipynb208
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter7.ipynb258
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter7_1.ipynb258
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter7_2.ipynb258
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter8.ipynb116
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter8_1.ipynb116
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter8_2.ipynb116
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter9.ipynb418
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter9_1.ipynb418
-rwxr-xr-xModern_Physics_By_G.Aruldas/Chapter9_2.ipynb418
60 files changed, 0 insertions, 14034 deletions
diff --git a/Modern_Physics_By_G.Aruldas/Chapter1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter1.ipynb
deleted file mode 100755
index 483d55f3..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter1.ipynb
+++ /dev/null
@@ -1,311 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:467ef5c6562d2c93b60e422b9b9a8c5a34323da84f6c33e87f513c3c578db36d"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "1: The special theory of relativity"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.2, Page number 10"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "c=1; #assume\n",
- "udash=0.9*c; #speed of 2nd rocket\n",
- "v=0.6*c; #speed of 1st rocket\n",
- "\n",
- "#Calculation\n",
- "u1=(udash+v)/(1+(udash*v/(c**2))); #speed of 2nd rocket in same direction\n",
- "u2=(-udash+v)/(1-(udash*v/(c**2))); #speed of 2nd rocket in opposite direction\n",
- "\n",
- "#Result\n",
- "print \"speed of 2nd rocket in same direction is\",round(u1,3),\"*c\"\n",
- "print \"speed of 2nd rocket in opposite direction is\",round(u2,3),\"*c\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed of 2nd rocket in same direction is 0.974 *c\n",
- "speed of 2nd rocket in opposite direction is -0.652 *c\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.3, Page number 12"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "#given L0-L/L0=0.01.so L=0.99*L0\n",
- "LbyL0=0.99;\n",
- "c=1; #assume\n",
- "\n",
- "#Calculation\n",
- "v2=(c**2)*(1-(LbyL0)**2);\n",
- "v=math.sqrt(v2); #speed\n",
- "\n",
- "#Result\n",
- "print \"speed is\",round(v,3),\"*c\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed is 0.141 *c\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.4, Page number 12"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "delta_tow=2.6*10**-8; #mean lifetime at rest(s)\n",
- "d=20; #distance(m)\n",
- "c=3*10**8; #speed of light(m/s)\n",
- "\n",
- "#Calculation\n",
- "#delta_t=d/v\n",
- "v2=(c**2)/(1+(delta_tow*c/d)**2);\n",
- "v=math.sqrt(v2); #speed of unstable particle(m/s)\n",
- "\n",
- "#Result\n",
- "print \"speed of unstable particle is\",round(v/10**8,1),\"*10**8 m/s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed of unstable particle is 2.8 *10**8 m/s\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.5, Page number 13"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "delta_t=5*10**-6; #mean lifetime(s)\n",
- "c=1; #assume\n",
- "v=0.9*c; #speed of beam\n",
- "\n",
- "#Calculation\n",
- "delta_tow=delta_t*math.sqrt(1-(v/c)**2); #proper lifetime of particles(s)\n",
- "\n",
- "#Result\n",
- "print \"proper lifetime of particles is\",round(delta_tow*10**6,2),\"*10**-6 s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "proper lifetime of particles is 2.18 *10**-6 s\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.6, Page number 15"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "c=1; #assume\n",
- "m0bym=100/120; #ratio of masses\n",
- "\n",
- "#Calculation\n",
- "v=c*math.sqrt(1-(m0bym**2)); #speed of body\n",
- "\n",
- "#Result\n",
- "print \"speed of body is\",round(v,3),\"*c\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed of body is 0.553 *c\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.7, Page number 17"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "c=3*10**8; #speed of light(m/s)\n",
- "deltaE=4*10**26; #energy of sun(J/s)\n",
- "\n",
- "#Calculation\n",
- "deltam=deltaE/c**2; #change in mass(kg)\n",
- "\n",
- "#Result\n",
- "print \"change in mass is\",round(deltam/10**9,2),\"*10**9 kg\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "change in mass is 4.44 *10**9 kg\n"
- ]
- }
- ],
- "prompt_number": 13
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.8, Page number 17"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "c=1; #assume\n",
- "T=10; #kinetic energy(MeV)\n",
- "m0c2=0.512; #rest energy of electron(MeV)\n",
- "\n",
- "#Calculation\n",
- "E=T+m0c2; #total energy(MeV)\n",
- "p=math.sqrt((E**2)-(m0c2**2))/c; #momentum of electron(MeV/c)\n",
- "v=c*math.sqrt(1-(m0c2/E)**2); #velocity of electron(c)\n",
- "\n",
- "#Result\n",
- "print \"momentum of electron is\",round(p,1),\"MeV/c\"\n",
- "print \"velocity of electron is\",round(v,4),\"*c\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "momentum of electron is 10.5 MeV/c\n",
- "velocity of electron is 0.9988 *c\n"
- ]
- }
- ],
- "prompt_number": 16
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter10.ipynb b/Modern_Physics_By_G.Aruldas/Chapter10.ipynb
deleted file mode 100755
index d4104917..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter10.ipynb
+++ /dev/null
@@ -1,434 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:de4c224e2d9bad9e810e24de23e4ee016e17fa0ec4d45805b35802744f1cd3b7"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "10: Crystal structure and bonding"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.5, Page number 213"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h1=1;\n",
- "k1=0;\n",
- "l1=0; #for (100) plane\n",
- "h2=1;\n",
- "k2=1;\n",
- "l2=1; #for (111) plane\n",
- "a=1; #assume\n",
- "\n",
- "#Calculation\n",
- "d100=a/math.sqrt(h1**2+k1**2+l1**2); #spacing between (100) plane\n",
- "d111=a/math.sqrt(h2**2+k2**2+l2**2); #spacing between (111) plane\n",
- "\n",
- "#Result\n",
- "print \"spacing between (100) plane is\",d100,\"a\"\n",
- "print \"spacing between (111) plane is\",round(d111,3),\"a\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "spacing between (100) plane is 1.0 a\n",
- "spacing between (111) plane is 0.577 a\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.6, Page number 213"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "r=0.152; #atomic radius(nm)\n",
- "h1=2;\n",
- "k1=3;\n",
- "l1=1; #for plane (231)\n",
- "h2=1;\n",
- "k2=1;\n",
- "l2=0; #for plane (110)\n",
- "\n",
- "#Calculation\n",
- "a=4*r/math.sqrt(2);\n",
- "d231=a/math.sqrt(h1**2+k1**2+l1**2); #spacing between (231) plane(nm) \n",
- "d110=a/math.sqrt(h2**2+k2**2+l2**2); #spacing between (110) plane(nm)\n",
- "\n",
- "#Result\n",
- "print \"spacing between (231) plane is\",round(d231,4),\"nm\"\n",
- "print \"spacing between (110) plane is\",d110,\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "spacing between (231) plane is 0.1149 nm\n",
- "spacing between (110) plane is 0.304 nm\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.7, Page number 213"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=1;\n",
- "k=0;\n",
- "l=2; #for plane (102)\n",
- "a=0.424; #edge(nm)\n",
- "\n",
- "#Calculation\n",
- "d102=a/math.sqrt(h**2+k**2+l**2); #interplanar spacing(nm)\n",
- "\n",
- "#Result\n",
- "print \"interplanar spacing is\",round(d102,4),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "interplanar spacing is 0.1896 nm\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.8, Page number 214"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "a=3.2*10**-10; #edge(m)\n",
- "rho=11.36*10**3; #density(kg/m**3)\n",
- "N=6.023*10**26; #avagadro number(per k mol)\n",
- "M=207.2; #atomic weight\n",
- "\n",
- "#Calculation\n",
- "n=a**3*rho*N/M; #number of atoms per unit cell\n",
- "\n",
- "#Result\n",
- "print \"number of atoms per unit cell is\",int(n)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "number of atoms per unit cell is 1\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.9, Page number 220"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=2.51*10**-10; #spacing between planes(m)\n",
- "theta=9; #glancing angle(degrees)\n",
- "\n",
- "#Calculation\n",
- "theta=theta*math.pi/180; #glancing angle(radian)\n",
- "lamda=2*d*math.sin(theta); #wavelength(m)\n",
- "a=lamda/2.51;\n",
- "theta2=math.asin(a); #glancing angle for 2nd order diffraction(radian)\n",
- "theta2=2*theta*180/math.pi; #glancing angle for 2nd order diffraction(degrees)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X ray is\",round(lamda*10**10,4),\"angstrom\"\n",
- "print \"glancing angle for 2nd order diffraction is\",theta2,\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength of X ray is 0.7853 angstrom\n",
- "glancing angle for 2nd order diffraction is 18.0 degrees\n"
- ]
- }
- ],
- "prompt_number": 28
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.10, Page number 220"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "a=5*10**-10; #lattice parameter(m)\n",
- "n=1;\n",
- "lamda=1.4*10**-10; #wavelength(m)\n",
- "h=1;\n",
- "k=1;\n",
- "l=1; #for plane (111)\n",
- "\n",
- "#Calculation\n",
- "d111=a/math.sqrt(h**2+k**2+l**2);\n",
- "b=n*lamda/(2*d111);\n",
- "theta111=math.asin(b); #incident angle(radian)\n",
- "theta111=theta111*180/math.pi; #incident angle(degrees)\n",
- "\n",
- "#Result\n",
- "print \"incident angle is\",int(theta111),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "incident angle is 14 degrees\n"
- ]
- }
- ],
- "prompt_number": 30
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.11, Page number 221"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H=6.626*10**-34; #planck's constant(Js)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "V=120; #potential(V)\n",
- "theta=22; #angle(degrees)\n",
- "theta=theta*math.pi/180; #angle(radian)\n",
- "h=1;\n",
- "k=1;\n",
- "l=1; #for plane (111)\n",
- "\n",
- "#Calculation\n",
- "x=(2*m*e*V)**(1/2); \n",
- "lamda=H/x; #wavelength(m)\n",
- "d111=lamda*10**10/(2*math.sin(theta));\n",
- "a=math.sqrt(h**2+k**2+l**2)*d111; #lattice parameter(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"lattice parameter is\",round(a,2),\"angstrom\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "lattice parameter is 2.59 angstrom\n"
- ]
- }
- ],
- "prompt_number": 49
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.12, Page number 224"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "epsilon0=8.85*10**-12;\n",
- "r0=0.32*10**-9; #distance(m)\n",
- "\n",
- "#Calculation\n",
- "V=-e/(4*math.pi*epsilon0*r0); #potential energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"potential energy is\",round(V,3),\"eV\"\n",
- "print \"answer varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "potential energy is -4.496 eV\n",
- "answer varies due to rounding off errors\n"
- ]
- }
- ],
- "prompt_number": 52
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.13, Page number 224"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "epsilon0=8.85*10**-12;\n",
- "r0=0.31*10**-9; #distance(m)\n",
- "n=9;\n",
- "alpha=1.748; \n",
- "Ie=5; #ionisation energy(eV)\n",
- "ea=-3.61; #electron affinity(eV)\n",
- "\n",
- "#Calculation\n",
- "a=1-(1/n);\n",
- "Vr0=-alpha*e**2*a/(4*math.pi*epsilon0*r0); #energy(J)\n",
- "Vr0=Vr0/e; #cohesive energy(eV)\n",
- "Vr0i=Vr0/2; #contribution per ion to cohesive energy(eV)\n",
- "Ee=Ie+ea; #electron transfer energy(eV)\n",
- "Vr0i2=Ee/2; #contribution per ion to cohesive energy(eV)\n",
- "CE=Vr0i+Vr0i2; #cohesive energy per atom(eV)\n",
- "\n",
- "#Result\n",
- "print \"cohesive energy per atom is\",round(CE,4),\"eV\"\n",
- "print \"answer varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "cohesive energy per atom is -2.9105 eV\n",
- "answer varies due to rounding off errors\n"
- ]
- }
- ],
- "prompt_number": 58
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter10_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter10_1.ipynb
deleted file mode 100755
index d4104917..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter10_1.ipynb
+++ /dev/null
@@ -1,434 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:de4c224e2d9bad9e810e24de23e4ee016e17fa0ec4d45805b35802744f1cd3b7"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "10: Crystal structure and bonding"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.5, Page number 213"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h1=1;\n",
- "k1=0;\n",
- "l1=0; #for (100) plane\n",
- "h2=1;\n",
- "k2=1;\n",
- "l2=1; #for (111) plane\n",
- "a=1; #assume\n",
- "\n",
- "#Calculation\n",
- "d100=a/math.sqrt(h1**2+k1**2+l1**2); #spacing between (100) plane\n",
- "d111=a/math.sqrt(h2**2+k2**2+l2**2); #spacing between (111) plane\n",
- "\n",
- "#Result\n",
- "print \"spacing between (100) plane is\",d100,\"a\"\n",
- "print \"spacing between (111) plane is\",round(d111,3),\"a\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "spacing between (100) plane is 1.0 a\n",
- "spacing between (111) plane is 0.577 a\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.6, Page number 213"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "r=0.152; #atomic radius(nm)\n",
- "h1=2;\n",
- "k1=3;\n",
- "l1=1; #for plane (231)\n",
- "h2=1;\n",
- "k2=1;\n",
- "l2=0; #for plane (110)\n",
- "\n",
- "#Calculation\n",
- "a=4*r/math.sqrt(2);\n",
- "d231=a/math.sqrt(h1**2+k1**2+l1**2); #spacing between (231) plane(nm) \n",
- "d110=a/math.sqrt(h2**2+k2**2+l2**2); #spacing between (110) plane(nm)\n",
- "\n",
- "#Result\n",
- "print \"spacing between (231) plane is\",round(d231,4),\"nm\"\n",
- "print \"spacing between (110) plane is\",d110,\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "spacing between (231) plane is 0.1149 nm\n",
- "spacing between (110) plane is 0.304 nm\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.7, Page number 213"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=1;\n",
- "k=0;\n",
- "l=2; #for plane (102)\n",
- "a=0.424; #edge(nm)\n",
- "\n",
- "#Calculation\n",
- "d102=a/math.sqrt(h**2+k**2+l**2); #interplanar spacing(nm)\n",
- "\n",
- "#Result\n",
- "print \"interplanar spacing is\",round(d102,4),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "interplanar spacing is 0.1896 nm\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.8, Page number 214"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "a=3.2*10**-10; #edge(m)\n",
- "rho=11.36*10**3; #density(kg/m**3)\n",
- "N=6.023*10**26; #avagadro number(per k mol)\n",
- "M=207.2; #atomic weight\n",
- "\n",
- "#Calculation\n",
- "n=a**3*rho*N/M; #number of atoms per unit cell\n",
- "\n",
- "#Result\n",
- "print \"number of atoms per unit cell is\",int(n)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "number of atoms per unit cell is 1\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.9, Page number 220"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=2.51*10**-10; #spacing between planes(m)\n",
- "theta=9; #glancing angle(degrees)\n",
- "\n",
- "#Calculation\n",
- "theta=theta*math.pi/180; #glancing angle(radian)\n",
- "lamda=2*d*math.sin(theta); #wavelength(m)\n",
- "a=lamda/2.51;\n",
- "theta2=math.asin(a); #glancing angle for 2nd order diffraction(radian)\n",
- "theta2=2*theta*180/math.pi; #glancing angle for 2nd order diffraction(degrees)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X ray is\",round(lamda*10**10,4),\"angstrom\"\n",
- "print \"glancing angle for 2nd order diffraction is\",theta2,\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength of X ray is 0.7853 angstrom\n",
- "glancing angle for 2nd order diffraction is 18.0 degrees\n"
- ]
- }
- ],
- "prompt_number": 28
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.10, Page number 220"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "a=5*10**-10; #lattice parameter(m)\n",
- "n=1;\n",
- "lamda=1.4*10**-10; #wavelength(m)\n",
- "h=1;\n",
- "k=1;\n",
- "l=1; #for plane (111)\n",
- "\n",
- "#Calculation\n",
- "d111=a/math.sqrt(h**2+k**2+l**2);\n",
- "b=n*lamda/(2*d111);\n",
- "theta111=math.asin(b); #incident angle(radian)\n",
- "theta111=theta111*180/math.pi; #incident angle(degrees)\n",
- "\n",
- "#Result\n",
- "print \"incident angle is\",int(theta111),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "incident angle is 14 degrees\n"
- ]
- }
- ],
- "prompt_number": 30
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.11, Page number 221"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H=6.626*10**-34; #planck's constant(Js)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "V=120; #potential(V)\n",
- "theta=22; #angle(degrees)\n",
- "theta=theta*math.pi/180; #angle(radian)\n",
- "h=1;\n",
- "k=1;\n",
- "l=1; #for plane (111)\n",
- "\n",
- "#Calculation\n",
- "x=(2*m*e*V)**(1/2); \n",
- "lamda=H/x; #wavelength(m)\n",
- "d111=lamda*10**10/(2*math.sin(theta));\n",
- "a=math.sqrt(h**2+k**2+l**2)*d111; #lattice parameter(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"lattice parameter is\",round(a,2),\"angstrom\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "lattice parameter is 2.59 angstrom\n"
- ]
- }
- ],
- "prompt_number": 49
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.12, Page number 224"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "epsilon0=8.85*10**-12;\n",
- "r0=0.32*10**-9; #distance(m)\n",
- "\n",
- "#Calculation\n",
- "V=-e/(4*math.pi*epsilon0*r0); #potential energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"potential energy is\",round(V,3),\"eV\"\n",
- "print \"answer varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "potential energy is -4.496 eV\n",
- "answer varies due to rounding off errors\n"
- ]
- }
- ],
- "prompt_number": 52
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.13, Page number 224"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "epsilon0=8.85*10**-12;\n",
- "r0=0.31*10**-9; #distance(m)\n",
- "n=9;\n",
- "alpha=1.748; \n",
- "Ie=5; #ionisation energy(eV)\n",
- "ea=-3.61; #electron affinity(eV)\n",
- "\n",
- "#Calculation\n",
- "a=1-(1/n);\n",
- "Vr0=-alpha*e**2*a/(4*math.pi*epsilon0*r0); #energy(J)\n",
- "Vr0=Vr0/e; #cohesive energy(eV)\n",
- "Vr0i=Vr0/2; #contribution per ion to cohesive energy(eV)\n",
- "Ee=Ie+ea; #electron transfer energy(eV)\n",
- "Vr0i2=Ee/2; #contribution per ion to cohesive energy(eV)\n",
- "CE=Vr0i+Vr0i2; #cohesive energy per atom(eV)\n",
- "\n",
- "#Result\n",
- "print \"cohesive energy per atom is\",round(CE,4),\"eV\"\n",
- "print \"answer varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "cohesive energy per atom is -2.9105 eV\n",
- "answer varies due to rounding off errors\n"
- ]
- }
- ],
- "prompt_number": 58
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter10_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter10_2.ipynb
deleted file mode 100755
index d4104917..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter10_2.ipynb
+++ /dev/null
@@ -1,434 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:de4c224e2d9bad9e810e24de23e4ee016e17fa0ec4d45805b35802744f1cd3b7"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "10: Crystal structure and bonding"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.5, Page number 213"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h1=1;\n",
- "k1=0;\n",
- "l1=0; #for (100) plane\n",
- "h2=1;\n",
- "k2=1;\n",
- "l2=1; #for (111) plane\n",
- "a=1; #assume\n",
- "\n",
- "#Calculation\n",
- "d100=a/math.sqrt(h1**2+k1**2+l1**2); #spacing between (100) plane\n",
- "d111=a/math.sqrt(h2**2+k2**2+l2**2); #spacing between (111) plane\n",
- "\n",
- "#Result\n",
- "print \"spacing between (100) plane is\",d100,\"a\"\n",
- "print \"spacing between (111) plane is\",round(d111,3),\"a\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "spacing between (100) plane is 1.0 a\n",
- "spacing between (111) plane is 0.577 a\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.6, Page number 213"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "r=0.152; #atomic radius(nm)\n",
- "h1=2;\n",
- "k1=3;\n",
- "l1=1; #for plane (231)\n",
- "h2=1;\n",
- "k2=1;\n",
- "l2=0; #for plane (110)\n",
- "\n",
- "#Calculation\n",
- "a=4*r/math.sqrt(2);\n",
- "d231=a/math.sqrt(h1**2+k1**2+l1**2); #spacing between (231) plane(nm) \n",
- "d110=a/math.sqrt(h2**2+k2**2+l2**2); #spacing between (110) plane(nm)\n",
- "\n",
- "#Result\n",
- "print \"spacing between (231) plane is\",round(d231,4),\"nm\"\n",
- "print \"spacing between (110) plane is\",d110,\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "spacing between (231) plane is 0.1149 nm\n",
- "spacing between (110) plane is 0.304 nm\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.7, Page number 213"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=1;\n",
- "k=0;\n",
- "l=2; #for plane (102)\n",
- "a=0.424; #edge(nm)\n",
- "\n",
- "#Calculation\n",
- "d102=a/math.sqrt(h**2+k**2+l**2); #interplanar spacing(nm)\n",
- "\n",
- "#Result\n",
- "print \"interplanar spacing is\",round(d102,4),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "interplanar spacing is 0.1896 nm\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.8, Page number 214"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "a=3.2*10**-10; #edge(m)\n",
- "rho=11.36*10**3; #density(kg/m**3)\n",
- "N=6.023*10**26; #avagadro number(per k mol)\n",
- "M=207.2; #atomic weight\n",
- "\n",
- "#Calculation\n",
- "n=a**3*rho*N/M; #number of atoms per unit cell\n",
- "\n",
- "#Result\n",
- "print \"number of atoms per unit cell is\",int(n)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "number of atoms per unit cell is 1\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.9, Page number 220"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "d=2.51*10**-10; #spacing between planes(m)\n",
- "theta=9; #glancing angle(degrees)\n",
- "\n",
- "#Calculation\n",
- "theta=theta*math.pi/180; #glancing angle(radian)\n",
- "lamda=2*d*math.sin(theta); #wavelength(m)\n",
- "a=lamda/2.51;\n",
- "theta2=math.asin(a); #glancing angle for 2nd order diffraction(radian)\n",
- "theta2=2*theta*180/math.pi; #glancing angle for 2nd order diffraction(degrees)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of X ray is\",round(lamda*10**10,4),\"angstrom\"\n",
- "print \"glancing angle for 2nd order diffraction is\",theta2,\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength of X ray is 0.7853 angstrom\n",
- "glancing angle for 2nd order diffraction is 18.0 degrees\n"
- ]
- }
- ],
- "prompt_number": 28
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.10, Page number 220"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "a=5*10**-10; #lattice parameter(m)\n",
- "n=1;\n",
- "lamda=1.4*10**-10; #wavelength(m)\n",
- "h=1;\n",
- "k=1;\n",
- "l=1; #for plane (111)\n",
- "\n",
- "#Calculation\n",
- "d111=a/math.sqrt(h**2+k**2+l**2);\n",
- "b=n*lamda/(2*d111);\n",
- "theta111=math.asin(b); #incident angle(radian)\n",
- "theta111=theta111*180/math.pi; #incident angle(degrees)\n",
- "\n",
- "#Result\n",
- "print \"incident angle is\",int(theta111),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "incident angle is 14 degrees\n"
- ]
- }
- ],
- "prompt_number": 30
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.11, Page number 221"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "H=6.626*10**-34; #planck's constant(Js)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "V=120; #potential(V)\n",
- "theta=22; #angle(degrees)\n",
- "theta=theta*math.pi/180; #angle(radian)\n",
- "h=1;\n",
- "k=1;\n",
- "l=1; #for plane (111)\n",
- "\n",
- "#Calculation\n",
- "x=(2*m*e*V)**(1/2); \n",
- "lamda=H/x; #wavelength(m)\n",
- "d111=lamda*10**10/(2*math.sin(theta));\n",
- "a=math.sqrt(h**2+k**2+l**2)*d111; #lattice parameter(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"lattice parameter is\",round(a,2),\"angstrom\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "lattice parameter is 2.59 angstrom\n"
- ]
- }
- ],
- "prompt_number": 49
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.12, Page number 224"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "epsilon0=8.85*10**-12;\n",
- "r0=0.32*10**-9; #distance(m)\n",
- "\n",
- "#Calculation\n",
- "V=-e/(4*math.pi*epsilon0*r0); #potential energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"potential energy is\",round(V,3),\"eV\"\n",
- "print \"answer varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "potential energy is -4.496 eV\n",
- "answer varies due to rounding off errors\n"
- ]
- }
- ],
- "prompt_number": 52
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 10.13, Page number 224"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "epsilon0=8.85*10**-12;\n",
- "r0=0.31*10**-9; #distance(m)\n",
- "n=9;\n",
- "alpha=1.748; \n",
- "Ie=5; #ionisation energy(eV)\n",
- "ea=-3.61; #electron affinity(eV)\n",
- "\n",
- "#Calculation\n",
- "a=1-(1/n);\n",
- "Vr0=-alpha*e**2*a/(4*math.pi*epsilon0*r0); #energy(J)\n",
- "Vr0=Vr0/e; #cohesive energy(eV)\n",
- "Vr0i=Vr0/2; #contribution per ion to cohesive energy(eV)\n",
- "Ee=Ie+ea; #electron transfer energy(eV)\n",
- "Vr0i2=Ee/2; #contribution per ion to cohesive energy(eV)\n",
- "CE=Vr0i+Vr0i2; #cohesive energy per atom(eV)\n",
- "\n",
- "#Result\n",
- "print \"cohesive energy per atom is\",round(CE,4),\"eV\"\n",
- "print \"answer varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "cohesive energy per atom is -2.9105 eV\n",
- "answer varies due to rounding off errors\n"
- ]
- }
- ],
- "prompt_number": 58
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter11.ipynb b/Modern_Physics_By_G.Aruldas/Chapter11.ipynb
deleted file mode 100755
index ffdec850..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter11.ipynb
+++ /dev/null
@@ -1,114 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:df9996e09d849b24524dd415b626cbe4279b4acdbe25d68bb407e2d42467c7a7"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "11: Lattice dynamics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.1, Page number 238"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "thetaD=350; #temperature for Cu(K)\n",
- "theetaD=550; #temperature for Si(K)\n",
- "\n",
- "#Calculation\n",
- "newDCu=k*thetaD/h; #highest possible frequency for Cu(per sec)\n",
- "newDSi=k*theetaD/h; #highest possible frequency for Si(per sec)\n",
- "\n",
- "#Result\n",
- "print \"highest possible frequency for Cu is\",round(newDCu/10**11,3),\"*10**11 per sec\"\n",
- "print \"highest possible frequency for Si is\",round(newDSi/10**11,2),\"*10**11 per sec\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "highest possible frequency for Cu is 72.895 *10**11 per sec\n",
- "highest possible frequency for Si is 114.55 *10**11 per sec\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.2, Page number 238"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "N=6.02*10**26; #avagadro number(k/mole)\n",
- "T=10; #temperature(K)\n",
- "thetaD=105; #debye temperature(K)\n",
- "\n",
- "#Calculation\n",
- "C=(12/5)*(math.pi**4)*N*k*(T/thetaD)**3; #specific heat of lead(J/K kmol)\n",
- "newD=k*thetaD/h; #highest frequency(per sec)\n",
- "\n",
- "#Result\n",
- "print \"specific heat of lead is\",round(C,1),\"J/K kmol\"\n",
- "print \"answer varies due to rounding off errors\"\n",
- "print \"highest frequency is\",round(newD/10**11,2),\"*10**11 per sec\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "specific heat of lead is 1677.7 J/K kmol\n",
- "answer varies due to rounding off errors\n",
- "highest frequency is 21.87 *10**11 per sec\n"
- ]
- }
- ],
- "prompt_number": 6
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter11_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter11_1.ipynb
deleted file mode 100755
index ffdec850..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter11_1.ipynb
+++ /dev/null
@@ -1,114 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:df9996e09d849b24524dd415b626cbe4279b4acdbe25d68bb407e2d42467c7a7"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "11: Lattice dynamics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.1, Page number 238"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "thetaD=350; #temperature for Cu(K)\n",
- "theetaD=550; #temperature for Si(K)\n",
- "\n",
- "#Calculation\n",
- "newDCu=k*thetaD/h; #highest possible frequency for Cu(per sec)\n",
- "newDSi=k*theetaD/h; #highest possible frequency for Si(per sec)\n",
- "\n",
- "#Result\n",
- "print \"highest possible frequency for Cu is\",round(newDCu/10**11,3),\"*10**11 per sec\"\n",
- "print \"highest possible frequency for Si is\",round(newDSi/10**11,2),\"*10**11 per sec\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "highest possible frequency for Cu is 72.895 *10**11 per sec\n",
- "highest possible frequency for Si is 114.55 *10**11 per sec\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.2, Page number 238"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "N=6.02*10**26; #avagadro number(k/mole)\n",
- "T=10; #temperature(K)\n",
- "thetaD=105; #debye temperature(K)\n",
- "\n",
- "#Calculation\n",
- "C=(12/5)*(math.pi**4)*N*k*(T/thetaD)**3; #specific heat of lead(J/K kmol)\n",
- "newD=k*thetaD/h; #highest frequency(per sec)\n",
- "\n",
- "#Result\n",
- "print \"specific heat of lead is\",round(C,1),\"J/K kmol\"\n",
- "print \"answer varies due to rounding off errors\"\n",
- "print \"highest frequency is\",round(newD/10**11,2),\"*10**11 per sec\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "specific heat of lead is 1677.7 J/K kmol\n",
- "answer varies due to rounding off errors\n",
- "highest frequency is 21.87 *10**11 per sec\n"
- ]
- }
- ],
- "prompt_number": 6
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter11_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter11_2.ipynb
deleted file mode 100755
index ffdec850..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter11_2.ipynb
+++ /dev/null
@@ -1,114 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:df9996e09d849b24524dd415b626cbe4279b4acdbe25d68bb407e2d42467c7a7"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "11: Lattice dynamics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.1, Page number 238"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "thetaD=350; #temperature for Cu(K)\n",
- "theetaD=550; #temperature for Si(K)\n",
- "\n",
- "#Calculation\n",
- "newDCu=k*thetaD/h; #highest possible frequency for Cu(per sec)\n",
- "newDSi=k*theetaD/h; #highest possible frequency for Si(per sec)\n",
- "\n",
- "#Result\n",
- "print \"highest possible frequency for Cu is\",round(newDCu/10**11,3),\"*10**11 per sec\"\n",
- "print \"highest possible frequency for Si is\",round(newDSi/10**11,2),\"*10**11 per sec\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "highest possible frequency for Cu is 72.895 *10**11 per sec\n",
- "highest possible frequency for Si is 114.55 *10**11 per sec\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 11.2, Page number 238"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "N=6.02*10**26; #avagadro number(k/mole)\n",
- "T=10; #temperature(K)\n",
- "thetaD=105; #debye temperature(K)\n",
- "\n",
- "#Calculation\n",
- "C=(12/5)*(math.pi**4)*N*k*(T/thetaD)**3; #specific heat of lead(J/K kmol)\n",
- "newD=k*thetaD/h; #highest frequency(per sec)\n",
- "\n",
- "#Result\n",
- "print \"specific heat of lead is\",round(C,1),\"J/K kmol\"\n",
- "print \"answer varies due to rounding off errors\"\n",
- "print \"highest frequency is\",round(newD/10**11,2),\"*10**11 per sec\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "specific heat of lead is 1677.7 J/K kmol\n",
- "answer varies due to rounding off errors\n",
- "highest frequency is 21.87 *10**11 per sec\n"
- ]
- }
- ],
- "prompt_number": 6
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter12.ipynb b/Modern_Physics_By_G.Aruldas/Chapter12.ipynb
deleted file mode 100755
index b3818649..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter12.ipynb
+++ /dev/null
@@ -1,285 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:881432a5cd98267b92bdfa11e021925fdef61ae98abdadccafbf254c6f9ca038"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "12: Band theory of solids"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.1, Page number 243"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "EF=8; #fermi energy(eV)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculation\n",
- "E0bar=3*EF/5; \n",
- "v=math.sqrt(2*E0bar*e/m); #speed of electron(m/s)\n",
- "\n",
- "#Result\n",
- "print \"speed of electron is\",round(v/10**6,1),\"*10**6 m/s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed of electron is 1.3 *10**6 m/s\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.2, Page number 244"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "I=8; #current(ampere)\n",
- "r=9*10**-4; #radius(m)\n",
- "V=5; #potential difference(V)\n",
- "L=1; #length(m)\n",
- "\n",
- "#Calculation\n",
- "A=math.pi*r**2; #area of wire(m**2)\n",
- "E=V/L;\n",
- "J=I/A; #current density(V/m)\n",
- "rho=E/J; #resistivity(ohm m)\n",
- "\n",
- "#Result\n",
- "print \"current density is\",round(J/10**6,3),\"*10**6 V/m\"\n",
- "print \"resistivity is\",round(rho*10**6,2),\"*10**-6 ohm m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "current density is 3.144 *10**6 V/m\n",
- "resistivity is 1.59 *10**-6 ohm m\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.3, Page number 245"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1;\n",
- "a=4*10**-10; #lattice parameter(m)\n",
- "N=1.56*10**28; \n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "tow=10**-15; #collision time(s)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculation\n",
- "N=n/(a**3); #number of electrons per unit volume(per m**3)\n",
- "sigma=N*e**2*tow/m; #conductivity(per ohm m)\n",
- "rho=1/sigma; #resistivity(ohm m)\n",
- "\n",
- "#Result\n",
- "print \"conductivity is\",round(sigma/10**6,2),\"*10**6 ohm m\"\n",
- "print \"resistivity is\",rho,\"ohm m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "conductivity is 0.44 *10**6 ohm m\n",
- "resistivity is 2.275e-06 ohm m\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.4, Page number 247"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "NA=6.02*10**26; #avagadro number(k/mole)\n",
- "T=300; #temperature(K)\n",
- "EF=2; #fermi energy(eV)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "\n",
- "#Calculation\n",
- "C=math.pi**2*k**2*NA*T/(2*EF*e); #electronic specific heat(J/kmol/K)\n",
- "\n",
- "#Result\n",
- "print \"electronic specific heat is\",int(C),\"J/kmol/K\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "electronic specific heat is 530 J/kmol/K\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.5, Page number 247"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "K=327; #thermal conductivity(W/mK)\n",
- "T=300; #temperature(K)\n",
- "rho=7.13*10**3; #density(kg/m**3)\n",
- "NA=6.02*10**26; #avagadro number(k/mole)\n",
- "w=65.38; #atomic weight\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "tow=2.5*10**-14; #relaxation time(s)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculation\n",
- "N=2*rho*NA/w; #number of electrons per unit volume(per m**3)\n",
- "sigma=N*e**2*tow/m; #conductivity(per ohm m)\n",
- "L=K/(sigma*T); #lorentz number(W ohm/K**2)\n",
- "\n",
- "#Result\n",
- "print \"lorentz number is\",round(L*10**8,4),\"*10**-8 W ohm/K**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "lorentz number is 1.1804 *10**-8 W ohm/K**2\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.6, Page number 248"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "n=5*10**28; #number of atoms(/m**3)\n",
- "\n",
- "#Calculation\n",
- "RH=-1/(n*e); #hall coefficient(m**3/C)\n",
- "\n",
- "#Result\n",
- "print \"hall coefficient is\",round(RH*10**9,3),\"*10**-9 m**3/C\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "hall coefficient is -0.125 *10**-9 m**3/C\n"
- ]
- }
- ],
- "prompt_number": 14
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter12_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter12_1.ipynb
deleted file mode 100755
index b3818649..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter12_1.ipynb
+++ /dev/null
@@ -1,285 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:881432a5cd98267b92bdfa11e021925fdef61ae98abdadccafbf254c6f9ca038"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "12: Band theory of solids"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.1, Page number 243"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "EF=8; #fermi energy(eV)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculation\n",
- "E0bar=3*EF/5; \n",
- "v=math.sqrt(2*E0bar*e/m); #speed of electron(m/s)\n",
- "\n",
- "#Result\n",
- "print \"speed of electron is\",round(v/10**6,1),\"*10**6 m/s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed of electron is 1.3 *10**6 m/s\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.2, Page number 244"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "I=8; #current(ampere)\n",
- "r=9*10**-4; #radius(m)\n",
- "V=5; #potential difference(V)\n",
- "L=1; #length(m)\n",
- "\n",
- "#Calculation\n",
- "A=math.pi*r**2; #area of wire(m**2)\n",
- "E=V/L;\n",
- "J=I/A; #current density(V/m)\n",
- "rho=E/J; #resistivity(ohm m)\n",
- "\n",
- "#Result\n",
- "print \"current density is\",round(J/10**6,3),\"*10**6 V/m\"\n",
- "print \"resistivity is\",round(rho*10**6,2),\"*10**-6 ohm m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "current density is 3.144 *10**6 V/m\n",
- "resistivity is 1.59 *10**-6 ohm m\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.3, Page number 245"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1;\n",
- "a=4*10**-10; #lattice parameter(m)\n",
- "N=1.56*10**28; \n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "tow=10**-15; #collision time(s)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculation\n",
- "N=n/(a**3); #number of electrons per unit volume(per m**3)\n",
- "sigma=N*e**2*tow/m; #conductivity(per ohm m)\n",
- "rho=1/sigma; #resistivity(ohm m)\n",
- "\n",
- "#Result\n",
- "print \"conductivity is\",round(sigma/10**6,2),\"*10**6 ohm m\"\n",
- "print \"resistivity is\",rho,\"ohm m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "conductivity is 0.44 *10**6 ohm m\n",
- "resistivity is 2.275e-06 ohm m\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.4, Page number 247"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "NA=6.02*10**26; #avagadro number(k/mole)\n",
- "T=300; #temperature(K)\n",
- "EF=2; #fermi energy(eV)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "\n",
- "#Calculation\n",
- "C=math.pi**2*k**2*NA*T/(2*EF*e); #electronic specific heat(J/kmol/K)\n",
- "\n",
- "#Result\n",
- "print \"electronic specific heat is\",int(C),\"J/kmol/K\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "electronic specific heat is 530 J/kmol/K\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.5, Page number 247"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "K=327; #thermal conductivity(W/mK)\n",
- "T=300; #temperature(K)\n",
- "rho=7.13*10**3; #density(kg/m**3)\n",
- "NA=6.02*10**26; #avagadro number(k/mole)\n",
- "w=65.38; #atomic weight\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "tow=2.5*10**-14; #relaxation time(s)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculation\n",
- "N=2*rho*NA/w; #number of electrons per unit volume(per m**3)\n",
- "sigma=N*e**2*tow/m; #conductivity(per ohm m)\n",
- "L=K/(sigma*T); #lorentz number(W ohm/K**2)\n",
- "\n",
- "#Result\n",
- "print \"lorentz number is\",round(L*10**8,4),\"*10**-8 W ohm/K**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "lorentz number is 1.1804 *10**-8 W ohm/K**2\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.6, Page number 248"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "n=5*10**28; #number of atoms(/m**3)\n",
- "\n",
- "#Calculation\n",
- "RH=-1/(n*e); #hall coefficient(m**3/C)\n",
- "\n",
- "#Result\n",
- "print \"hall coefficient is\",round(RH*10**9,3),\"*10**-9 m**3/C\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "hall coefficient is -0.125 *10**-9 m**3/C\n"
- ]
- }
- ],
- "prompt_number": 14
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter12_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter12_2.ipynb
deleted file mode 100755
index b3818649..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter12_2.ipynb
+++ /dev/null
@@ -1,285 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:881432a5cd98267b92bdfa11e021925fdef61ae98abdadccafbf254c6f9ca038"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "12: Band theory of solids"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.1, Page number 243"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "EF=8; #fermi energy(eV)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculation\n",
- "E0bar=3*EF/5; \n",
- "v=math.sqrt(2*E0bar*e/m); #speed of electron(m/s)\n",
- "\n",
- "#Result\n",
- "print \"speed of electron is\",round(v/10**6,1),\"*10**6 m/s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed of electron is 1.3 *10**6 m/s\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.2, Page number 244"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "I=8; #current(ampere)\n",
- "r=9*10**-4; #radius(m)\n",
- "V=5; #potential difference(V)\n",
- "L=1; #length(m)\n",
- "\n",
- "#Calculation\n",
- "A=math.pi*r**2; #area of wire(m**2)\n",
- "E=V/L;\n",
- "J=I/A; #current density(V/m)\n",
- "rho=E/J; #resistivity(ohm m)\n",
- "\n",
- "#Result\n",
- "print \"current density is\",round(J/10**6,3),\"*10**6 V/m\"\n",
- "print \"resistivity is\",round(rho*10**6,2),\"*10**-6 ohm m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "current density is 3.144 *10**6 V/m\n",
- "resistivity is 1.59 *10**-6 ohm m\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.3, Page number 245"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1;\n",
- "a=4*10**-10; #lattice parameter(m)\n",
- "N=1.56*10**28; \n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "tow=10**-15; #collision time(s)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculation\n",
- "N=n/(a**3); #number of electrons per unit volume(per m**3)\n",
- "sigma=N*e**2*tow/m; #conductivity(per ohm m)\n",
- "rho=1/sigma; #resistivity(ohm m)\n",
- "\n",
- "#Result\n",
- "print \"conductivity is\",round(sigma/10**6,2),\"*10**6 ohm m\"\n",
- "print \"resistivity is\",rho,\"ohm m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "conductivity is 0.44 *10**6 ohm m\n",
- "resistivity is 2.275e-06 ohm m\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.4, Page number 247"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "NA=6.02*10**26; #avagadro number(k/mole)\n",
- "T=300; #temperature(K)\n",
- "EF=2; #fermi energy(eV)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "\n",
- "#Calculation\n",
- "C=math.pi**2*k**2*NA*T/(2*EF*e); #electronic specific heat(J/kmol/K)\n",
- "\n",
- "#Result\n",
- "print \"electronic specific heat is\",int(C),\"J/kmol/K\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "electronic specific heat is 530 J/kmol/K\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.5, Page number 247"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "K=327; #thermal conductivity(W/mK)\n",
- "T=300; #temperature(K)\n",
- "rho=7.13*10**3; #density(kg/m**3)\n",
- "NA=6.02*10**26; #avagadro number(k/mole)\n",
- "w=65.38; #atomic weight\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "tow=2.5*10**-14; #relaxation time(s)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculation\n",
- "N=2*rho*NA/w; #number of electrons per unit volume(per m**3)\n",
- "sigma=N*e**2*tow/m; #conductivity(per ohm m)\n",
- "L=K/(sigma*T); #lorentz number(W ohm/K**2)\n",
- "\n",
- "#Result\n",
- "print \"lorentz number is\",round(L*10**8,4),\"*10**-8 W ohm/K**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "lorentz number is 1.1804 *10**-8 W ohm/K**2\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 12.6, Page number 248"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "n=5*10**28; #number of atoms(/m**3)\n",
- "\n",
- "#Calculation\n",
- "RH=-1/(n*e); #hall coefficient(m**3/C)\n",
- "\n",
- "#Result\n",
- "print \"hall coefficient is\",round(RH*10**9,3),\"*10**-9 m**3/C\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "hall coefficient is -0.125 *10**-9 m**3/C\n"
- ]
- }
- ],
- "prompt_number": 14
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter13.ipynb b/Modern_Physics_By_G.Aruldas/Chapter13.ipynb
deleted file mode 100755
index 70f718e0..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter13.ipynb
+++ /dev/null
@@ -1,250 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:1e02413599230fcf3193c09944545ea5772a7d8e9a89055fec5a43dcb6e7435b"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "13: Magnetic properties of solids"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 13.1, Page number 256"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "chi=-4.2*10**-6; #magnetic susceptibility\n",
- "H=1.2*10**5; #magnetic field(A/m)\n",
- "mew0=4*math.pi*10**-7; #permitivity of free space(H/m)\n",
- "\n",
- "#Calculation\n",
- "M=chi*H; #magnetisation(A/m)\n",
- "B=mew0*(H+M); #flux density(T)\n",
- "mewr=(M/H)+1; #relative permeability\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",M,\"A/m\"\n",
- "print \"flux density is\",round(B,3),\"T\"\n",
- "print \"relative permeability is\",round(mewr,6)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "magnetisation is -0.504 A/m\n",
- "flux density is 0.151 T\n",
- "relative permeability is 0.999996\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 13.2, Page number 258"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Z=2; #atomic number\n",
- "mew0=4*math.pi*10**-7; #permitivity of free space(H/m)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "N=28*10**26; #number of atoms(per m**3)\n",
- "r=0.6*10**-10; #mean radius(m)\n",
- "\n",
- "#Calculation\n",
- "chi=-mew0*Z*e**2*N*r**2/(6*m); #diamagnetic susceptibility\n",
- "\n",
- "#Result\n",
- "print \"diamagnetic susceptibility is\",round(chi*10**8,3),\"*10**-8\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "diamagnetic susceptibility is -11.878 *10**-8\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 13.3, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=2;\n",
- "a=2.55*10**-10; #lattice constant(m)\n",
- "chi=5.6*10**-6; #susceptibility\n",
- "Z=1;\n",
- "mew0=4*math.pi*10**-7; #permitivity of free space(H/m)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculation\n",
- "N=n/(a**3); #number of electrons per unit volume(per m**3)\n",
- "rbar=math.sqrt(chi*6*m/(mew0*Z*e**2*N)); #radius of atom(m)\n",
- "\n",
- "#Result\n",
- "print \"radius of atom is\",round(rbar*10**10,3),\"angstrom\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "radius of atom is 0.888 angstrom\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 13.4, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mew0=4*math.pi*10**-7; #permitivity of free space(H/m)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "T=300; #temperature(K)\n",
- "N=6.5*10**25; #number of atoms(per m**3)\n",
- "mew=9.27*10**-24; \n",
- "\n",
- "#Calculation\n",
- "chi=mew0*N*mew**2/(3*k*T); #susceptibility\n",
- "\n",
- "#Result\n",
- "print \"susceptibility is\",round(chi*10**7,2),\"*10**-7\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "susceptibility is 5.65 *10**-7\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 13.5, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "rho=4370; #density(kg/m**3)\n",
- "NA=6.02*10**26; #avagadro number(k/mole)\n",
- "M=168.5; #molecular weight(kg/kmol)\n",
- "mew0=4*math.pi*10**-7; #permitivity of free space(H/m)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "T=300; #temperature(K)\n",
- "H=2*10**5; #electric field(A/m)\n",
- "mew=2*9.27*10**-24; \n",
- "\n",
- "#Calculation\n",
- "N=rho*NA/M; \n",
- "chi=mew0*N*mew**2/(3*k*T); #susceptibility\n",
- "M=chi*H; #magnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"susceptibility is\",round(chi*10**4,4),\"*10**-4\"\n",
- "print \"magnetisation is\",round(M,3),\"A/m\"\n",
- "print \"answer varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "susceptibility is 5.4298 *10**-4\n",
- "magnetisation is 108.596 A/m\n",
- "answer varies due to rounding off errors\n"
- ]
- }
- ],
- "prompt_number": 17
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter13_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter13_1.ipynb
deleted file mode 100755
index 70f718e0..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter13_1.ipynb
+++ /dev/null
@@ -1,250 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:1e02413599230fcf3193c09944545ea5772a7d8e9a89055fec5a43dcb6e7435b"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "13: Magnetic properties of solids"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 13.1, Page number 256"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "chi=-4.2*10**-6; #magnetic susceptibility\n",
- "H=1.2*10**5; #magnetic field(A/m)\n",
- "mew0=4*math.pi*10**-7; #permitivity of free space(H/m)\n",
- "\n",
- "#Calculation\n",
- "M=chi*H; #magnetisation(A/m)\n",
- "B=mew0*(H+M); #flux density(T)\n",
- "mewr=(M/H)+1; #relative permeability\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",M,\"A/m\"\n",
- "print \"flux density is\",round(B,3),\"T\"\n",
- "print \"relative permeability is\",round(mewr,6)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "magnetisation is -0.504 A/m\n",
- "flux density is 0.151 T\n",
- "relative permeability is 0.999996\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 13.2, Page number 258"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Z=2; #atomic number\n",
- "mew0=4*math.pi*10**-7; #permitivity of free space(H/m)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "N=28*10**26; #number of atoms(per m**3)\n",
- "r=0.6*10**-10; #mean radius(m)\n",
- "\n",
- "#Calculation\n",
- "chi=-mew0*Z*e**2*N*r**2/(6*m); #diamagnetic susceptibility\n",
- "\n",
- "#Result\n",
- "print \"diamagnetic susceptibility is\",round(chi*10**8,3),\"*10**-8\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "diamagnetic susceptibility is -11.878 *10**-8\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 13.3, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=2;\n",
- "a=2.55*10**-10; #lattice constant(m)\n",
- "chi=5.6*10**-6; #susceptibility\n",
- "Z=1;\n",
- "mew0=4*math.pi*10**-7; #permitivity of free space(H/m)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculation\n",
- "N=n/(a**3); #number of electrons per unit volume(per m**3)\n",
- "rbar=math.sqrt(chi*6*m/(mew0*Z*e**2*N)); #radius of atom(m)\n",
- "\n",
- "#Result\n",
- "print \"radius of atom is\",round(rbar*10**10,3),\"angstrom\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "radius of atom is 0.888 angstrom\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 13.4, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mew0=4*math.pi*10**-7; #permitivity of free space(H/m)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "T=300; #temperature(K)\n",
- "N=6.5*10**25; #number of atoms(per m**3)\n",
- "mew=9.27*10**-24; \n",
- "\n",
- "#Calculation\n",
- "chi=mew0*N*mew**2/(3*k*T); #susceptibility\n",
- "\n",
- "#Result\n",
- "print \"susceptibility is\",round(chi*10**7,2),\"*10**-7\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "susceptibility is 5.65 *10**-7\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 13.5, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "rho=4370; #density(kg/m**3)\n",
- "NA=6.02*10**26; #avagadro number(k/mole)\n",
- "M=168.5; #molecular weight(kg/kmol)\n",
- "mew0=4*math.pi*10**-7; #permitivity of free space(H/m)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "T=300; #temperature(K)\n",
- "H=2*10**5; #electric field(A/m)\n",
- "mew=2*9.27*10**-24; \n",
- "\n",
- "#Calculation\n",
- "N=rho*NA/M; \n",
- "chi=mew0*N*mew**2/(3*k*T); #susceptibility\n",
- "M=chi*H; #magnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"susceptibility is\",round(chi*10**4,4),\"*10**-4\"\n",
- "print \"magnetisation is\",round(M,3),\"A/m\"\n",
- "print \"answer varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "susceptibility is 5.4298 *10**-4\n",
- "magnetisation is 108.596 A/m\n",
- "answer varies due to rounding off errors\n"
- ]
- }
- ],
- "prompt_number": 17
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter13_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter13_2.ipynb
deleted file mode 100755
index 70f718e0..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter13_2.ipynb
+++ /dev/null
@@ -1,250 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:1e02413599230fcf3193c09944545ea5772a7d8e9a89055fec5a43dcb6e7435b"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "13: Magnetic properties of solids"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 13.1, Page number 256"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "chi=-4.2*10**-6; #magnetic susceptibility\n",
- "H=1.2*10**5; #magnetic field(A/m)\n",
- "mew0=4*math.pi*10**-7; #permitivity of free space(H/m)\n",
- "\n",
- "#Calculation\n",
- "M=chi*H; #magnetisation(A/m)\n",
- "B=mew0*(H+M); #flux density(T)\n",
- "mewr=(M/H)+1; #relative permeability\n",
- "\n",
- "#Result\n",
- "print \"magnetisation is\",M,\"A/m\"\n",
- "print \"flux density is\",round(B,3),\"T\"\n",
- "print \"relative permeability is\",round(mewr,6)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "magnetisation is -0.504 A/m\n",
- "flux density is 0.151 T\n",
- "relative permeability is 0.999996\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 13.2, Page number 258"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Z=2; #atomic number\n",
- "mew0=4*math.pi*10**-7; #permitivity of free space(H/m)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "N=28*10**26; #number of atoms(per m**3)\n",
- "r=0.6*10**-10; #mean radius(m)\n",
- "\n",
- "#Calculation\n",
- "chi=-mew0*Z*e**2*N*r**2/(6*m); #diamagnetic susceptibility\n",
- "\n",
- "#Result\n",
- "print \"diamagnetic susceptibility is\",round(chi*10**8,3),\"*10**-8\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "diamagnetic susceptibility is -11.878 *10**-8\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 13.3, Page number 259"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=2;\n",
- "a=2.55*10**-10; #lattice constant(m)\n",
- "chi=5.6*10**-6; #susceptibility\n",
- "Z=1;\n",
- "mew0=4*math.pi*10**-7; #permitivity of free space(H/m)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculation\n",
- "N=n/(a**3); #number of electrons per unit volume(per m**3)\n",
- "rbar=math.sqrt(chi*6*m/(mew0*Z*e**2*N)); #radius of atom(m)\n",
- "\n",
- "#Result\n",
- "print \"radius of atom is\",round(rbar*10**10,3),\"angstrom\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "radius of atom is 0.888 angstrom\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 13.4, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mew0=4*math.pi*10**-7; #permitivity of free space(H/m)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "T=300; #temperature(K)\n",
- "N=6.5*10**25; #number of atoms(per m**3)\n",
- "mew=9.27*10**-24; \n",
- "\n",
- "#Calculation\n",
- "chi=mew0*N*mew**2/(3*k*T); #susceptibility\n",
- "\n",
- "#Result\n",
- "print \"susceptibility is\",round(chi*10**7,2),\"*10**-7\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "susceptibility is 5.65 *10**-7\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 13.5, Page number 260"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "rho=4370; #density(kg/m**3)\n",
- "NA=6.02*10**26; #avagadro number(k/mole)\n",
- "M=168.5; #molecular weight(kg/kmol)\n",
- "mew0=4*math.pi*10**-7; #permitivity of free space(H/m)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "T=300; #temperature(K)\n",
- "H=2*10**5; #electric field(A/m)\n",
- "mew=2*9.27*10**-24; \n",
- "\n",
- "#Calculation\n",
- "N=rho*NA/M; \n",
- "chi=mew0*N*mew**2/(3*k*T); #susceptibility\n",
- "M=chi*H; #magnetisation(A/m)\n",
- "\n",
- "#Result\n",
- "print \"susceptibility is\",round(chi*10**4,4),\"*10**-4\"\n",
- "print \"magnetisation is\",round(M,3),\"A/m\"\n",
- "print \"answer varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "susceptibility is 5.4298 *10**-4\n",
- "magnetisation is 108.596 A/m\n",
- "answer varies due to rounding off errors\n"
- ]
- }
- ],
- "prompt_number": 17
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter14.ipynb b/Modern_Physics_By_G.Aruldas/Chapter14.ipynb
deleted file mode 100755
index b2beeab9..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter14.ipynb
+++ /dev/null
@@ -1,107 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:f383b09bed78232b6f6bef91df71b6fd8febd00a3f89287a33c756d53748eb03"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "14: Superconductivity"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 14.1, Page number 272"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Bc0=0.0305; #critical field(T)\n",
- "T=2; #temperature(K)\n",
- "Tc=3.722; #critical temperature(K)\n",
- "r=2*10**-3; #diameter(m)\n",
- "mew0=4*math.pi*10**-7; #magnetic permeability\n",
- "\n",
- "#Calculation\n",
- "BcT=Bc0*(1-(T/Tc)**2); #critical field(T)\n",
- "Ic=2*math.pi*r*BcT/mew0; #current(A)\n",
- "\n",
- "#Result\n",
- "print \"current is\",round(Ic,1),\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "current is 216.9 A\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 14.2, Page number 274"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda0=37; #london penetration depth(nm)\n",
- "T=5.2; #temperature(K)\n",
- "Tc=7.193; #critical temperature(K)\n",
- "\n",
- "#Calculation\n",
- "a=1-(T/Tc)**4;\n",
- "lamdaT=lamda0*(a**(-1/2)); #penetration depth of lead(nm)\n",
- "\n",
- "#Result\n",
- "print \"penetration depth of lead is\",round(lamdaT,3),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "penetration depth of lead is 43.398 nm\n"
- ]
- }
- ],
- "prompt_number": 7
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter14_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter14_1.ipynb
deleted file mode 100755
index b2beeab9..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter14_1.ipynb
+++ /dev/null
@@ -1,107 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:f383b09bed78232b6f6bef91df71b6fd8febd00a3f89287a33c756d53748eb03"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "14: Superconductivity"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 14.1, Page number 272"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Bc0=0.0305; #critical field(T)\n",
- "T=2; #temperature(K)\n",
- "Tc=3.722; #critical temperature(K)\n",
- "r=2*10**-3; #diameter(m)\n",
- "mew0=4*math.pi*10**-7; #magnetic permeability\n",
- "\n",
- "#Calculation\n",
- "BcT=Bc0*(1-(T/Tc)**2); #critical field(T)\n",
- "Ic=2*math.pi*r*BcT/mew0; #current(A)\n",
- "\n",
- "#Result\n",
- "print \"current is\",round(Ic,1),\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "current is 216.9 A\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 14.2, Page number 274"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda0=37; #london penetration depth(nm)\n",
- "T=5.2; #temperature(K)\n",
- "Tc=7.193; #critical temperature(K)\n",
- "\n",
- "#Calculation\n",
- "a=1-(T/Tc)**4;\n",
- "lamdaT=lamda0*(a**(-1/2)); #penetration depth of lead(nm)\n",
- "\n",
- "#Result\n",
- "print \"penetration depth of lead is\",round(lamdaT,3),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "penetration depth of lead is 43.398 nm\n"
- ]
- }
- ],
- "prompt_number": 7
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter14_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter14_2.ipynb
deleted file mode 100755
index b2beeab9..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter14_2.ipynb
+++ /dev/null
@@ -1,107 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:f383b09bed78232b6f6bef91df71b6fd8febd00a3f89287a33c756d53748eb03"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "14: Superconductivity"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 14.1, Page number 272"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Bc0=0.0305; #critical field(T)\n",
- "T=2; #temperature(K)\n",
- "Tc=3.722; #critical temperature(K)\n",
- "r=2*10**-3; #diameter(m)\n",
- "mew0=4*math.pi*10**-7; #magnetic permeability\n",
- "\n",
- "#Calculation\n",
- "BcT=Bc0*(1-(T/Tc)**2); #critical field(T)\n",
- "Ic=2*math.pi*r*BcT/mew0; #current(A)\n",
- "\n",
- "#Result\n",
- "print \"current is\",round(Ic,1),\"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "current is 216.9 A\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 14.2, Page number 274"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda0=37; #london penetration depth(nm)\n",
- "T=5.2; #temperature(K)\n",
- "Tc=7.193; #critical temperature(K)\n",
- "\n",
- "#Calculation\n",
- "a=1-(T/Tc)**4;\n",
- "lamdaT=lamda0*(a**(-1/2)); #penetration depth of lead(nm)\n",
- "\n",
- "#Result\n",
- "print \"penetration depth of lead is\",round(lamdaT,3),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "penetration depth of lead is 43.398 nm\n"
- ]
- }
- ],
- "prompt_number": 7
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter15.ipynb b/Modern_Physics_By_G.Aruldas/Chapter15.ipynb
deleted file mode 100755
index 48af1473..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter15.ipynb
+++ /dev/null
@@ -1,203 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:ede2b0bb266c67744fbe14f69a09ec9b5592c13400e7d0bf2db5fa598ebe9db1"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "15: Lasers"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 15.1, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "T=1000; #temperature(K)\n",
- "new1=7.5*10**14; \n",
- "new2=4.3*10**14;\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "\n",
- "#Calculation\n",
- "kT=k*T;\n",
- "#optical region extends from 4000 to 7000 angstrom\n",
- "hnew=h*(new1-new2); \n",
- "\n",
- "#Result\n",
- "print \"value of kT is\",kT,\"J\"\n",
- "print \"value of hnew is\",hnew,\"J\"\n",
- "print \"hnew>kT.therefore spontaneous transitions are dominant ones in optical region\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "value of kT is 1.38e-20 J\n",
- "value of hnew is 2.12032e-19 J\n",
- "hnew>kT.therefore spontaneous transitions are dominant ones in optical region\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 15.2, Page number 298"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "P=0.6; #power(watt)\n",
- "T=30*10**-3; #time(s)\n",
- "lamda=640*10**-9; #wavelength(m)\n",
- "\n",
- "#Calculation\n",
- "E=P*T; #energy deposited(J)\n",
- "n=E*lamda/(h*c); #number of photons in each pulse\n",
- "\n",
- "#Result\n",
- "print \"energy deposited is\",E,\"J\"\n",
- "print \"number of photons in each pulse is\",round(n/10**16,1),\"*10**16\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy deposited is 0.018 J\n",
- "number of photons in each pulse is 5.8 *10**16\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 15.3, Page number 298"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda=5000*10**-10; #wavelength(m)\n",
- "f=0.2; #focal length(m)\n",
- "a=0.009; #radius of aperture(m)\n",
- "P=2.5*10**-3; #power(W)\n",
- "\n",
- "#Calculation\n",
- "A=math.pi*lamda**2*f**2/a**2; #area of spot at focal plane(m**2)\n",
- "I=P/A; #intensity at focus(W/m**2)\n",
- "\n",
- "#Result\n",
- "print \"area of spot at focal plane is\",round(A*10**10,2),\"*10**-10 m**2\"\n",
- "print \"intensity at focus is\",round(I/10**6,3),\"*10**6 W/m**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "area of spot at focal plane is 3.88 *10**-10 m**2\n",
- "intensity at focus is 6.446 *10**6 W/m**2\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 15.4, Page number 298"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda=693*10**-9; #wavelength(m)\n",
- "D=3*10**-3; #diameter of mirror(m)\n",
- "d=300*10**3; #distance from earth(m)\n",
- "\n",
- "#Calculation\n",
- "delta_theta=1.22*lamda/D; #angular spread(rad)\n",
- "a=delta_theta*d; #diameter of beam on satellite(m)\n",
- "\n",
- "#Result\n",
- "print \"angular spread is\",round(delta_theta*10**4,2),\"*10**-4 rad\"\n",
- "print \"diameter of beam on satellite is\",round(a,2),\"m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "angular spread is 2.82 *10**-4 rad\n",
- "diameter of beam on satellite is 84.55 m\n"
- ]
- }
- ],
- "prompt_number": 15
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter15_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter15_1.ipynb
deleted file mode 100755
index 48af1473..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter15_1.ipynb
+++ /dev/null
@@ -1,203 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:ede2b0bb266c67744fbe14f69a09ec9b5592c13400e7d0bf2db5fa598ebe9db1"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "15: Lasers"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 15.1, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "T=1000; #temperature(K)\n",
- "new1=7.5*10**14; \n",
- "new2=4.3*10**14;\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "\n",
- "#Calculation\n",
- "kT=k*T;\n",
- "#optical region extends from 4000 to 7000 angstrom\n",
- "hnew=h*(new1-new2); \n",
- "\n",
- "#Result\n",
- "print \"value of kT is\",kT,\"J\"\n",
- "print \"value of hnew is\",hnew,\"J\"\n",
- "print \"hnew>kT.therefore spontaneous transitions are dominant ones in optical region\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "value of kT is 1.38e-20 J\n",
- "value of hnew is 2.12032e-19 J\n",
- "hnew>kT.therefore spontaneous transitions are dominant ones in optical region\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 15.2, Page number 298"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "P=0.6; #power(watt)\n",
- "T=30*10**-3; #time(s)\n",
- "lamda=640*10**-9; #wavelength(m)\n",
- "\n",
- "#Calculation\n",
- "E=P*T; #energy deposited(J)\n",
- "n=E*lamda/(h*c); #number of photons in each pulse\n",
- "\n",
- "#Result\n",
- "print \"energy deposited is\",E,\"J\"\n",
- "print \"number of photons in each pulse is\",round(n/10**16,1),\"*10**16\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy deposited is 0.018 J\n",
- "number of photons in each pulse is 5.8 *10**16\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 15.3, Page number 298"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda=5000*10**-10; #wavelength(m)\n",
- "f=0.2; #focal length(m)\n",
- "a=0.009; #radius of aperture(m)\n",
- "P=2.5*10**-3; #power(W)\n",
- "\n",
- "#Calculation\n",
- "A=math.pi*lamda**2*f**2/a**2; #area of spot at focal plane(m**2)\n",
- "I=P/A; #intensity at focus(W/m**2)\n",
- "\n",
- "#Result\n",
- "print \"area of spot at focal plane is\",round(A*10**10,2),\"*10**-10 m**2\"\n",
- "print \"intensity at focus is\",round(I/10**6,3),\"*10**6 W/m**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "area of spot at focal plane is 3.88 *10**-10 m**2\n",
- "intensity at focus is 6.446 *10**6 W/m**2\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 15.4, Page number 298"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda=693*10**-9; #wavelength(m)\n",
- "D=3*10**-3; #diameter of mirror(m)\n",
- "d=300*10**3; #distance from earth(m)\n",
- "\n",
- "#Calculation\n",
- "delta_theta=1.22*lamda/D; #angular spread(rad)\n",
- "a=delta_theta*d; #diameter of beam on satellite(m)\n",
- "\n",
- "#Result\n",
- "print \"angular spread is\",round(delta_theta*10**4,2),\"*10**-4 rad\"\n",
- "print \"diameter of beam on satellite is\",round(a,2),\"m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "angular spread is 2.82 *10**-4 rad\n",
- "diameter of beam on satellite is 84.55 m\n"
- ]
- }
- ],
- "prompt_number": 15
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter15_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter15_2.ipynb
deleted file mode 100755
index 48af1473..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter15_2.ipynb
+++ /dev/null
@@ -1,203 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:ede2b0bb266c67744fbe14f69a09ec9b5592c13400e7d0bf2db5fa598ebe9db1"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "15: Lasers"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 15.1, Page number 283"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "T=1000; #temperature(K)\n",
- "new1=7.5*10**14; \n",
- "new2=4.3*10**14;\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "\n",
- "#Calculation\n",
- "kT=k*T;\n",
- "#optical region extends from 4000 to 7000 angstrom\n",
- "hnew=h*(new1-new2); \n",
- "\n",
- "#Result\n",
- "print \"value of kT is\",kT,\"J\"\n",
- "print \"value of hnew is\",hnew,\"J\"\n",
- "print \"hnew>kT.therefore spontaneous transitions are dominant ones in optical region\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "value of kT is 1.38e-20 J\n",
- "value of hnew is 2.12032e-19 J\n",
- "hnew>kT.therefore spontaneous transitions are dominant ones in optical region\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 15.2, Page number 298"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "P=0.6; #power(watt)\n",
- "T=30*10**-3; #time(s)\n",
- "lamda=640*10**-9; #wavelength(m)\n",
- "\n",
- "#Calculation\n",
- "E=P*T; #energy deposited(J)\n",
- "n=E*lamda/(h*c); #number of photons in each pulse\n",
- "\n",
- "#Result\n",
- "print \"energy deposited is\",E,\"J\"\n",
- "print \"number of photons in each pulse is\",round(n/10**16,1),\"*10**16\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy deposited is 0.018 J\n",
- "number of photons in each pulse is 5.8 *10**16\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 15.3, Page number 298"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda=5000*10**-10; #wavelength(m)\n",
- "f=0.2; #focal length(m)\n",
- "a=0.009; #radius of aperture(m)\n",
- "P=2.5*10**-3; #power(W)\n",
- "\n",
- "#Calculation\n",
- "A=math.pi*lamda**2*f**2/a**2; #area of spot at focal plane(m**2)\n",
- "I=P/A; #intensity at focus(W/m**2)\n",
- "\n",
- "#Result\n",
- "print \"area of spot at focal plane is\",round(A*10**10,2),\"*10**-10 m**2\"\n",
- "print \"intensity at focus is\",round(I/10**6,3),\"*10**6 W/m**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "area of spot at focal plane is 3.88 *10**-10 m**2\n",
- "intensity at focus is 6.446 *10**6 W/m**2\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 15.4, Page number 298"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamda=693*10**-9; #wavelength(m)\n",
- "D=3*10**-3; #diameter of mirror(m)\n",
- "d=300*10**3; #distance from earth(m)\n",
- "\n",
- "#Calculation\n",
- "delta_theta=1.22*lamda/D; #angular spread(rad)\n",
- "a=delta_theta*d; #diameter of beam on satellite(m)\n",
- "\n",
- "#Result\n",
- "print \"angular spread is\",round(delta_theta*10**4,2),\"*10**-4 rad\"\n",
- "print \"diameter of beam on satellite is\",round(a,2),\"m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "angular spread is 2.82 *10**-4 rad\n",
- "diameter of beam on satellite is 84.55 m\n"
- ]
- }
- ],
- "prompt_number": 15
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter16.ipynb b/Modern_Physics_By_G.Aruldas/Chapter16.ipynb
deleted file mode 100755
index 932f4802..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter16.ipynb
+++ /dev/null
@@ -1,114 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:8689775b6694dc6c6ea95bc809bbd7280d9553003ec1dbe78844db2dc6fa68f3"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "16: Fibre optics and holography"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 16.1, Page number 306"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n2=1.4; #refractive index of cladding\n",
- "n1=1.43; #refractive index of core\n",
- "\n",
- "#Calculation\n",
- "costhetac=n2/n1; \n",
- "thetac=math.acos(costhetac); #propagation angle(radian)\n",
- "thetac=thetac*180/math.pi; #propagation angle(degrees)\n",
- "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
- "thetaa=math.asin(NA); #angle(radian)\n",
- "thetaa=thetaa*180/math.pi; #angle(degrees)\n",
- "thetaa=2*thetaa; #acceptance angle(degrees)\n",
- "\n",
- "#Result\n",
- "print \"propagation angle is\",round(thetac,1),\"degrees\"\n",
- "print \"numerical aperture is\",round(NA,4)\n",
- "print \"acceptance angle is\",round(thetaa,2),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "propagation angle is 11.8 degrees\n",
- "numerical aperture is 0.2914\n",
- "acceptance angle is 33.88 degrees\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 16.3, Page number 311"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "z=30; #length of optical fibre(km)\n",
- "alpha=0.8; #fibre loss(dB/km)\n",
- "Pi=200; #input power(micro W)\n",
- "\n",
- "#Calculation\n",
- "a=alpha*z/10;\n",
- "b=10**a;\n",
- "P0=Pi/b; #output power(micro W)\n",
- "\n",
- "#Result\n",
- "print \"output power is\",round(P0,3),\"micro W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "output power is 0.796 micro W\n"
- ]
- }
- ],
- "prompt_number": 10
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter16_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter16_1.ipynb
deleted file mode 100755
index 932f4802..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter16_1.ipynb
+++ /dev/null
@@ -1,114 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:8689775b6694dc6c6ea95bc809bbd7280d9553003ec1dbe78844db2dc6fa68f3"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "16: Fibre optics and holography"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 16.1, Page number 306"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n2=1.4; #refractive index of cladding\n",
- "n1=1.43; #refractive index of core\n",
- "\n",
- "#Calculation\n",
- "costhetac=n2/n1; \n",
- "thetac=math.acos(costhetac); #propagation angle(radian)\n",
- "thetac=thetac*180/math.pi; #propagation angle(degrees)\n",
- "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
- "thetaa=math.asin(NA); #angle(radian)\n",
- "thetaa=thetaa*180/math.pi; #angle(degrees)\n",
- "thetaa=2*thetaa; #acceptance angle(degrees)\n",
- "\n",
- "#Result\n",
- "print \"propagation angle is\",round(thetac,1),\"degrees\"\n",
- "print \"numerical aperture is\",round(NA,4)\n",
- "print \"acceptance angle is\",round(thetaa,2),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "propagation angle is 11.8 degrees\n",
- "numerical aperture is 0.2914\n",
- "acceptance angle is 33.88 degrees\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 16.3, Page number 311"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "z=30; #length of optical fibre(km)\n",
- "alpha=0.8; #fibre loss(dB/km)\n",
- "Pi=200; #input power(micro W)\n",
- "\n",
- "#Calculation\n",
- "a=alpha*z/10;\n",
- "b=10**a;\n",
- "P0=Pi/b; #output power(micro W)\n",
- "\n",
- "#Result\n",
- "print \"output power is\",round(P0,3),\"micro W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "output power is 0.796 micro W\n"
- ]
- }
- ],
- "prompt_number": 10
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter16_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter16_2.ipynb
deleted file mode 100755
index 932f4802..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter16_2.ipynb
+++ /dev/null
@@ -1,114 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:8689775b6694dc6c6ea95bc809bbd7280d9553003ec1dbe78844db2dc6fa68f3"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "16: Fibre optics and holography"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 16.1, Page number 306"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n2=1.4; #refractive index of cladding\n",
- "n1=1.43; #refractive index of core\n",
- "\n",
- "#Calculation\n",
- "costhetac=n2/n1; \n",
- "thetac=math.acos(costhetac); #propagation angle(radian)\n",
- "thetac=thetac*180/math.pi; #propagation angle(degrees)\n",
- "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
- "thetaa=math.asin(NA); #angle(radian)\n",
- "thetaa=thetaa*180/math.pi; #angle(degrees)\n",
- "thetaa=2*thetaa; #acceptance angle(degrees)\n",
- "\n",
- "#Result\n",
- "print \"propagation angle is\",round(thetac,1),\"degrees\"\n",
- "print \"numerical aperture is\",round(NA,4)\n",
- "print \"acceptance angle is\",round(thetaa,2),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "propagation angle is 11.8 degrees\n",
- "numerical aperture is 0.2914\n",
- "acceptance angle is 33.88 degrees\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 16.3, Page number 311"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "z=30; #length of optical fibre(km)\n",
- "alpha=0.8; #fibre loss(dB/km)\n",
- "Pi=200; #input power(micro W)\n",
- "\n",
- "#Calculation\n",
- "a=alpha*z/10;\n",
- "b=10**a;\n",
- "P0=Pi/b; #output power(micro W)\n",
- "\n",
- "#Result\n",
- "print \"output power is\",round(P0,3),\"micro W\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "output power is 0.796 micro W\n"
- ]
- }
- ],
- "prompt_number": 10
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter17.ipynb b/Modern_Physics_By_G.Aruldas/Chapter17.ipynb
deleted file mode 100755
index 61dae782..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter17.ipynb
+++ /dev/null
@@ -1,293 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:d405bf204e77196ade310e0be88ebb97609af7dc21d3bd3e418e5c80ec00e4d3"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "17: Nuclear properties"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.1, Page number 324"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=1.67*10**-27; #nucleon mass(kg)\n",
- "R0=1.2*10**-15; #radius of nucleus(m)\n",
- "\n",
- "#Calculation\n",
- "d=m*3/(4*math.pi*R0**3); #density of nucleus(kg/m**3)\n",
- "\n",
- "#Result\n",
- "print \"density of nucleus is\",round(d/10**17,1),\"*10**17 kg/m**3\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "density of nucleus is 2.3 *10**17 kg/m**3\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.2, Page number 324"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "a=1.2*10**-15;\n",
- "k=9*10**9; #value of N(Nm**2/C**2)\n",
- "q1=2;\n",
- "q2=90;\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "\n",
- "#Calculation\n",
- "r=a*((4**(1/3))+(228**(1/3))); #distance(m)\n",
- "E=k*q1*q2*e**2/r; #kinetic energy(J)\n",
- "E=E/(e*10**6); #kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"potential energy is 0. kinetic energy is\",round(E,1),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "potential energy is 0. kinetic energy is 28.1 MeV\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.3, Page number 326"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=2.48*10**4; #electric field(V/m)\n",
- "m=1.6605*10**-27; #nucleon mass(kg)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "B=0.75; #magnetic field(T)\n",
- "\n",
- "#Calculation\n",
- "r1=E*12*m/(e*B**2); #distance on photographic plate for 12C(m)\n",
- "r1=r1*10**3; #distance on photographic plate for 12C(mm)\n",
- "r2=E*13*m/(e*B**2); #distance on photographic plate for 13C(m)\n",
- "r2=r2*10**3; #distance on photographic plate for 13C(mm)\n",
- "r3=E*14*m/(e*B**2); #distance on photographic plate for 14C(m)\n",
- "r3=r3*10**3; #distance on photographic plate for 14C(mm)\n",
- "r4=(2*r2)-(2*r1); #distance between lines of 13C and 12C(mm)\n",
- "r5=(2*r3)-(2*r2); #distance between lines of 14C and 13C(mm)\n",
- "r=r4/2; #distance if ions are doubly charged(mm)\n",
- "\n",
- "#Result\n",
- "print \"distance on photographic plate for 12C is\",round(r1,2),\"mm\"\n",
- "print \"distance on photographic plate for 13C is\",round(r2,2),\"mm\"\n",
- "print \"distance on photographic plate for 14C is\",round(r3,2),\"mm\"\n",
- "print \"distance if ions are doubly charged is\",round(r,2),\"mm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "distance on photographic plate for 12C is 5.49 mm\n",
- "distance on photographic plate for 13C is 5.95 mm\n",
- "distance on photographic plate for 14C is 6.41 mm\n",
- "distance if ions are doubly charged is 0.46 mm\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.4, Page number 327"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=6; #number of neutrons\n",
- "p=6; #number of protons\n",
- "M=12; #mass of 12C6(u)\n",
- "E=931.5; #energy(MeV)\n",
- "\n",
- "#Calculation\n",
- "mn=n*1.008665; #mass of neutrons(u)\n",
- "mp=p*1.007825; #mass of hydrogen atoms(u)\n",
- "m=mp+mn; #total mass(u)\n",
- "md=m-M; #mass deficiency(u)\n",
- "BE=md*E; #binding energy(MeV)\n",
- "be=BE/12; #average binding energy per nucleon(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy is\",round(BE,2),\"MeV\"\n",
- "print \"average binding energy per nucleon is\",round(be,2),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "binding energy is 92.16 MeV\n",
- "average binding energy per nucleon is 7.68 MeV\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.6, Page number 335"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "M22Na=21.9944; #mass of 22Na(u)\n",
- "m=1.008665; #mass of last neutron(u)\n",
- "M23Na=22.989767; #mass of 23Na(u)\n",
- "E=931.5; #energy(MeV)\n",
- "\n",
- "#Calculation\n",
- "M=M22Na+m; \n",
- "md=M-M23Na; #mass deficiency(u)\n",
- "BE=md*E; #binding energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy is\",round(BE,1),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "binding energy is 12.4 MeV\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.7, Page number 341"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "hbar=1.05*10**-34; \n",
- "c=3*10**8; #speed of light(m/s)\n",
- "mpi=140; #mass of pi-meson(MeV/c**2)\n",
- "e=1.6*10**-13;\n",
- "\n",
- "#Calculation\n",
- "r=hbar*c/(mpi*e); #range of nuclear force(m)\n",
- "\n",
- "#Result\n",
- "print \"range of nuclear force is\",round(r*10**15,1),\"fm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "range of nuclear force is 1.4 fm\n"
- ]
- }
- ],
- "prompt_number": 13
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter17_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter17_1.ipynb
deleted file mode 100755
index 61dae782..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter17_1.ipynb
+++ /dev/null
@@ -1,293 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:d405bf204e77196ade310e0be88ebb97609af7dc21d3bd3e418e5c80ec00e4d3"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "17: Nuclear properties"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.1, Page number 324"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=1.67*10**-27; #nucleon mass(kg)\n",
- "R0=1.2*10**-15; #radius of nucleus(m)\n",
- "\n",
- "#Calculation\n",
- "d=m*3/(4*math.pi*R0**3); #density of nucleus(kg/m**3)\n",
- "\n",
- "#Result\n",
- "print \"density of nucleus is\",round(d/10**17,1),\"*10**17 kg/m**3\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "density of nucleus is 2.3 *10**17 kg/m**3\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.2, Page number 324"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "a=1.2*10**-15;\n",
- "k=9*10**9; #value of N(Nm**2/C**2)\n",
- "q1=2;\n",
- "q2=90;\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "\n",
- "#Calculation\n",
- "r=a*((4**(1/3))+(228**(1/3))); #distance(m)\n",
- "E=k*q1*q2*e**2/r; #kinetic energy(J)\n",
- "E=E/(e*10**6); #kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"potential energy is 0. kinetic energy is\",round(E,1),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "potential energy is 0. kinetic energy is 28.1 MeV\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.3, Page number 326"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=2.48*10**4; #electric field(V/m)\n",
- "m=1.6605*10**-27; #nucleon mass(kg)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "B=0.75; #magnetic field(T)\n",
- "\n",
- "#Calculation\n",
- "r1=E*12*m/(e*B**2); #distance on photographic plate for 12C(m)\n",
- "r1=r1*10**3; #distance on photographic plate for 12C(mm)\n",
- "r2=E*13*m/(e*B**2); #distance on photographic plate for 13C(m)\n",
- "r2=r2*10**3; #distance on photographic plate for 13C(mm)\n",
- "r3=E*14*m/(e*B**2); #distance on photographic plate for 14C(m)\n",
- "r3=r3*10**3; #distance on photographic plate for 14C(mm)\n",
- "r4=(2*r2)-(2*r1); #distance between lines of 13C and 12C(mm)\n",
- "r5=(2*r3)-(2*r2); #distance between lines of 14C and 13C(mm)\n",
- "r=r4/2; #distance if ions are doubly charged(mm)\n",
- "\n",
- "#Result\n",
- "print \"distance on photographic plate for 12C is\",round(r1,2),\"mm\"\n",
- "print \"distance on photographic plate for 13C is\",round(r2,2),\"mm\"\n",
- "print \"distance on photographic plate for 14C is\",round(r3,2),\"mm\"\n",
- "print \"distance if ions are doubly charged is\",round(r,2),\"mm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "distance on photographic plate for 12C is 5.49 mm\n",
- "distance on photographic plate for 13C is 5.95 mm\n",
- "distance on photographic plate for 14C is 6.41 mm\n",
- "distance if ions are doubly charged is 0.46 mm\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.4, Page number 327"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=6; #number of neutrons\n",
- "p=6; #number of protons\n",
- "M=12; #mass of 12C6(u)\n",
- "E=931.5; #energy(MeV)\n",
- "\n",
- "#Calculation\n",
- "mn=n*1.008665; #mass of neutrons(u)\n",
- "mp=p*1.007825; #mass of hydrogen atoms(u)\n",
- "m=mp+mn; #total mass(u)\n",
- "md=m-M; #mass deficiency(u)\n",
- "BE=md*E; #binding energy(MeV)\n",
- "be=BE/12; #average binding energy per nucleon(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy is\",round(BE,2),\"MeV\"\n",
- "print \"average binding energy per nucleon is\",round(be,2),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "binding energy is 92.16 MeV\n",
- "average binding energy per nucleon is 7.68 MeV\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.6, Page number 335"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "M22Na=21.9944; #mass of 22Na(u)\n",
- "m=1.008665; #mass of last neutron(u)\n",
- "M23Na=22.989767; #mass of 23Na(u)\n",
- "E=931.5; #energy(MeV)\n",
- "\n",
- "#Calculation\n",
- "M=M22Na+m; \n",
- "md=M-M23Na; #mass deficiency(u)\n",
- "BE=md*E; #binding energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy is\",round(BE,1),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "binding energy is 12.4 MeV\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.7, Page number 341"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "hbar=1.05*10**-34; \n",
- "c=3*10**8; #speed of light(m/s)\n",
- "mpi=140; #mass of pi-meson(MeV/c**2)\n",
- "e=1.6*10**-13;\n",
- "\n",
- "#Calculation\n",
- "r=hbar*c/(mpi*e); #range of nuclear force(m)\n",
- "\n",
- "#Result\n",
- "print \"range of nuclear force is\",round(r*10**15,1),\"fm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "range of nuclear force is 1.4 fm\n"
- ]
- }
- ],
- "prompt_number": 13
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter17_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter17_2.ipynb
deleted file mode 100755
index 61dae782..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter17_2.ipynb
+++ /dev/null
@@ -1,293 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:d405bf204e77196ade310e0be88ebb97609af7dc21d3bd3e418e5c80ec00e4d3"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "17: Nuclear properties"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.1, Page number 324"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=1.67*10**-27; #nucleon mass(kg)\n",
- "R0=1.2*10**-15; #radius of nucleus(m)\n",
- "\n",
- "#Calculation\n",
- "d=m*3/(4*math.pi*R0**3); #density of nucleus(kg/m**3)\n",
- "\n",
- "#Result\n",
- "print \"density of nucleus is\",round(d/10**17,1),\"*10**17 kg/m**3\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "density of nucleus is 2.3 *10**17 kg/m**3\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.2, Page number 324"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "a=1.2*10**-15;\n",
- "k=9*10**9; #value of N(Nm**2/C**2)\n",
- "q1=2;\n",
- "q2=90;\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "\n",
- "#Calculation\n",
- "r=a*((4**(1/3))+(228**(1/3))); #distance(m)\n",
- "E=k*q1*q2*e**2/r; #kinetic energy(J)\n",
- "E=E/(e*10**6); #kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"potential energy is 0. kinetic energy is\",round(E,1),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "potential energy is 0. kinetic energy is 28.1 MeV\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.3, Page number 326"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=2.48*10**4; #electric field(V/m)\n",
- "m=1.6605*10**-27; #nucleon mass(kg)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "B=0.75; #magnetic field(T)\n",
- "\n",
- "#Calculation\n",
- "r1=E*12*m/(e*B**2); #distance on photographic plate for 12C(m)\n",
- "r1=r1*10**3; #distance on photographic plate for 12C(mm)\n",
- "r2=E*13*m/(e*B**2); #distance on photographic plate for 13C(m)\n",
- "r2=r2*10**3; #distance on photographic plate for 13C(mm)\n",
- "r3=E*14*m/(e*B**2); #distance on photographic plate for 14C(m)\n",
- "r3=r3*10**3; #distance on photographic plate for 14C(mm)\n",
- "r4=(2*r2)-(2*r1); #distance between lines of 13C and 12C(mm)\n",
- "r5=(2*r3)-(2*r2); #distance between lines of 14C and 13C(mm)\n",
- "r=r4/2; #distance if ions are doubly charged(mm)\n",
- "\n",
- "#Result\n",
- "print \"distance on photographic plate for 12C is\",round(r1,2),\"mm\"\n",
- "print \"distance on photographic plate for 13C is\",round(r2,2),\"mm\"\n",
- "print \"distance on photographic plate for 14C is\",round(r3,2),\"mm\"\n",
- "print \"distance if ions are doubly charged is\",round(r,2),\"mm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "distance on photographic plate for 12C is 5.49 mm\n",
- "distance on photographic plate for 13C is 5.95 mm\n",
- "distance on photographic plate for 14C is 6.41 mm\n",
- "distance if ions are doubly charged is 0.46 mm\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.4, Page number 327"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=6; #number of neutrons\n",
- "p=6; #number of protons\n",
- "M=12; #mass of 12C6(u)\n",
- "E=931.5; #energy(MeV)\n",
- "\n",
- "#Calculation\n",
- "mn=n*1.008665; #mass of neutrons(u)\n",
- "mp=p*1.007825; #mass of hydrogen atoms(u)\n",
- "m=mp+mn; #total mass(u)\n",
- "md=m-M; #mass deficiency(u)\n",
- "BE=md*E; #binding energy(MeV)\n",
- "be=BE/12; #average binding energy per nucleon(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy is\",round(BE,2),\"MeV\"\n",
- "print \"average binding energy per nucleon is\",round(be,2),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "binding energy is 92.16 MeV\n",
- "average binding energy per nucleon is 7.68 MeV\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.6, Page number 335"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "M22Na=21.9944; #mass of 22Na(u)\n",
- "m=1.008665; #mass of last neutron(u)\n",
- "M23Na=22.989767; #mass of 23Na(u)\n",
- "E=931.5; #energy(MeV)\n",
- "\n",
- "#Calculation\n",
- "M=M22Na+m; \n",
- "md=M-M23Na; #mass deficiency(u)\n",
- "BE=md*E; #binding energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"binding energy is\",round(BE,1),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "binding energy is 12.4 MeV\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 17.7, Page number 341"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "hbar=1.05*10**-34; \n",
- "c=3*10**8; #speed of light(m/s)\n",
- "mpi=140; #mass of pi-meson(MeV/c**2)\n",
- "e=1.6*10**-13;\n",
- "\n",
- "#Calculation\n",
- "r=hbar*c/(mpi*e); #range of nuclear force(m)\n",
- "\n",
- "#Result\n",
- "print \"range of nuclear force is\",round(r*10**15,1),\"fm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "range of nuclear force is 1.4 fm\n"
- ]
- }
- ],
- "prompt_number": 13
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter18.ipynb b/Modern_Physics_By_G.Aruldas/Chapter18.ipynb
deleted file mode 100755
index b99ff137..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter18.ipynb
+++ /dev/null
@@ -1,366 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:0f6dea1f19194326599a9bca2989e912ed17e32f1ffb8d9305e16c13f8cacf2c"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "18: Radioactive decay"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.1, Page number 347"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "N0=1; #assume\n",
- "\n",
- "#Calculation\n",
- "f=(N0/2)/N0; #fraction after t1/2\n",
- "f1=(N0/4)/N0; #fraction after 2 half lives\n",
- "f2=(N0/(2**5))/N0; #fraction after 5 half lives\n",
- "f3=(N0/(2**10))/N0; #fraction after 10 half lives\n",
- "\n",
- "#Result\n",
- "print \"fraction after 2 half lives is\",f1\n",
- "print \"fraction after 5 half lives is\",f2\n",
- "print \"fraction after 10 half lives is\",f3"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "fraction after 2 half lives is 0.25\n",
- "fraction after 5 half lives is 0.03125\n",
- "fraction after 10 half lives is 0.0009765625\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.2, Page number 348"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thalf=2.7*24*60*60; #half life(s)\n",
- "m=1*10**-6; #mass(gm)\n",
- "Na=6.02*10**23; #avagadro number(atoms/mol)\n",
- "M=198; #molar mass(g/mol)\n",
- "t=8*24*60*60;\n",
- "\n",
- "#Calculation\n",
- "lamda=0.693/thalf; #decay constant(per sec)\n",
- "N=m*Na/M; #number of nuclei(atoms)\n",
- "A0=lamda*N; #activity(disintegrations per sec)\n",
- "A=A0*math.exp(-lamda*t); #activity for 8 days(decays per sec)\n",
- "\n",
- "#Result\n",
- "print \"decay constant is\",round(lamda*10**6,2),\"*10**-6 per sec\"\n",
- "print \"activity is\",round(A0/10**9,2),\"*10**9 disintegrations per sec\"\n",
- "print \"activity for 8 days is\",round(A/10**9,2),\"*10**9 decays per sec\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "decay constant is 2.97 *10**-6 per sec\n",
- "activity is 9.03 *10**9 disintegrations per sec\n",
- "activity for 8 days is 1.16 *10**9 decays per sec\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.3, Page number 348"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thalf=5570*365*24*60*60; #half life(s)\n",
- "dNbydt=3.7*10**10*2*10**-3; #number of decays per sec\n",
- "m=14;\n",
- "Na=6.02*10**23; #avagadro number(atoms/mol)\n",
- "\n",
- "#Calculation\n",
- "lamda=0.693/thalf; #decay constant(per sec)\n",
- "N=dNbydt/lamda; #number of atoms\n",
- "mN=m*N/Na; #mass of 2mCi(g)\n",
- "\n",
- "#Result\n",
- "print \"mass of 2mCi is\",round(mN*10**4,2),\"*10**-4 g\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "mass of 2mCi is 4.36 *10**-4 g\n"
- ]
- }
- ],
- "prompt_number": 23
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.5, Page number 353"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thalf=1.25*10**9; #half life(yr)\n",
- "r=10.2; #ratio of number of atoms\n",
- "\n",
- "#Calculation\n",
- "a=1+r;\n",
- "lamda=0.693/thalf; #decay constant(per yr)\n",
- "t=math.log(a)/lamda; #time(yr)\n",
- "\n",
- "#Result\n",
- "print \"the rock is\",round(t/10**9,2),\"*10**9 yrs old\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "the rock is 4.36 *10**9 yrs old\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.6, Page number 356"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mU=232.037131; #atomic mass of U(u)\n",
- "mHe=4.002603; #atomic mass of He(u)\n",
- "E=931.5; #energy(MeV)\n",
- "KE=5.32; #kinetic energy of alpha particle(MeV)\n",
- "\n",
- "#Calculation\n",
- "mTh=mU-mHe-(KE/E); #atomic mass of Th(u)\n",
- "\n",
- "#Result\n",
- "print \"atomic mass of Th is\",round(mTh,5),\"u\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "atomic mass of Th is 228.02882 u\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.7, Page number 359"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=931.5; #energy(MeV)\n",
- "mX=11.011433; #mass of 11C(u)\n",
- "mXdash=11.009305; #mass of 11B(u)\n",
- "me=0.511;\n",
- "\n",
- "#Calculation\n",
- "Q=(E*(mX-mXdash))-(2*me); #Q value for decay(MeV)\n",
- "\n",
- "#Result\n",
- "print \"maximum energy is\",round(Q,2),\"MeV.minimum energy is zero\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "maximum energy is 0.96 MeV.minimum energy is zero\n"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.8, Page number 359"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mK=39.963999; #mass of K(u)\n",
- "mAr=39.962384; #mass of Ar(u)\n",
- "E=931.5; #energy(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=(mK-mAr)*E; #kinetic energy of neutrino(MeV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of neutrino is\",round(Q,3),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "kinetic energy of neutrino is 1.504 MeV\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.9, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mN=12.018613; #mass of N(u)\n",
- "mC=12; #mass of C(u)\n",
- "me=0.000549; #mass of me(u)\n",
- "E=931.5; #energy(MeV)\n",
- "Egamma=4.43; #energy of emitted gamma ray(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=(mN-mC-(2*me))*E; #Q value(MeV)\n",
- "Emax=Q-Egamma; #maximum kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"maximum kinetic energy is\",round(Emax,2),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "maximum kinetic energy is 11.89 MeV\n"
- ]
- }
- ],
- "prompt_number": 20
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter18_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter18_1.ipynb
deleted file mode 100755
index b99ff137..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter18_1.ipynb
+++ /dev/null
@@ -1,366 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:0f6dea1f19194326599a9bca2989e912ed17e32f1ffb8d9305e16c13f8cacf2c"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "18: Radioactive decay"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.1, Page number 347"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "N0=1; #assume\n",
- "\n",
- "#Calculation\n",
- "f=(N0/2)/N0; #fraction after t1/2\n",
- "f1=(N0/4)/N0; #fraction after 2 half lives\n",
- "f2=(N0/(2**5))/N0; #fraction after 5 half lives\n",
- "f3=(N0/(2**10))/N0; #fraction after 10 half lives\n",
- "\n",
- "#Result\n",
- "print \"fraction after 2 half lives is\",f1\n",
- "print \"fraction after 5 half lives is\",f2\n",
- "print \"fraction after 10 half lives is\",f3"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "fraction after 2 half lives is 0.25\n",
- "fraction after 5 half lives is 0.03125\n",
- "fraction after 10 half lives is 0.0009765625\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.2, Page number 348"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thalf=2.7*24*60*60; #half life(s)\n",
- "m=1*10**-6; #mass(gm)\n",
- "Na=6.02*10**23; #avagadro number(atoms/mol)\n",
- "M=198; #molar mass(g/mol)\n",
- "t=8*24*60*60;\n",
- "\n",
- "#Calculation\n",
- "lamda=0.693/thalf; #decay constant(per sec)\n",
- "N=m*Na/M; #number of nuclei(atoms)\n",
- "A0=lamda*N; #activity(disintegrations per sec)\n",
- "A=A0*math.exp(-lamda*t); #activity for 8 days(decays per sec)\n",
- "\n",
- "#Result\n",
- "print \"decay constant is\",round(lamda*10**6,2),\"*10**-6 per sec\"\n",
- "print \"activity is\",round(A0/10**9,2),\"*10**9 disintegrations per sec\"\n",
- "print \"activity for 8 days is\",round(A/10**9,2),\"*10**9 decays per sec\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "decay constant is 2.97 *10**-6 per sec\n",
- "activity is 9.03 *10**9 disintegrations per sec\n",
- "activity for 8 days is 1.16 *10**9 decays per sec\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.3, Page number 348"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thalf=5570*365*24*60*60; #half life(s)\n",
- "dNbydt=3.7*10**10*2*10**-3; #number of decays per sec\n",
- "m=14;\n",
- "Na=6.02*10**23; #avagadro number(atoms/mol)\n",
- "\n",
- "#Calculation\n",
- "lamda=0.693/thalf; #decay constant(per sec)\n",
- "N=dNbydt/lamda; #number of atoms\n",
- "mN=m*N/Na; #mass of 2mCi(g)\n",
- "\n",
- "#Result\n",
- "print \"mass of 2mCi is\",round(mN*10**4,2),\"*10**-4 g\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "mass of 2mCi is 4.36 *10**-4 g\n"
- ]
- }
- ],
- "prompt_number": 23
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.5, Page number 353"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thalf=1.25*10**9; #half life(yr)\n",
- "r=10.2; #ratio of number of atoms\n",
- "\n",
- "#Calculation\n",
- "a=1+r;\n",
- "lamda=0.693/thalf; #decay constant(per yr)\n",
- "t=math.log(a)/lamda; #time(yr)\n",
- "\n",
- "#Result\n",
- "print \"the rock is\",round(t/10**9,2),\"*10**9 yrs old\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "the rock is 4.36 *10**9 yrs old\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.6, Page number 356"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mU=232.037131; #atomic mass of U(u)\n",
- "mHe=4.002603; #atomic mass of He(u)\n",
- "E=931.5; #energy(MeV)\n",
- "KE=5.32; #kinetic energy of alpha particle(MeV)\n",
- "\n",
- "#Calculation\n",
- "mTh=mU-mHe-(KE/E); #atomic mass of Th(u)\n",
- "\n",
- "#Result\n",
- "print \"atomic mass of Th is\",round(mTh,5),\"u\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "atomic mass of Th is 228.02882 u\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.7, Page number 359"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=931.5; #energy(MeV)\n",
- "mX=11.011433; #mass of 11C(u)\n",
- "mXdash=11.009305; #mass of 11B(u)\n",
- "me=0.511;\n",
- "\n",
- "#Calculation\n",
- "Q=(E*(mX-mXdash))-(2*me); #Q value for decay(MeV)\n",
- "\n",
- "#Result\n",
- "print \"maximum energy is\",round(Q,2),\"MeV.minimum energy is zero\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "maximum energy is 0.96 MeV.minimum energy is zero\n"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.8, Page number 359"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mK=39.963999; #mass of K(u)\n",
- "mAr=39.962384; #mass of Ar(u)\n",
- "E=931.5; #energy(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=(mK-mAr)*E; #kinetic energy of neutrino(MeV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of neutrino is\",round(Q,3),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "kinetic energy of neutrino is 1.504 MeV\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.9, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mN=12.018613; #mass of N(u)\n",
- "mC=12; #mass of C(u)\n",
- "me=0.000549; #mass of me(u)\n",
- "E=931.5; #energy(MeV)\n",
- "Egamma=4.43; #energy of emitted gamma ray(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=(mN-mC-(2*me))*E; #Q value(MeV)\n",
- "Emax=Q-Egamma; #maximum kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"maximum kinetic energy is\",round(Emax,2),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "maximum kinetic energy is 11.89 MeV\n"
- ]
- }
- ],
- "prompt_number": 20
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter18_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter18_2.ipynb
deleted file mode 100755
index b99ff137..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter18_2.ipynb
+++ /dev/null
@@ -1,366 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:0f6dea1f19194326599a9bca2989e912ed17e32f1ffb8d9305e16c13f8cacf2c"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "18: Radioactive decay"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.1, Page number 347"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "N0=1; #assume\n",
- "\n",
- "#Calculation\n",
- "f=(N0/2)/N0; #fraction after t1/2\n",
- "f1=(N0/4)/N0; #fraction after 2 half lives\n",
- "f2=(N0/(2**5))/N0; #fraction after 5 half lives\n",
- "f3=(N0/(2**10))/N0; #fraction after 10 half lives\n",
- "\n",
- "#Result\n",
- "print \"fraction after 2 half lives is\",f1\n",
- "print \"fraction after 5 half lives is\",f2\n",
- "print \"fraction after 10 half lives is\",f3"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "fraction after 2 half lives is 0.25\n",
- "fraction after 5 half lives is 0.03125\n",
- "fraction after 10 half lives is 0.0009765625\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.2, Page number 348"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thalf=2.7*24*60*60; #half life(s)\n",
- "m=1*10**-6; #mass(gm)\n",
- "Na=6.02*10**23; #avagadro number(atoms/mol)\n",
- "M=198; #molar mass(g/mol)\n",
- "t=8*24*60*60;\n",
- "\n",
- "#Calculation\n",
- "lamda=0.693/thalf; #decay constant(per sec)\n",
- "N=m*Na/M; #number of nuclei(atoms)\n",
- "A0=lamda*N; #activity(disintegrations per sec)\n",
- "A=A0*math.exp(-lamda*t); #activity for 8 days(decays per sec)\n",
- "\n",
- "#Result\n",
- "print \"decay constant is\",round(lamda*10**6,2),\"*10**-6 per sec\"\n",
- "print \"activity is\",round(A0/10**9,2),\"*10**9 disintegrations per sec\"\n",
- "print \"activity for 8 days is\",round(A/10**9,2),\"*10**9 decays per sec\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "decay constant is 2.97 *10**-6 per sec\n",
- "activity is 9.03 *10**9 disintegrations per sec\n",
- "activity for 8 days is 1.16 *10**9 decays per sec\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.3, Page number 348"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thalf=5570*365*24*60*60; #half life(s)\n",
- "dNbydt=3.7*10**10*2*10**-3; #number of decays per sec\n",
- "m=14;\n",
- "Na=6.02*10**23; #avagadro number(atoms/mol)\n",
- "\n",
- "#Calculation\n",
- "lamda=0.693/thalf; #decay constant(per sec)\n",
- "N=dNbydt/lamda; #number of atoms\n",
- "mN=m*N/Na; #mass of 2mCi(g)\n",
- "\n",
- "#Result\n",
- "print \"mass of 2mCi is\",round(mN*10**4,2),\"*10**-4 g\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "mass of 2mCi is 4.36 *10**-4 g\n"
- ]
- }
- ],
- "prompt_number": 23
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.5, Page number 353"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "thalf=1.25*10**9; #half life(yr)\n",
- "r=10.2; #ratio of number of atoms\n",
- "\n",
- "#Calculation\n",
- "a=1+r;\n",
- "lamda=0.693/thalf; #decay constant(per yr)\n",
- "t=math.log(a)/lamda; #time(yr)\n",
- "\n",
- "#Result\n",
- "print \"the rock is\",round(t/10**9,2),\"*10**9 yrs old\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "the rock is 4.36 *10**9 yrs old\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.6, Page number 356"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mU=232.037131; #atomic mass of U(u)\n",
- "mHe=4.002603; #atomic mass of He(u)\n",
- "E=931.5; #energy(MeV)\n",
- "KE=5.32; #kinetic energy of alpha particle(MeV)\n",
- "\n",
- "#Calculation\n",
- "mTh=mU-mHe-(KE/E); #atomic mass of Th(u)\n",
- "\n",
- "#Result\n",
- "print \"atomic mass of Th is\",round(mTh,5),\"u\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "atomic mass of Th is 228.02882 u\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.7, Page number 359"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=931.5; #energy(MeV)\n",
- "mX=11.011433; #mass of 11C(u)\n",
- "mXdash=11.009305; #mass of 11B(u)\n",
- "me=0.511;\n",
- "\n",
- "#Calculation\n",
- "Q=(E*(mX-mXdash))-(2*me); #Q value for decay(MeV)\n",
- "\n",
- "#Result\n",
- "print \"maximum energy is\",round(Q,2),\"MeV.minimum energy is zero\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "maximum energy is 0.96 MeV.minimum energy is zero\n"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.8, Page number 359"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mK=39.963999; #mass of K(u)\n",
- "mAr=39.962384; #mass of Ar(u)\n",
- "E=931.5; #energy(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=(mK-mAr)*E; #kinetic energy of neutrino(MeV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy of neutrino is\",round(Q,3),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "kinetic energy of neutrino is 1.504 MeV\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 18.9, Page number 360"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mN=12.018613; #mass of N(u)\n",
- "mC=12; #mass of C(u)\n",
- "me=0.000549; #mass of me(u)\n",
- "E=931.5; #energy(MeV)\n",
- "Egamma=4.43; #energy of emitted gamma ray(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=(mN-mC-(2*me))*E; #Q value(MeV)\n",
- "Emax=Q-Egamma; #maximum kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"maximum kinetic energy is\",round(Emax,2),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "maximum kinetic energy is 11.89 MeV\n"
- ]
- }
- ],
- "prompt_number": 20
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter19.ipynb b/Modern_Physics_By_G.Aruldas/Chapter19.ipynb
deleted file mode 100755
index c8745970..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter19.ipynb
+++ /dev/null
@@ -1,291 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:9326f276d5dc99ce97d41c9ca0d5924dbd68f522091536657f41d8cfe038dc31"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "19: Nuclear reactions"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.1, Page number 368"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m2H=2.014102; #atomic mass of 2H(u)\n",
- "mn=1.008665; #mass of n(u)\n",
- "m63Cu=62.929599; #mass of 63Cu(u)\n",
- "m64Zn=63.929144; #mass of m64Zn(u)\n",
- "E=931.5; #energy(MeV)\n",
- "Kx=10; #energy of deutron(MeV)\n",
- "Ky=15; #energy of neutron(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=E*(m2H+m63Cu-mn-m64Zn); #Q-value(MeV)\n",
- "KY=Q+Kx-Ky; #kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value is\",round(Q,3),\"MeV\"\n",
- "print \"kinetic energy is\",round(KY,3),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Q-value is 5.488 MeV\n",
- "kinetic energy is 0.488 MeV\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.2, Page number 368"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m19F=18.998404; #atomic mass of 19F(u)\n",
- "mH=1.007825; #mass of H(u)\n",
- "m19O=19.003577; #mass of 19O(u)\n",
- "mn=1.008665; #mass of n(u)\n",
- "E=931.5; #energy(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=E*(m19F+mn-mH-m19O); #Q-value(MeV)\n",
- "Kxmin=-Q*(1+(mn/m19F)); #threshold energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value is\",round(Q,4),\"MeV\"\n",
- "print \"threshold energy is\",round(Kxmin,2),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Q-value is -4.0362 MeV\n",
- "threshold energy is 4.25 MeV\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.3, Page number 373"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mn=1.008665; #mass of n(u)\n",
- "mu=235.043924; #mass of 235U(u)\n",
- "mBa=140.91440; #mass of 141Ba(u)\n",
- "mKr=91.92630; #mass of Kr(u)\n",
- "E=931.5; #energy(MeV)\n",
- "\n",
- "#Calculation\n",
- "mr=mn+mu; #mass of reactants(u)\n",
- "mp=mBa+mKr+(3*mn); #mass of products(u)\n",
- "md=mr-mp; #mass difference(u)\n",
- "E=md*E; #energy released(MeV)\n",
- "\n",
- "#Result\n",
- "print \"energy released is\",round(E,1),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy released is 173.2 MeV\n"
- ]
- }
- ],
- "prompt_number": 19
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.4, Page number 373"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=200*10**6; #energy released(eV)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "P=300*10**6; #power(W)\n",
- "t=1; #time(s)\n",
- "\n",
- "#Calculation\n",
- "n=P*t/(E*e); #number of fissions per second\n",
- "\n",
- "#Result\n",
- "print \"number of fissions per second is\",n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "number of fissions per second is 9.375e+18\n"
- ]
- }
- ],
- "prompt_number": 20
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.5, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m2H1=2*1.66*10**-27; #mass of proton(kg)\n",
- "E=931.5; #energy(MeV)\n",
- "m1=2.014102;\n",
- "m2=3.01609;\n",
- "mH=1.007825; #mass of H(u)\n",
- "\n",
- "#Calculation\n",
- "E=E*((2*m1)-m2-mH); #energy released(MeV)\n",
- "n=0.001/m2H1; #number of nuclei\n",
- "Eg=n*E/2; #energy released per gm(MeV)\n",
- "\n",
- "#Result\n",
- "print \"energy released per gm is\",round(Eg/10**23,2),\"*10**23 MeV\"\n",
- "print \"answer given in the book is wrong\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy released per gm is 6.02 *10**23 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "prompt_number": 31
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.6, Page number 379"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "k=8.99*10**9; #value of k(Nm**2/C**2)\n",
- "rd=1.5*10**-15; #radius of deuterium nucleus(m)\n",
- "rt=1.7*10**-15; #radius of tritium nucleus(m)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "KE=0.225; #kinetic energy for 1 particle(MeV)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "\n",
- "#Calculation\n",
- "K_E=k*e**2/(e*(rd+rt)); #kinetic energy of 2 particles(MeV)\n",
- "T=2*KE*e*10**6/(3*k); #temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"temperature is\",round(T/10**9),\"*10**9 K\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "temperature is 2.0 *10**9 K\n"
- ]
- }
- ],
- "prompt_number": 35
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter19_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter19_1.ipynb
deleted file mode 100755
index c8745970..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter19_1.ipynb
+++ /dev/null
@@ -1,291 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:9326f276d5dc99ce97d41c9ca0d5924dbd68f522091536657f41d8cfe038dc31"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "19: Nuclear reactions"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.1, Page number 368"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m2H=2.014102; #atomic mass of 2H(u)\n",
- "mn=1.008665; #mass of n(u)\n",
- "m63Cu=62.929599; #mass of 63Cu(u)\n",
- "m64Zn=63.929144; #mass of m64Zn(u)\n",
- "E=931.5; #energy(MeV)\n",
- "Kx=10; #energy of deutron(MeV)\n",
- "Ky=15; #energy of neutron(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=E*(m2H+m63Cu-mn-m64Zn); #Q-value(MeV)\n",
- "KY=Q+Kx-Ky; #kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value is\",round(Q,3),\"MeV\"\n",
- "print \"kinetic energy is\",round(KY,3),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Q-value is 5.488 MeV\n",
- "kinetic energy is 0.488 MeV\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.2, Page number 368"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m19F=18.998404; #atomic mass of 19F(u)\n",
- "mH=1.007825; #mass of H(u)\n",
- "m19O=19.003577; #mass of 19O(u)\n",
- "mn=1.008665; #mass of n(u)\n",
- "E=931.5; #energy(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=E*(m19F+mn-mH-m19O); #Q-value(MeV)\n",
- "Kxmin=-Q*(1+(mn/m19F)); #threshold energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value is\",round(Q,4),\"MeV\"\n",
- "print \"threshold energy is\",round(Kxmin,2),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Q-value is -4.0362 MeV\n",
- "threshold energy is 4.25 MeV\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.3, Page number 373"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mn=1.008665; #mass of n(u)\n",
- "mu=235.043924; #mass of 235U(u)\n",
- "mBa=140.91440; #mass of 141Ba(u)\n",
- "mKr=91.92630; #mass of Kr(u)\n",
- "E=931.5; #energy(MeV)\n",
- "\n",
- "#Calculation\n",
- "mr=mn+mu; #mass of reactants(u)\n",
- "mp=mBa+mKr+(3*mn); #mass of products(u)\n",
- "md=mr-mp; #mass difference(u)\n",
- "E=md*E; #energy released(MeV)\n",
- "\n",
- "#Result\n",
- "print \"energy released is\",round(E,1),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy released is 173.2 MeV\n"
- ]
- }
- ],
- "prompt_number": 19
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.4, Page number 373"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=200*10**6; #energy released(eV)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "P=300*10**6; #power(W)\n",
- "t=1; #time(s)\n",
- "\n",
- "#Calculation\n",
- "n=P*t/(E*e); #number of fissions per second\n",
- "\n",
- "#Result\n",
- "print \"number of fissions per second is\",n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "number of fissions per second is 9.375e+18\n"
- ]
- }
- ],
- "prompt_number": 20
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.5, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m2H1=2*1.66*10**-27; #mass of proton(kg)\n",
- "E=931.5; #energy(MeV)\n",
- "m1=2.014102;\n",
- "m2=3.01609;\n",
- "mH=1.007825; #mass of H(u)\n",
- "\n",
- "#Calculation\n",
- "E=E*((2*m1)-m2-mH); #energy released(MeV)\n",
- "n=0.001/m2H1; #number of nuclei\n",
- "Eg=n*E/2; #energy released per gm(MeV)\n",
- "\n",
- "#Result\n",
- "print \"energy released per gm is\",round(Eg/10**23,2),\"*10**23 MeV\"\n",
- "print \"answer given in the book is wrong\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy released per gm is 6.02 *10**23 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "prompt_number": 31
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.6, Page number 379"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "k=8.99*10**9; #value of k(Nm**2/C**2)\n",
- "rd=1.5*10**-15; #radius of deuterium nucleus(m)\n",
- "rt=1.7*10**-15; #radius of tritium nucleus(m)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "KE=0.225; #kinetic energy for 1 particle(MeV)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "\n",
- "#Calculation\n",
- "K_E=k*e**2/(e*(rd+rt)); #kinetic energy of 2 particles(MeV)\n",
- "T=2*KE*e*10**6/(3*k); #temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"temperature is\",round(T/10**9),\"*10**9 K\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "temperature is 2.0 *10**9 K\n"
- ]
- }
- ],
- "prompt_number": 35
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter19_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter19_2.ipynb
deleted file mode 100755
index c8745970..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter19_2.ipynb
+++ /dev/null
@@ -1,291 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:9326f276d5dc99ce97d41c9ca0d5924dbd68f522091536657f41d8cfe038dc31"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "19: Nuclear reactions"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.1, Page number 368"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m2H=2.014102; #atomic mass of 2H(u)\n",
- "mn=1.008665; #mass of n(u)\n",
- "m63Cu=62.929599; #mass of 63Cu(u)\n",
- "m64Zn=63.929144; #mass of m64Zn(u)\n",
- "E=931.5; #energy(MeV)\n",
- "Kx=10; #energy of deutron(MeV)\n",
- "Ky=15; #energy of neutron(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=E*(m2H+m63Cu-mn-m64Zn); #Q-value(MeV)\n",
- "KY=Q+Kx-Ky; #kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value is\",round(Q,3),\"MeV\"\n",
- "print \"kinetic energy is\",round(KY,3),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Q-value is 5.488 MeV\n",
- "kinetic energy is 0.488 MeV\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.2, Page number 368"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m19F=18.998404; #atomic mass of 19F(u)\n",
- "mH=1.007825; #mass of H(u)\n",
- "m19O=19.003577; #mass of 19O(u)\n",
- "mn=1.008665; #mass of n(u)\n",
- "E=931.5; #energy(MeV)\n",
- "\n",
- "#Calculation\n",
- "Q=E*(m19F+mn-mH-m19O); #Q-value(MeV)\n",
- "Kxmin=-Q*(1+(mn/m19F)); #threshold energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value is\",round(Q,4),\"MeV\"\n",
- "print \"threshold energy is\",round(Kxmin,2),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Q-value is -4.0362 MeV\n",
- "threshold energy is 4.25 MeV\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.3, Page number 373"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mn=1.008665; #mass of n(u)\n",
- "mu=235.043924; #mass of 235U(u)\n",
- "mBa=140.91440; #mass of 141Ba(u)\n",
- "mKr=91.92630; #mass of Kr(u)\n",
- "E=931.5; #energy(MeV)\n",
- "\n",
- "#Calculation\n",
- "mr=mn+mu; #mass of reactants(u)\n",
- "mp=mBa+mKr+(3*mn); #mass of products(u)\n",
- "md=mr-mp; #mass difference(u)\n",
- "E=md*E; #energy released(MeV)\n",
- "\n",
- "#Result\n",
- "print \"energy released is\",round(E,1),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy released is 173.2 MeV\n"
- ]
- }
- ],
- "prompt_number": 19
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.4, Page number 373"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=200*10**6; #energy released(eV)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "P=300*10**6; #power(W)\n",
- "t=1; #time(s)\n",
- "\n",
- "#Calculation\n",
- "n=P*t/(E*e); #number of fissions per second\n",
- "\n",
- "#Result\n",
- "print \"number of fissions per second is\",n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "number of fissions per second is 9.375e+18\n"
- ]
- }
- ],
- "prompt_number": 20
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.5, Page number 378"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m2H1=2*1.66*10**-27; #mass of proton(kg)\n",
- "E=931.5; #energy(MeV)\n",
- "m1=2.014102;\n",
- "m2=3.01609;\n",
- "mH=1.007825; #mass of H(u)\n",
- "\n",
- "#Calculation\n",
- "E=E*((2*m1)-m2-mH); #energy released(MeV)\n",
- "n=0.001/m2H1; #number of nuclei\n",
- "Eg=n*E/2; #energy released per gm(MeV)\n",
- "\n",
- "#Result\n",
- "print \"energy released per gm is\",round(Eg/10**23,2),\"*10**23 MeV\"\n",
- "print \"answer given in the book is wrong\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy released per gm is 6.02 *10**23 MeV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "prompt_number": 31
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 19.6, Page number 379"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "k=8.99*10**9; #value of k(Nm**2/C**2)\n",
- "rd=1.5*10**-15; #radius of deuterium nucleus(m)\n",
- "rt=1.7*10**-15; #radius of tritium nucleus(m)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "KE=0.225; #kinetic energy for 1 particle(MeV)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "\n",
- "#Calculation\n",
- "K_E=k*e**2/(e*(rd+rt)); #kinetic energy of 2 particles(MeV)\n",
- "T=2*KE*e*10**6/(3*k); #temperature(K)\n",
- "\n",
- "#Result\n",
- "print \"temperature is\",round(T/10**9),\"*10**9 K\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "temperature is 2.0 *10**9 K\n"
- ]
- }
- ],
- "prompt_number": 35
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter1_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter1_1.ipynb
deleted file mode 100755
index 483d55f3..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter1_1.ipynb
+++ /dev/null
@@ -1,311 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:467ef5c6562d2c93b60e422b9b9a8c5a34323da84f6c33e87f513c3c578db36d"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "1: The special theory of relativity"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.2, Page number 10"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "c=1; #assume\n",
- "udash=0.9*c; #speed of 2nd rocket\n",
- "v=0.6*c; #speed of 1st rocket\n",
- "\n",
- "#Calculation\n",
- "u1=(udash+v)/(1+(udash*v/(c**2))); #speed of 2nd rocket in same direction\n",
- "u2=(-udash+v)/(1-(udash*v/(c**2))); #speed of 2nd rocket in opposite direction\n",
- "\n",
- "#Result\n",
- "print \"speed of 2nd rocket in same direction is\",round(u1,3),\"*c\"\n",
- "print \"speed of 2nd rocket in opposite direction is\",round(u2,3),\"*c\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed of 2nd rocket in same direction is 0.974 *c\n",
- "speed of 2nd rocket in opposite direction is -0.652 *c\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.3, Page number 12"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "#given L0-L/L0=0.01.so L=0.99*L0\n",
- "LbyL0=0.99;\n",
- "c=1; #assume\n",
- "\n",
- "#Calculation\n",
- "v2=(c**2)*(1-(LbyL0)**2);\n",
- "v=math.sqrt(v2); #speed\n",
- "\n",
- "#Result\n",
- "print \"speed is\",round(v,3),\"*c\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed is 0.141 *c\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.4, Page number 12"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "delta_tow=2.6*10**-8; #mean lifetime at rest(s)\n",
- "d=20; #distance(m)\n",
- "c=3*10**8; #speed of light(m/s)\n",
- "\n",
- "#Calculation\n",
- "#delta_t=d/v\n",
- "v2=(c**2)/(1+(delta_tow*c/d)**2);\n",
- "v=math.sqrt(v2); #speed of unstable particle(m/s)\n",
- "\n",
- "#Result\n",
- "print \"speed of unstable particle is\",round(v/10**8,1),\"*10**8 m/s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed of unstable particle is 2.8 *10**8 m/s\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.5, Page number 13"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "delta_t=5*10**-6; #mean lifetime(s)\n",
- "c=1; #assume\n",
- "v=0.9*c; #speed of beam\n",
- "\n",
- "#Calculation\n",
- "delta_tow=delta_t*math.sqrt(1-(v/c)**2); #proper lifetime of particles(s)\n",
- "\n",
- "#Result\n",
- "print \"proper lifetime of particles is\",round(delta_tow*10**6,2),\"*10**-6 s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "proper lifetime of particles is 2.18 *10**-6 s\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.6, Page number 15"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "c=1; #assume\n",
- "m0bym=100/120; #ratio of masses\n",
- "\n",
- "#Calculation\n",
- "v=c*math.sqrt(1-(m0bym**2)); #speed of body\n",
- "\n",
- "#Result\n",
- "print \"speed of body is\",round(v,3),\"*c\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed of body is 0.553 *c\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.7, Page number 17"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "c=3*10**8; #speed of light(m/s)\n",
- "deltaE=4*10**26; #energy of sun(J/s)\n",
- "\n",
- "#Calculation\n",
- "deltam=deltaE/c**2; #change in mass(kg)\n",
- "\n",
- "#Result\n",
- "print \"change in mass is\",round(deltam/10**9,2),\"*10**9 kg\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "change in mass is 4.44 *10**9 kg\n"
- ]
- }
- ],
- "prompt_number": 13
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.8, Page number 17"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "c=1; #assume\n",
- "T=10; #kinetic energy(MeV)\n",
- "m0c2=0.512; #rest energy of electron(MeV)\n",
- "\n",
- "#Calculation\n",
- "E=T+m0c2; #total energy(MeV)\n",
- "p=math.sqrt((E**2)-(m0c2**2))/c; #momentum of electron(MeV/c)\n",
- "v=c*math.sqrt(1-(m0c2/E)**2); #velocity of electron(c)\n",
- "\n",
- "#Result\n",
- "print \"momentum of electron is\",round(p,1),\"MeV/c\"\n",
- "print \"velocity of electron is\",round(v,4),\"*c\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "momentum of electron is 10.5 MeV/c\n",
- "velocity of electron is 0.9988 *c\n"
- ]
- }
- ],
- "prompt_number": 16
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter1_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter1_2.ipynb
deleted file mode 100755
index 483d55f3..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter1_2.ipynb
+++ /dev/null
@@ -1,311 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:467ef5c6562d2c93b60e422b9b9a8c5a34323da84f6c33e87f513c3c578db36d"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "1: The special theory of relativity"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.2, Page number 10"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "c=1; #assume\n",
- "udash=0.9*c; #speed of 2nd rocket\n",
- "v=0.6*c; #speed of 1st rocket\n",
- "\n",
- "#Calculation\n",
- "u1=(udash+v)/(1+(udash*v/(c**2))); #speed of 2nd rocket in same direction\n",
- "u2=(-udash+v)/(1-(udash*v/(c**2))); #speed of 2nd rocket in opposite direction\n",
- "\n",
- "#Result\n",
- "print \"speed of 2nd rocket in same direction is\",round(u1,3),\"*c\"\n",
- "print \"speed of 2nd rocket in opposite direction is\",round(u2,3),\"*c\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed of 2nd rocket in same direction is 0.974 *c\n",
- "speed of 2nd rocket in opposite direction is -0.652 *c\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.3, Page number 12"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "#given L0-L/L0=0.01.so L=0.99*L0\n",
- "LbyL0=0.99;\n",
- "c=1; #assume\n",
- "\n",
- "#Calculation\n",
- "v2=(c**2)*(1-(LbyL0)**2);\n",
- "v=math.sqrt(v2); #speed\n",
- "\n",
- "#Result\n",
- "print \"speed is\",round(v,3),\"*c\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed is 0.141 *c\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.4, Page number 12"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "delta_tow=2.6*10**-8; #mean lifetime at rest(s)\n",
- "d=20; #distance(m)\n",
- "c=3*10**8; #speed of light(m/s)\n",
- "\n",
- "#Calculation\n",
- "#delta_t=d/v\n",
- "v2=(c**2)/(1+(delta_tow*c/d)**2);\n",
- "v=math.sqrt(v2); #speed of unstable particle(m/s)\n",
- "\n",
- "#Result\n",
- "print \"speed of unstable particle is\",round(v/10**8,1),\"*10**8 m/s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed of unstable particle is 2.8 *10**8 m/s\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.5, Page number 13"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "delta_t=5*10**-6; #mean lifetime(s)\n",
- "c=1; #assume\n",
- "v=0.9*c; #speed of beam\n",
- "\n",
- "#Calculation\n",
- "delta_tow=delta_t*math.sqrt(1-(v/c)**2); #proper lifetime of particles(s)\n",
- "\n",
- "#Result\n",
- "print \"proper lifetime of particles is\",round(delta_tow*10**6,2),\"*10**-6 s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "proper lifetime of particles is 2.18 *10**-6 s\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.6, Page number 15"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "c=1; #assume\n",
- "m0bym=100/120; #ratio of masses\n",
- "\n",
- "#Calculation\n",
- "v=c*math.sqrt(1-(m0bym**2)); #speed of body\n",
- "\n",
- "#Result\n",
- "print \"speed of body is\",round(v,3),\"*c\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "speed of body is 0.553 *c\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.7, Page number 17"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "c=3*10**8; #speed of light(m/s)\n",
- "deltaE=4*10**26; #energy of sun(J/s)\n",
- "\n",
- "#Calculation\n",
- "deltam=deltaE/c**2; #change in mass(kg)\n",
- "\n",
- "#Result\n",
- "print \"change in mass is\",round(deltam/10**9,2),\"*10**9 kg\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "change in mass is 4.44 *10**9 kg\n"
- ]
- }
- ],
- "prompt_number": 13
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 1.8, Page number 17"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "c=1; #assume\n",
- "T=10; #kinetic energy(MeV)\n",
- "m0c2=0.512; #rest energy of electron(MeV)\n",
- "\n",
- "#Calculation\n",
- "E=T+m0c2; #total energy(MeV)\n",
- "p=math.sqrt((E**2)-(m0c2**2))/c; #momentum of electron(MeV/c)\n",
- "v=c*math.sqrt(1-(m0c2/E)**2); #velocity of electron(c)\n",
- "\n",
- "#Result\n",
- "print \"momentum of electron is\",round(p,1),\"MeV/c\"\n",
- "print \"velocity of electron is\",round(v,4),\"*c\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "momentum of electron is 10.5 MeV/c\n",
- "velocity of electron is 0.9988 *c\n"
- ]
- }
- ],
- "prompt_number": 16
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter2.ipynb
deleted file mode 100755
index 59d9ea57..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter2.ipynb
+++ /dev/null
@@ -1,295 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:f048d58df41f2578c151ef59f03652004b6758b9e666d170255be2c66115bfe2"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "2: Particle nature of radiation"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.1, Page number 28"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "new=100*10**6; #frequency(Hz)\n",
- "P=100*10**3; #power(watt)\n",
- "\n",
- "#Calculation\n",
- "E=h*new; #quantum of energy(J)\n",
- "n=P/E; #number of quanta emitted(per sec)\n",
- "\n",
- "#Result\n",
- "print \"number of quanta emitted is\",round(n/10**29,2),\"*10**29 per sec\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "number of quanta emitted is 15.09 *10**29 per sec\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.2, Page number 31"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda=400*10**-9; #wavelength(m)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "w0=2.28; #work function(eV)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculation\n",
- "E=h*c/(lamda*e); #energy(eV)\n",
- "KEmax=E-w0; #maximum kinetic energy(eV)\n",
- "v2=2*KEmax*e/m; \n",
- "v=math.sqrt(v2); #velocity(m/s)\n",
- "\n",
- "#Result\n",
- "print \"maximum kinetic energy is\",round(KEmax,3),\"eV\"\n",
- "print \"velocity of photoelectrons is\",round(v/10**5,2),\"*10**5 m/s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "maximum kinetic energy is 0.826 eV\n",
- "velocity of photoelectrons is 5.39 *10**5 m/s\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.3, Page number 31"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda=2000*10**-10; #wavelength(m)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "w0=4.2; #work function(eV)\n",
- "\n",
- "#Calculation\n",
- "lamda0=h*c/(w0*e); #cut off wavelength(m)\n",
- "E=h*c/(lamda*e); #energy(eV)\n",
- "sp=E-w0; #stopping potential(eV)\n",
- "\n",
- "#Result\n",
- "print \"cut off wavelength is\",int(lamda0*10**10),\"angstrom\"\n",
- "print \"stopping potential is\",round(sp,2),\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "cut off wavelength is 2958 angstrom\n",
- "stopping potential is 2.01 V\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.4, Page number 33"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda=0.2*10**-9; #wavelength(m)\n",
- "\n",
- "#Calculation\n",
- "p=h/lamda; #momentum(kg m/s)\n",
- "m=p/c; #effective mass(kg)\n",
- "\n",
- "#Result\n",
- "print \"momentum is\",round(p*10**24,1),\"*10**-24 kg m/s\"\n",
- "print \"effective mass is\",round(m*10**32,1),\"*10**-32 kg\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "momentum is 3.3 *10**-24 kg m/s\n",
- "effective mass is 1.1 *10**-32 kg\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.5, Page number 35"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda=0.15; #wavelength(nm)\n",
- "m0=9.1*10**-31; #mass of electron(kg)\n",
- "theta1=0; #scattering angle1(degrees)\n",
- "theta2=90; #scattering angle2(degrees)\n",
- "theta3=180; #scattering angle3(degrees)\n",
- "\n",
- "#Calculation\n",
- "theta1=theta1*math.pi/180; #scattering angle1(radian)\n",
- "theta2=theta2*math.pi/180; #scattering angle2(radian)\n",
- "theta3=theta3*math.pi/180; #scattering angle3(radian)\n",
- "lamda_dash1=lamda+(h*(1-math.cos(theta1))/(m0*c)); #wavelength at 0(nm)\n",
- "lamda_dash2=lamda+(10**9*h*(1-math.cos(theta2))/(m0*c)); #wavelength at 90(nm)\n",
- "lamda_dash3=lamda+(10**9*h*(1-math.cos(theta3))/(m0*c)); #wavelength at 180(nm)\n",
- "\n",
- "#Result\n",
- "print \"wavelength at 0 degrees is\",lamda_dash1,\"nm\"\n",
- "print \"wavelength at 90 degrees is\",round(lamda_dash2,3),\"nm\"\n",
- "print \"wavelength at 180 degrees is\",round(lamda_dash3,3),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength at 0 degrees is 0.15 nm\n",
- "wavelength at 90 degrees is 0.152 nm\n",
- "wavelength at 180 degrees is 0.155 nm\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.6, Page number 36"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "E=2*0.511*10**6; #rest energy(eV)\n",
- "\n",
- "#Calculation\n",
- "lamda=h*c/(E*e); #wavelength of photon(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of photon is\",round(lamda*10**12,2),\"*10**-12 m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength of photon is 1.22 *10**-12 m\n"
- ]
- }
- ],
- "prompt_number": 21
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter20.ipynb b/Modern_Physics_By_G.Aruldas/Chapter20.ipynb
deleted file mode 100755
index 6f977e4e..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter20.ipynb
+++ /dev/null
@@ -1,119 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:eeb9c551735bd0ab45890fc906baf874437271bf852063fccc60d822b2aaeaef"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "20: Nuclear radiation detectors and particle accelerators"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 20.1, Page number 390"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "E=30*10**6; #energy(eV)\n",
- "r=1.2*10**-15; #radius of nucleon(m)\n",
- "\n",
- "#Calculation\n",
- "lamdaP=h/math.sqrt(2*m*E*e); #wavelength of proton(m)\n",
- "lamdaAlpha=h/math.sqrt(2*4*m*E*e); #wavelength of alpha particle(m)\n",
- "a=2*r; #size of nucleon(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of proton is\",round(lamdaP*10**15,1),\"*10**-15 m\"\n",
- "print \"wavelength of alpha particle is\",round(lamdaAlpha*10**15,1),\"*10**-15 m\"\n",
- "print \"size of nucleon is\",a,\"m\"\n",
- "print \"alpha particle is better\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength of proton is 5.2 *10**-15 m\n",
- "wavelength of alpha particle is 2.6 *10**-15 m\n",
- "size of nucleon is 2.4e-15 m\n",
- "alpha particle is better\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 20.2, Page number 391"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "q=1.6*10**-19; #conversion factor from J to eV\n",
- "B=2; #magnetic field(T)\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "R=0.25; #radius(m)\n",
- "a=6.24*10**12; #conversion factor from J to MeV\n",
- "\n",
- "#Calculation\n",
- "f=q*B/(2*math.pi*m); #frequency needed(MHz)\n",
- "KE=q**2*B**2*R**2/(2*m); #kinetic energy(J)\n",
- "KE=KE*a; #kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"frequency needed is\",round(f*10**-6,1),\"MHz\"\n",
- "print \"kinetic energy is\",round(KE),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "frequency needed is 30.5 MHz\n",
- "kinetic energy is 12.0 MeV\n"
- ]
- }
- ],
- "prompt_number": 8
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter20_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter20_1.ipynb
deleted file mode 100755
index 6f977e4e..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter20_1.ipynb
+++ /dev/null
@@ -1,119 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:eeb9c551735bd0ab45890fc906baf874437271bf852063fccc60d822b2aaeaef"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "20: Nuclear radiation detectors and particle accelerators"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 20.1, Page number 390"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "E=30*10**6; #energy(eV)\n",
- "r=1.2*10**-15; #radius of nucleon(m)\n",
- "\n",
- "#Calculation\n",
- "lamdaP=h/math.sqrt(2*m*E*e); #wavelength of proton(m)\n",
- "lamdaAlpha=h/math.sqrt(2*4*m*E*e); #wavelength of alpha particle(m)\n",
- "a=2*r; #size of nucleon(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of proton is\",round(lamdaP*10**15,1),\"*10**-15 m\"\n",
- "print \"wavelength of alpha particle is\",round(lamdaAlpha*10**15,1),\"*10**-15 m\"\n",
- "print \"size of nucleon is\",a,\"m\"\n",
- "print \"alpha particle is better\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength of proton is 5.2 *10**-15 m\n",
- "wavelength of alpha particle is 2.6 *10**-15 m\n",
- "size of nucleon is 2.4e-15 m\n",
- "alpha particle is better\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 20.2, Page number 391"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "q=1.6*10**-19; #conversion factor from J to eV\n",
- "B=2; #magnetic field(T)\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "R=0.25; #radius(m)\n",
- "a=6.24*10**12; #conversion factor from J to MeV\n",
- "\n",
- "#Calculation\n",
- "f=q*B/(2*math.pi*m); #frequency needed(MHz)\n",
- "KE=q**2*B**2*R**2/(2*m); #kinetic energy(J)\n",
- "KE=KE*a; #kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"frequency needed is\",round(f*10**-6,1),\"MHz\"\n",
- "print \"kinetic energy is\",round(KE),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "frequency needed is 30.5 MHz\n",
- "kinetic energy is 12.0 MeV\n"
- ]
- }
- ],
- "prompt_number": 8
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter20_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter20_2.ipynb
deleted file mode 100755
index 6f977e4e..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter20_2.ipynb
+++ /dev/null
@@ -1,119 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:eeb9c551735bd0ab45890fc906baf874437271bf852063fccc60d822b2aaeaef"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "20: Nuclear radiation detectors and particle accelerators"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 20.1, Page number 390"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "E=30*10**6; #energy(eV)\n",
- "r=1.2*10**-15; #radius of nucleon(m)\n",
- "\n",
- "#Calculation\n",
- "lamdaP=h/math.sqrt(2*m*E*e); #wavelength of proton(m)\n",
- "lamdaAlpha=h/math.sqrt(2*4*m*E*e); #wavelength of alpha particle(m)\n",
- "a=2*r; #size of nucleon(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of proton is\",round(lamdaP*10**15,1),\"*10**-15 m\"\n",
- "print \"wavelength of alpha particle is\",round(lamdaAlpha*10**15,1),\"*10**-15 m\"\n",
- "print \"size of nucleon is\",a,\"m\"\n",
- "print \"alpha particle is better\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength of proton is 5.2 *10**-15 m\n",
- "wavelength of alpha particle is 2.6 *10**-15 m\n",
- "size of nucleon is 2.4e-15 m\n",
- "alpha particle is better\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 20.2, Page number 391"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "q=1.6*10**-19; #conversion factor from J to eV\n",
- "B=2; #magnetic field(T)\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "R=0.25; #radius(m)\n",
- "a=6.24*10**12; #conversion factor from J to MeV\n",
- "\n",
- "#Calculation\n",
- "f=q*B/(2*math.pi*m); #frequency needed(MHz)\n",
- "KE=q**2*B**2*R**2/(2*m); #kinetic energy(J)\n",
- "KE=KE*a; #kinetic energy(MeV)\n",
- "\n",
- "#Result\n",
- "print \"frequency needed is\",round(f*10**-6,1),\"MHz\"\n",
- "print \"kinetic energy is\",round(KE),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "frequency needed is 30.5 MHz\n",
- "kinetic energy is 12.0 MeV\n"
- ]
- }
- ],
- "prompt_number": 8
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter21.ipynb b/Modern_Physics_By_G.Aruldas/Chapter21.ipynb
deleted file mode 100755
index 4e63e3b7..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter21.ipynb
+++ /dev/null
@@ -1,106 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:42eb4bd0fae1331d52fd855bad43219acea712dc31c5270f1f64fa698ba366ad"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "21: Elementary particles"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 21.1, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mpi=140; #mass of pi-meson\n",
- "mp=938.3; #mass of proton\n",
- "mk=498; #mass of k\n",
- "m=1116; \n",
- "\n",
- "#Calculation\n",
- "Q=mpi+mp-mk-m; #Q-value(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value is\",round(Q),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Q-value is -536.0 MeV\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 21.2, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mpc2=938.3; #energy of proton(MeV)\n",
- "Epic2=139.6; #energy of pi-meson(MeV)\n",
- "mnc2=939.6; #energy of neutron(MeV)\n",
- "KE=0.6; #kinetic energy of neutron(MeV)\n",
- "\n",
- "#Calculation\n",
- "Epi=mpc2+Epic2-mnc2-KE; #energy conservation(MeV)\n",
- "mpic2=math.sqrt((Epi**2)-((mnc2+KE)**2)+(mnc2**2)); #pi0 mass(MeV)\n",
- "\n",
- "#Result\n",
- "print \"pi0 mass is\",round(mpic2,1),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "pi0 mass is 133.5 MeV\n"
- ]
- }
- ],
- "prompt_number": 5
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter21_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter21_1.ipynb
deleted file mode 100755
index 4e63e3b7..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter21_1.ipynb
+++ /dev/null
@@ -1,106 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:42eb4bd0fae1331d52fd855bad43219acea712dc31c5270f1f64fa698ba366ad"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "21: Elementary particles"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 21.1, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mpi=140; #mass of pi-meson\n",
- "mp=938.3; #mass of proton\n",
- "mk=498; #mass of k\n",
- "m=1116; \n",
- "\n",
- "#Calculation\n",
- "Q=mpi+mp-mk-m; #Q-value(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value is\",round(Q),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Q-value is -536.0 MeV\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 21.2, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mpc2=938.3; #energy of proton(MeV)\n",
- "Epic2=139.6; #energy of pi-meson(MeV)\n",
- "mnc2=939.6; #energy of neutron(MeV)\n",
- "KE=0.6; #kinetic energy of neutron(MeV)\n",
- "\n",
- "#Calculation\n",
- "Epi=mpc2+Epic2-mnc2-KE; #energy conservation(MeV)\n",
- "mpic2=math.sqrt((Epi**2)-((mnc2+KE)**2)+(mnc2**2)); #pi0 mass(MeV)\n",
- "\n",
- "#Result\n",
- "print \"pi0 mass is\",round(mpic2,1),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "pi0 mass is 133.5 MeV\n"
- ]
- }
- ],
- "prompt_number": 5
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter21_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter21_2.ipynb
deleted file mode 100755
index 4e63e3b7..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter21_2.ipynb
+++ /dev/null
@@ -1,106 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:42eb4bd0fae1331d52fd855bad43219acea712dc31c5270f1f64fa698ba366ad"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "21: Elementary particles"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 21.1, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mpi=140; #mass of pi-meson\n",
- "mp=938.3; #mass of proton\n",
- "mk=498; #mass of k\n",
- "m=1116; \n",
- "\n",
- "#Calculation\n",
- "Q=mpi+mp-mk-m; #Q-value(MeV)\n",
- "\n",
- "#Result\n",
- "print \"Q-value is\",round(Q),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Q-value is -536.0 MeV\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 21.2, Page number 399"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mpc2=938.3; #energy of proton(MeV)\n",
- "Epic2=139.6; #energy of pi-meson(MeV)\n",
- "mnc2=939.6; #energy of neutron(MeV)\n",
- "KE=0.6; #kinetic energy of neutron(MeV)\n",
- "\n",
- "#Calculation\n",
- "Epi=mpc2+Epic2-mnc2-KE; #energy conservation(MeV)\n",
- "mpic2=math.sqrt((Epi**2)-((mnc2+KE)**2)+(mnc2**2)); #pi0 mass(MeV)\n",
- "\n",
- "#Result\n",
- "print \"pi0 mass is\",round(mpic2,1),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "pi0 mass is 133.5 MeV\n"
- ]
- }
- ],
- "prompt_number": 5
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter2_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter2_1.ipynb
deleted file mode 100755
index 59d9ea57..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter2_1.ipynb
+++ /dev/null
@@ -1,295 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:f048d58df41f2578c151ef59f03652004b6758b9e666d170255be2c66115bfe2"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "2: Particle nature of radiation"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.1, Page number 28"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "new=100*10**6; #frequency(Hz)\n",
- "P=100*10**3; #power(watt)\n",
- "\n",
- "#Calculation\n",
- "E=h*new; #quantum of energy(J)\n",
- "n=P/E; #number of quanta emitted(per sec)\n",
- "\n",
- "#Result\n",
- "print \"number of quanta emitted is\",round(n/10**29,2),\"*10**29 per sec\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "number of quanta emitted is 15.09 *10**29 per sec\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.2, Page number 31"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda=400*10**-9; #wavelength(m)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "w0=2.28; #work function(eV)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculation\n",
- "E=h*c/(lamda*e); #energy(eV)\n",
- "KEmax=E-w0; #maximum kinetic energy(eV)\n",
- "v2=2*KEmax*e/m; \n",
- "v=math.sqrt(v2); #velocity(m/s)\n",
- "\n",
- "#Result\n",
- "print \"maximum kinetic energy is\",round(KEmax,3),\"eV\"\n",
- "print \"velocity of photoelectrons is\",round(v/10**5,2),\"*10**5 m/s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "maximum kinetic energy is 0.826 eV\n",
- "velocity of photoelectrons is 5.39 *10**5 m/s\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.3, Page number 31"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda=2000*10**-10; #wavelength(m)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "w0=4.2; #work function(eV)\n",
- "\n",
- "#Calculation\n",
- "lamda0=h*c/(w0*e); #cut off wavelength(m)\n",
- "E=h*c/(lamda*e); #energy(eV)\n",
- "sp=E-w0; #stopping potential(eV)\n",
- "\n",
- "#Result\n",
- "print \"cut off wavelength is\",int(lamda0*10**10),\"angstrom\"\n",
- "print \"stopping potential is\",round(sp,2),\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "cut off wavelength is 2958 angstrom\n",
- "stopping potential is 2.01 V\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.4, Page number 33"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda=0.2*10**-9; #wavelength(m)\n",
- "\n",
- "#Calculation\n",
- "p=h/lamda; #momentum(kg m/s)\n",
- "m=p/c; #effective mass(kg)\n",
- "\n",
- "#Result\n",
- "print \"momentum is\",round(p*10**24,1),\"*10**-24 kg m/s\"\n",
- "print \"effective mass is\",round(m*10**32,1),\"*10**-32 kg\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "momentum is 3.3 *10**-24 kg m/s\n",
- "effective mass is 1.1 *10**-32 kg\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.5, Page number 35"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda=0.15; #wavelength(nm)\n",
- "m0=9.1*10**-31; #mass of electron(kg)\n",
- "theta1=0; #scattering angle1(degrees)\n",
- "theta2=90; #scattering angle2(degrees)\n",
- "theta3=180; #scattering angle3(degrees)\n",
- "\n",
- "#Calculation\n",
- "theta1=theta1*math.pi/180; #scattering angle1(radian)\n",
- "theta2=theta2*math.pi/180; #scattering angle2(radian)\n",
- "theta3=theta3*math.pi/180; #scattering angle3(radian)\n",
- "lamda_dash1=lamda+(h*(1-math.cos(theta1))/(m0*c)); #wavelength at 0(nm)\n",
- "lamda_dash2=lamda+(10**9*h*(1-math.cos(theta2))/(m0*c)); #wavelength at 90(nm)\n",
- "lamda_dash3=lamda+(10**9*h*(1-math.cos(theta3))/(m0*c)); #wavelength at 180(nm)\n",
- "\n",
- "#Result\n",
- "print \"wavelength at 0 degrees is\",lamda_dash1,\"nm\"\n",
- "print \"wavelength at 90 degrees is\",round(lamda_dash2,3),\"nm\"\n",
- "print \"wavelength at 180 degrees is\",round(lamda_dash3,3),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength at 0 degrees is 0.15 nm\n",
- "wavelength at 90 degrees is 0.152 nm\n",
- "wavelength at 180 degrees is 0.155 nm\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.6, Page number 36"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "E=2*0.511*10**6; #rest energy(eV)\n",
- "\n",
- "#Calculation\n",
- "lamda=h*c/(E*e); #wavelength of photon(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of photon is\",round(lamda*10**12,2),\"*10**-12 m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength of photon is 1.22 *10**-12 m\n"
- ]
- }
- ],
- "prompt_number": 21
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter2_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter2_2.ipynb
deleted file mode 100755
index 59d9ea57..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter2_2.ipynb
+++ /dev/null
@@ -1,295 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:f048d58df41f2578c151ef59f03652004b6758b9e666d170255be2c66115bfe2"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "2: Particle nature of radiation"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.1, Page number 28"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "new=100*10**6; #frequency(Hz)\n",
- "P=100*10**3; #power(watt)\n",
- "\n",
- "#Calculation\n",
- "E=h*new; #quantum of energy(J)\n",
- "n=P/E; #number of quanta emitted(per sec)\n",
- "\n",
- "#Result\n",
- "print \"number of quanta emitted is\",round(n/10**29,2),\"*10**29 per sec\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "number of quanta emitted is 15.09 *10**29 per sec\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.2, Page number 31"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda=400*10**-9; #wavelength(m)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "w0=2.28; #work function(eV)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "\n",
- "#Calculation\n",
- "E=h*c/(lamda*e); #energy(eV)\n",
- "KEmax=E-w0; #maximum kinetic energy(eV)\n",
- "v2=2*KEmax*e/m; \n",
- "v=math.sqrt(v2); #velocity(m/s)\n",
- "\n",
- "#Result\n",
- "print \"maximum kinetic energy is\",round(KEmax,3),\"eV\"\n",
- "print \"velocity of photoelectrons is\",round(v/10**5,2),\"*10**5 m/s\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "maximum kinetic energy is 0.826 eV\n",
- "velocity of photoelectrons is 5.39 *10**5 m/s\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.3, Page number 31"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda=2000*10**-10; #wavelength(m)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "w0=4.2; #work function(eV)\n",
- "\n",
- "#Calculation\n",
- "lamda0=h*c/(w0*e); #cut off wavelength(m)\n",
- "E=h*c/(lamda*e); #energy(eV)\n",
- "sp=E-w0; #stopping potential(eV)\n",
- "\n",
- "#Result\n",
- "print \"cut off wavelength is\",int(lamda0*10**10),\"angstrom\"\n",
- "print \"stopping potential is\",round(sp,2),\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "cut off wavelength is 2958 angstrom\n",
- "stopping potential is 2.01 V\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.4, Page number 33"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda=0.2*10**-9; #wavelength(m)\n",
- "\n",
- "#Calculation\n",
- "p=h/lamda; #momentum(kg m/s)\n",
- "m=p/c; #effective mass(kg)\n",
- "\n",
- "#Result\n",
- "print \"momentum is\",round(p*10**24,1),\"*10**-24 kg m/s\"\n",
- "print \"effective mass is\",round(m*10**32,1),\"*10**-32 kg\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "momentum is 3.3 *10**-24 kg m/s\n",
- "effective mass is 1.1 *10**-32 kg\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.5, Page number 35"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda=0.15; #wavelength(nm)\n",
- "m0=9.1*10**-31; #mass of electron(kg)\n",
- "theta1=0; #scattering angle1(degrees)\n",
- "theta2=90; #scattering angle2(degrees)\n",
- "theta3=180; #scattering angle3(degrees)\n",
- "\n",
- "#Calculation\n",
- "theta1=theta1*math.pi/180; #scattering angle1(radian)\n",
- "theta2=theta2*math.pi/180; #scattering angle2(radian)\n",
- "theta3=theta3*math.pi/180; #scattering angle3(radian)\n",
- "lamda_dash1=lamda+(h*(1-math.cos(theta1))/(m0*c)); #wavelength at 0(nm)\n",
- "lamda_dash2=lamda+(10**9*h*(1-math.cos(theta2))/(m0*c)); #wavelength at 90(nm)\n",
- "lamda_dash3=lamda+(10**9*h*(1-math.cos(theta3))/(m0*c)); #wavelength at 180(nm)\n",
- "\n",
- "#Result\n",
- "print \"wavelength at 0 degrees is\",lamda_dash1,\"nm\"\n",
- "print \"wavelength at 90 degrees is\",round(lamda_dash2,3),\"nm\"\n",
- "print \"wavelength at 180 degrees is\",round(lamda_dash3,3),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength at 0 degrees is 0.15 nm\n",
- "wavelength at 90 degrees is 0.152 nm\n",
- "wavelength at 180 degrees is 0.155 nm\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.6, Page number 36"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "E=2*0.511*10**6; #rest energy(eV)\n",
- "\n",
- "#Calculation\n",
- "lamda=h*c/(E*e); #wavelength of photon(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of photon is\",round(lamda*10**12,2),\"*10**-12 m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength of photon is 1.22 *10**-12 m\n"
- ]
- }
- ],
- "prompt_number": 21
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter3.ipynb b/Modern_Physics_By_G.Aruldas/Chapter3.ipynb
deleted file mode 100755
index 4d816cd2..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter3.ipynb
+++ /dev/null
@@ -1,197 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:b6d6dfa593701249cd6d305eb45cecde030c3502c19d325045b7e05cf46a035c"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "3: Atomic models"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.1, Page number 45"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "N=6.02*10**23; #avagadro number(atoms/mole)\n",
- "rho=19.3; #density(g/cc)\n",
- "A=197; #atomic weight(g)\n",
- "k=8.984*10**9; #value of k(Nm**2/C**2)\n",
- "Z=79;\n",
- "Zdash=2;\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=2;\n",
- "v0=8*10**6; \n",
- "t=2*10**-6; #thickness(m)\n",
- "\n",
- "#Calculation\n",
- "n=N*rho*10**6/A; #number of atoms(per m**3)\n",
- "b=k*Z*Zdash*e/(m*v0); #impact parameter(m)\n",
- "f=math.pi*b**2*n*t; #fraction of particles scattered\n",
- "\n",
- "#Result\n",
- "print \"fraction of particles scattered is\",round(f*10**5,1),\"*10**-5\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "fraction of particles scattered is 7.5 *10**-5\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.3, Page number 48"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "E=10.5; #energy(eV)\n",
- "\n",
- "#Calculation\n",
- "E=(13.6+E)*e; #energy of photon(J)\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of photon is\",round(lamda*10**9,2),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength of photon is 51.55 nm\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.4, Page number 49"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "k=8.98*10**9; #value of k(Nm**2/C**2)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "n=1; #assume\n",
- "a0=0.53*10**-10; #radius of orbit(m)\n",
- "\n",
- "#Calculation\n",
- "PE=-k*(e**2)/(a0*e*n**2); #potential energy(eV)\n",
- "E=-13.6/n**2; #energy(eV)\n",
- "KE=E-PE; #kinetic energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy is\",round(KE,1),\"/n**2 eV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "kinetic energy is 13.5 /n**2 eV\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.6, Page number 51"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Mbyme=1836; \n",
- "lamda=6562.8; #wavelength for hydrogen(angstrom)\n",
- "\n",
- "#Calculation\n",
- "mew_dashbymew=2*(1+Mbyme)/(1+(2*Mbyme));\n",
- "lamda_dash=lamda/mew_dashbymew; #wavelength for deuterium(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength for deuterium is\",int(lamda_dash),\"angstrom\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength for deuterium is 6561 angstrom\n"
- ]
- }
- ],
- "prompt_number": 14
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter3_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter3_1.ipynb
deleted file mode 100755
index 4d816cd2..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter3_1.ipynb
+++ /dev/null
@@ -1,197 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:b6d6dfa593701249cd6d305eb45cecde030c3502c19d325045b7e05cf46a035c"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "3: Atomic models"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.1, Page number 45"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "N=6.02*10**23; #avagadro number(atoms/mole)\n",
- "rho=19.3; #density(g/cc)\n",
- "A=197; #atomic weight(g)\n",
- "k=8.984*10**9; #value of k(Nm**2/C**2)\n",
- "Z=79;\n",
- "Zdash=2;\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=2;\n",
- "v0=8*10**6; \n",
- "t=2*10**-6; #thickness(m)\n",
- "\n",
- "#Calculation\n",
- "n=N*rho*10**6/A; #number of atoms(per m**3)\n",
- "b=k*Z*Zdash*e/(m*v0); #impact parameter(m)\n",
- "f=math.pi*b**2*n*t; #fraction of particles scattered\n",
- "\n",
- "#Result\n",
- "print \"fraction of particles scattered is\",round(f*10**5,1),\"*10**-5\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "fraction of particles scattered is 7.5 *10**-5\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.3, Page number 48"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "E=10.5; #energy(eV)\n",
- "\n",
- "#Calculation\n",
- "E=(13.6+E)*e; #energy of photon(J)\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of photon is\",round(lamda*10**9,2),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength of photon is 51.55 nm\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.4, Page number 49"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "k=8.98*10**9; #value of k(Nm**2/C**2)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "n=1; #assume\n",
- "a0=0.53*10**-10; #radius of orbit(m)\n",
- "\n",
- "#Calculation\n",
- "PE=-k*(e**2)/(a0*e*n**2); #potential energy(eV)\n",
- "E=-13.6/n**2; #energy(eV)\n",
- "KE=E-PE; #kinetic energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy is\",round(KE,1),\"/n**2 eV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "kinetic energy is 13.5 /n**2 eV\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.6, Page number 51"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Mbyme=1836; \n",
- "lamda=6562.8; #wavelength for hydrogen(angstrom)\n",
- "\n",
- "#Calculation\n",
- "mew_dashbymew=2*(1+Mbyme)/(1+(2*Mbyme));\n",
- "lamda_dash=lamda/mew_dashbymew; #wavelength for deuterium(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength for deuterium is\",int(lamda_dash),\"angstrom\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength for deuterium is 6561 angstrom\n"
- ]
- }
- ],
- "prompt_number": 14
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter3_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter3_2.ipynb
deleted file mode 100755
index 4d816cd2..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter3_2.ipynb
+++ /dev/null
@@ -1,197 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:b6d6dfa593701249cd6d305eb45cecde030c3502c19d325045b7e05cf46a035c"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "3: Atomic models"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.1, Page number 45"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "N=6.02*10**23; #avagadro number(atoms/mole)\n",
- "rho=19.3; #density(g/cc)\n",
- "A=197; #atomic weight(g)\n",
- "k=8.984*10**9; #value of k(Nm**2/C**2)\n",
- "Z=79;\n",
- "Zdash=2;\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=2;\n",
- "v0=8*10**6; \n",
- "t=2*10**-6; #thickness(m)\n",
- "\n",
- "#Calculation\n",
- "n=N*rho*10**6/A; #number of atoms(per m**3)\n",
- "b=k*Z*Zdash*e/(m*v0); #impact parameter(m)\n",
- "f=math.pi*b**2*n*t; #fraction of particles scattered\n",
- "\n",
- "#Result\n",
- "print \"fraction of particles scattered is\",round(f*10**5,1),\"*10**-5\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "fraction of particles scattered is 7.5 *10**-5\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.3, Page number 48"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "E=10.5; #energy(eV)\n",
- "\n",
- "#Calculation\n",
- "E=(13.6+E)*e; #energy of photon(J)\n",
- "lamda=h*c/E; #wavelength(m)\n",
- "\n",
- "#Result\n",
- "print \"wavelength of photon is\",round(lamda*10**9,2),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength of photon is 51.55 nm\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.4, Page number 49"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "k=8.98*10**9; #value of k(Nm**2/C**2)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "n=1; #assume\n",
- "a0=0.53*10**-10; #radius of orbit(m)\n",
- "\n",
- "#Calculation\n",
- "PE=-k*(e**2)/(a0*e*n**2); #potential energy(eV)\n",
- "E=-13.6/n**2; #energy(eV)\n",
- "KE=E-PE; #kinetic energy(eV)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy is\",round(KE,1),\"/n**2 eV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "kinetic energy is 13.5 /n**2 eV\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 3.6, Page number 51"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Mbyme=1836; \n",
- "lamda=6562.8; #wavelength for hydrogen(angstrom)\n",
- "\n",
- "#Calculation\n",
- "mew_dashbymew=2*(1+Mbyme)/(1+(2*Mbyme));\n",
- "lamda_dash=lamda/mew_dashbymew; #wavelength for deuterium(angstrom)\n",
- "\n",
- "#Result\n",
- "print \"wavelength for deuterium is\",int(lamda_dash),\"angstrom\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "wavelength for deuterium is 6561 angstrom\n"
- ]
- }
- ],
- "prompt_number": 14
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter4.ipynb b/Modern_Physics_By_G.Aruldas/Chapter4.ipynb
deleted file mode 100755
index 350acf21..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter4.ipynb
+++ /dev/null
@@ -1,193 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:1d6457e2a94e0fa2b026a0acb8ba4fab526573258ee2c274c4328b7f611fb97a"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "4: Wave mechanical concepts"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.1, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "V=1; #assume\n",
- "\n",
- "#Calculation\n",
- "lamda=h/math.sqrt(2*m*e*V); #debroglie wavelength(m)\n",
- "\n",
- "#Result\n",
- "print \"debroglie wavelength is math.sqrt(\",int((lamda*10**10)**2),\"/V) angstrom\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "debroglie wavelength is math.sqrt( 150 /V) angstrom\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.2, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "KE=100*10**6; #kinetic energy(eV)\n",
- "\n",
- "#Calculation\n",
- "p=math.sqrt(2*m*e); #momentum(kg m/s)\n",
- "lamda1=h/p; #debroglie wavelength for 1 eV(m)\n",
- "lamda2=h*c/(KE*e); #debroglie wavelength for 100 MeV(m)\n",
- "\n",
- "#Result\n",
- "print \"debroglie wavelength for 1 eV is\",round(lamda1*10**9,1),\"nm\"\n",
- "print \"debroglie wavelength for 100 MeV is\",round(lamda2*10**15,2),\"*10**-15 m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "debroglie wavelength for 1 eV is 1.2 nm\n",
- "debroglie wavelength for 100 MeV is 12.42 *10**-15 m\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.3, Page number 64"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "v=4*10**6; #speed of electron(m/s)\n",
- "sp=1/100; #speed precision\n",
- "hbar=1.05*10**-34; \n",
- "\n",
- "#Calculation\n",
- "p=m*v; #momentum(kg m/s)\n",
- "deltap=p*sp; #uncertainity in momentum(kg m/s)\n",
- "deltax=hbar/(2*deltap); #precision in position(m)\n",
- "\n",
- "#Result\n",
- "print \"precision in position is\",round(deltax*10**9,2),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "precision in position is 1.44 nm\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.4, Page number 64"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda=4000*10**-10; #wavelength(m)\n",
- "deltat=10**-8; #average lifetime(s)\n",
- "\n",
- "#Calculation\n",
- "delta_lamda=lamda**2/(4*math.pi*c*deltat); #width of line(m)\n",
- "\n",
- "#Result\n",
- "print \"width of line is\",round(delta_lamda*10**15,2),\"*10**-15 m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "width of line is 4.24 *10**-15 m\n"
- ]
- }
- ],
- "prompt_number": 16
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter4_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter4_1.ipynb
deleted file mode 100755
index 350acf21..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter4_1.ipynb
+++ /dev/null
@@ -1,193 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:1d6457e2a94e0fa2b026a0acb8ba4fab526573258ee2c274c4328b7f611fb97a"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "4: Wave mechanical concepts"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.1, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "V=1; #assume\n",
- "\n",
- "#Calculation\n",
- "lamda=h/math.sqrt(2*m*e*V); #debroglie wavelength(m)\n",
- "\n",
- "#Result\n",
- "print \"debroglie wavelength is math.sqrt(\",int((lamda*10**10)**2),\"/V) angstrom\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "debroglie wavelength is math.sqrt( 150 /V) angstrom\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.2, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "KE=100*10**6; #kinetic energy(eV)\n",
- "\n",
- "#Calculation\n",
- "p=math.sqrt(2*m*e); #momentum(kg m/s)\n",
- "lamda1=h/p; #debroglie wavelength for 1 eV(m)\n",
- "lamda2=h*c/(KE*e); #debroglie wavelength for 100 MeV(m)\n",
- "\n",
- "#Result\n",
- "print \"debroglie wavelength for 1 eV is\",round(lamda1*10**9,1),\"nm\"\n",
- "print \"debroglie wavelength for 100 MeV is\",round(lamda2*10**15,2),\"*10**-15 m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "debroglie wavelength for 1 eV is 1.2 nm\n",
- "debroglie wavelength for 100 MeV is 12.42 *10**-15 m\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.3, Page number 64"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "v=4*10**6; #speed of electron(m/s)\n",
- "sp=1/100; #speed precision\n",
- "hbar=1.05*10**-34; \n",
- "\n",
- "#Calculation\n",
- "p=m*v; #momentum(kg m/s)\n",
- "deltap=p*sp; #uncertainity in momentum(kg m/s)\n",
- "deltax=hbar/(2*deltap); #precision in position(m)\n",
- "\n",
- "#Result\n",
- "print \"precision in position is\",round(deltax*10**9,2),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "precision in position is 1.44 nm\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.4, Page number 64"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda=4000*10**-10; #wavelength(m)\n",
- "deltat=10**-8; #average lifetime(s)\n",
- "\n",
- "#Calculation\n",
- "delta_lamda=lamda**2/(4*math.pi*c*deltat); #width of line(m)\n",
- "\n",
- "#Result\n",
- "print \"width of line is\",round(delta_lamda*10**15,2),\"*10**-15 m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "width of line is 4.24 *10**-15 m\n"
- ]
- }
- ],
- "prompt_number": 16
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter4_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter4_2.ipynb
deleted file mode 100755
index 350acf21..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter4_2.ipynb
+++ /dev/null
@@ -1,193 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:1d6457e2a94e0fa2b026a0acb8ba4fab526573258ee2c274c4328b7f611fb97a"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "4: Wave mechanical concepts"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.1, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "V=1; #assume\n",
- "\n",
- "#Calculation\n",
- "lamda=h/math.sqrt(2*m*e*V); #debroglie wavelength(m)\n",
- "\n",
- "#Result\n",
- "print \"debroglie wavelength is math.sqrt(\",int((lamda*10**10)**2),\"/V) angstrom\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "debroglie wavelength is math.sqrt( 150 /V) angstrom\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.2, Page number 59"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "KE=100*10**6; #kinetic energy(eV)\n",
- "\n",
- "#Calculation\n",
- "p=math.sqrt(2*m*e); #momentum(kg m/s)\n",
- "lamda1=h/p; #debroglie wavelength for 1 eV(m)\n",
- "lamda2=h*c/(KE*e); #debroglie wavelength for 100 MeV(m)\n",
- "\n",
- "#Result\n",
- "print \"debroglie wavelength for 1 eV is\",round(lamda1*10**9,1),\"nm\"\n",
- "print \"debroglie wavelength for 100 MeV is\",round(lamda2*10**15,2),\"*10**-15 m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "debroglie wavelength for 1 eV is 1.2 nm\n",
- "debroglie wavelength for 100 MeV is 12.42 *10**-15 m\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.3, Page number 64"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "v=4*10**6; #speed of electron(m/s)\n",
- "sp=1/100; #speed precision\n",
- "hbar=1.05*10**-34; \n",
- "\n",
- "#Calculation\n",
- "p=m*v; #momentum(kg m/s)\n",
- "deltap=p*sp; #uncertainity in momentum(kg m/s)\n",
- "deltax=hbar/(2*deltap); #precision in position(m)\n",
- "\n",
- "#Result\n",
- "print \"precision in position is\",round(deltax*10**9,2),\"nm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "precision in position is 1.44 nm\n"
- ]
- }
- ],
- "prompt_number": 14
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 4.4, Page number 64"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda=4000*10**-10; #wavelength(m)\n",
- "deltat=10**-8; #average lifetime(s)\n",
- "\n",
- "#Calculation\n",
- "delta_lamda=lamda**2/(4*math.pi*c*deltat); #width of line(m)\n",
- "\n",
- "#Result\n",
- "print \"width of line is\",round(delta_lamda*10**15,2),\"*10**-15 m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "width of line is 4.24 *10**-15 m\n"
- ]
- }
- ],
- "prompt_number": 16
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter6.ipynb b/Modern_Physics_By_G.Aruldas/Chapter6.ipynb
deleted file mode 100755
index fa8615c7..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter6.ipynb
+++ /dev/null
@@ -1,208 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:8884b20a8f08880d4a94501a9f3a466664f30ca1f04c541fe7d3a232f87a24bc"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "6: Quantum mechanics of simple systems"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 6.1, Page number 90"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from scipy.integrate import quad\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "a=2*10**-10; #length of square well(m)\n",
- "\n",
- "#Calculation\n",
- "def intg(x):\n",
- " return (2/a)*(math.sin(math.pi*x/a))**2\n",
- "\n",
- "S=quad(intg,0,0.25*10**-10)[0] #probability of finding the electron\n",
- "\n",
- "#Result\n",
- "print \"probability of finding the electron is\",round(S,4)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "probability of finding the electron is 0.0125\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 6.2, Page number 96"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "new0=6.43*10**13; #frequency(Hz)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "mew=1.1385*10**-26; #reduced mass(kg)\n",
- "\n",
- "#Calculation\n",
- "E0=h*new0/2; #zero point energy(J)\n",
- "E0=E0/e; #zero point energy(eV)\n",
- "k=4*math.pi**2*new0**2*mew; #force constane(N/m)\n",
- "\n",
- "#Result\n",
- "print \"zero point energy is\",round(E0,3),\"eV\"\n",
- "print \"force constane is\",round(k),\"N/m\"\n",
- "print \"answer varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "zero point energy is 0.133 eV\n",
- "force constane is 1858.0 N/m\n",
- "answer varies due to rounding off errors\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 6.6, Page number 104"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m1=19.9217*10**-27; #mass of carbon atom(kg)\n",
- "m2=26.5614*10**-27; #mass of oxygen atom(kg)\n",
- "r=1.131*10**-10; #separation(m)\n",
- "hbar=1.054*10**-34;\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "\n",
- "#Calculation\n",
- "mew=(m1*m2)/(m1+m2); #reduced mass(kg)\n",
- "I=mew*r**2; \n",
- "deltaE=hbar**2/I; #energy difference(J)\n",
- "deltaE=deltaE/e; #energy difference(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy difference is\",round(deltaE*10**4,2),\"*10**-4 eV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy difference is 4.77 *10**-4 eV\n"
- ]
- }
- ],
- "prompt_number": 21
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 6.7, Page number 105"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m1=1;\n",
- "m2=0;\n",
- "m3=-1; #m-components\n",
- "l=1;\n",
- "\n",
- "#Calculation\n",
- "L=math.sqrt(l*(l+1)); #length of vector\n",
- "theta1=math.acos(m1/L); #orientation for m=1(radian)\n",
- "theta1=theta1*180/math.pi; #orientation for m=1(degrees)\n",
- "theta2=math.acos(m2/L); #orientation for m=0(radian)\n",
- "theta2=theta2*180/math.pi; #orientation for m=0(degrees)\n",
- "theta3=math.acos(m3/L); #orientation for m=-1(radian)\n",
- "theta3=theta3*180/math.pi; #orientation for m=-1(degrees)\n",
- "\n",
- "#Result\n",
- "print \"orientation for m=1 is\",theta1,\"degrees\"\n",
- "print \"orientation for m=0 is\",theta2,\"degrees\"\n",
- "print \"orientation for m=-1 is\",theta3,\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "orientation for m=1 is 45.0 degrees\n",
- "orientation for m=0 is 90.0 degrees\n",
- "orientation for m=-1 is 135.0 degrees\n"
- ]
- }
- ],
- "prompt_number": 22
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter6_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter6_1.ipynb
deleted file mode 100755
index fa8615c7..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter6_1.ipynb
+++ /dev/null
@@ -1,208 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:8884b20a8f08880d4a94501a9f3a466664f30ca1f04c541fe7d3a232f87a24bc"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "6: Quantum mechanics of simple systems"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 6.1, Page number 90"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from scipy.integrate import quad\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "a=2*10**-10; #length of square well(m)\n",
- "\n",
- "#Calculation\n",
- "def intg(x):\n",
- " return (2/a)*(math.sin(math.pi*x/a))**2\n",
- "\n",
- "S=quad(intg,0,0.25*10**-10)[0] #probability of finding the electron\n",
- "\n",
- "#Result\n",
- "print \"probability of finding the electron is\",round(S,4)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "probability of finding the electron is 0.0125\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 6.2, Page number 96"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "new0=6.43*10**13; #frequency(Hz)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "mew=1.1385*10**-26; #reduced mass(kg)\n",
- "\n",
- "#Calculation\n",
- "E0=h*new0/2; #zero point energy(J)\n",
- "E0=E0/e; #zero point energy(eV)\n",
- "k=4*math.pi**2*new0**2*mew; #force constane(N/m)\n",
- "\n",
- "#Result\n",
- "print \"zero point energy is\",round(E0,3),\"eV\"\n",
- "print \"force constane is\",round(k),\"N/m\"\n",
- "print \"answer varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "zero point energy is 0.133 eV\n",
- "force constane is 1858.0 N/m\n",
- "answer varies due to rounding off errors\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 6.6, Page number 104"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m1=19.9217*10**-27; #mass of carbon atom(kg)\n",
- "m2=26.5614*10**-27; #mass of oxygen atom(kg)\n",
- "r=1.131*10**-10; #separation(m)\n",
- "hbar=1.054*10**-34;\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "\n",
- "#Calculation\n",
- "mew=(m1*m2)/(m1+m2); #reduced mass(kg)\n",
- "I=mew*r**2; \n",
- "deltaE=hbar**2/I; #energy difference(J)\n",
- "deltaE=deltaE/e; #energy difference(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy difference is\",round(deltaE*10**4,2),\"*10**-4 eV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy difference is 4.77 *10**-4 eV\n"
- ]
- }
- ],
- "prompt_number": 21
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 6.7, Page number 105"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m1=1;\n",
- "m2=0;\n",
- "m3=-1; #m-components\n",
- "l=1;\n",
- "\n",
- "#Calculation\n",
- "L=math.sqrt(l*(l+1)); #length of vector\n",
- "theta1=math.acos(m1/L); #orientation for m=1(radian)\n",
- "theta1=theta1*180/math.pi; #orientation for m=1(degrees)\n",
- "theta2=math.acos(m2/L); #orientation for m=0(radian)\n",
- "theta2=theta2*180/math.pi; #orientation for m=0(degrees)\n",
- "theta3=math.acos(m3/L); #orientation for m=-1(radian)\n",
- "theta3=theta3*180/math.pi; #orientation for m=-1(degrees)\n",
- "\n",
- "#Result\n",
- "print \"orientation for m=1 is\",theta1,\"degrees\"\n",
- "print \"orientation for m=0 is\",theta2,\"degrees\"\n",
- "print \"orientation for m=-1 is\",theta3,\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "orientation for m=1 is 45.0 degrees\n",
- "orientation for m=0 is 90.0 degrees\n",
- "orientation for m=-1 is 135.0 degrees\n"
- ]
- }
- ],
- "prompt_number": 22
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter6_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter6_2.ipynb
deleted file mode 100755
index fa8615c7..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter6_2.ipynb
+++ /dev/null
@@ -1,208 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:8884b20a8f08880d4a94501a9f3a466664f30ca1f04c541fe7d3a232f87a24bc"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "6: Quantum mechanics of simple systems"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 6.1, Page number 90"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from scipy.integrate import quad\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "a=2*10**-10; #length of square well(m)\n",
- "\n",
- "#Calculation\n",
- "def intg(x):\n",
- " return (2/a)*(math.sin(math.pi*x/a))**2\n",
- "\n",
- "S=quad(intg,0,0.25*10**-10)[0] #probability of finding the electron\n",
- "\n",
- "#Result\n",
- "print \"probability of finding the electron is\",round(S,4)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "probability of finding the electron is 0.0125\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 6.2, Page number 96"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "new0=6.43*10**13; #frequency(Hz)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "mew=1.1385*10**-26; #reduced mass(kg)\n",
- "\n",
- "#Calculation\n",
- "E0=h*new0/2; #zero point energy(J)\n",
- "E0=E0/e; #zero point energy(eV)\n",
- "k=4*math.pi**2*new0**2*mew; #force constane(N/m)\n",
- "\n",
- "#Result\n",
- "print \"zero point energy is\",round(E0,3),\"eV\"\n",
- "print \"force constane is\",round(k),\"N/m\"\n",
- "print \"answer varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "zero point energy is 0.133 eV\n",
- "force constane is 1858.0 N/m\n",
- "answer varies due to rounding off errors\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 6.6, Page number 104"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m1=19.9217*10**-27; #mass of carbon atom(kg)\n",
- "m2=26.5614*10**-27; #mass of oxygen atom(kg)\n",
- "r=1.131*10**-10; #separation(m)\n",
- "hbar=1.054*10**-34;\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "\n",
- "#Calculation\n",
- "mew=(m1*m2)/(m1+m2); #reduced mass(kg)\n",
- "I=mew*r**2; \n",
- "deltaE=hbar**2/I; #energy difference(J)\n",
- "deltaE=deltaE/e; #energy difference(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy difference is\",round(deltaE*10**4,2),\"*10**-4 eV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy difference is 4.77 *10**-4 eV\n"
- ]
- }
- ],
- "prompt_number": 21
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 6.7, Page number 105"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m1=1;\n",
- "m2=0;\n",
- "m3=-1; #m-components\n",
- "l=1;\n",
- "\n",
- "#Calculation\n",
- "L=math.sqrt(l*(l+1)); #length of vector\n",
- "theta1=math.acos(m1/L); #orientation for m=1(radian)\n",
- "theta1=theta1*180/math.pi; #orientation for m=1(degrees)\n",
- "theta2=math.acos(m2/L); #orientation for m=0(radian)\n",
- "theta2=theta2*180/math.pi; #orientation for m=0(degrees)\n",
- "theta3=math.acos(m3/L); #orientation for m=-1(radian)\n",
- "theta3=theta3*180/math.pi; #orientation for m=-1(degrees)\n",
- "\n",
- "#Result\n",
- "print \"orientation for m=1 is\",theta1,\"degrees\"\n",
- "print \"orientation for m=0 is\",theta2,\"degrees\"\n",
- "print \"orientation for m=-1 is\",theta3,\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "orientation for m=1 is 45.0 degrees\n",
- "orientation for m=0 is 90.0 degrees\n",
- "orientation for m=-1 is 135.0 degrees\n"
- ]
- }
- ],
- "prompt_number": 22
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter7.ipynb b/Modern_Physics_By_G.Aruldas/Chapter7.ipynb
deleted file mode 100755
index 45ed5766..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter7.ipynb
+++ /dev/null
@@ -1,258 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:1e02050388cdd15ca19e058c38c307c0fd0b145ef71769674c045940ea70b08b"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "7: Atomic physics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.1, Page number 113"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mewB=9.27*10**-24;\n",
- "B=3; #magnetic field(T)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "\n",
- "#Calculation\n",
- "E=2*mewB*B/e; #energy difference(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy difference is\",round(E*10**4,2),\"*10**-4 eV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy difference is 3.48 *10**-4 eV\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.3, Page number 118"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "l=2;\n",
- "s=1/2;\n",
- "j1=2+(1/2);\n",
- "j2=2-(1/2);\n",
- "\n",
- "#Calculation\n",
- "L=math.sqrt(l*(l+1)); #value of L(hbar)\n",
- "S=math.sqrt(s*(s+1)); #value of S(hbar)\n",
- "J1=math.sqrt(j1*(j1+1)); #value of J for D5/2 state(hbar)\n",
- "J2=math.sqrt(j2*(j2+1)); #value of J for D3/2 state(hbar)\n",
- "costheta1=((j1*(j1+1))-(l*(l+1))-(s*(s+1)))/(2*L*S);\n",
- "theta1=math.acos(costheta1); #angle between L and S for D5/2(radian)\n",
- "theta1=theta1*180/math.pi; #angle between L and S for D5/2(degrees)\n",
- "costheta2=((j2*(j2+1))-(l*(l+1))-(s*(s+1)))/(2*L*S);\n",
- "theta2=math.acos(costheta2); #angle between L and S for D3/2(radian)\n",
- "theta2=theta2*180/math.pi; #angle between L and S for D3/2(degrees)\n",
- "\n",
- "#Result\n",
- "print \"value of L is\",round(L,3),\"hbar\"\n",
- "print \"value of S is\",round(S,3),\"hbar\"\n",
- "print \"value of J for D5/2 state is\",round(J1,3),\"hbar\"\n",
- "print \"value of J for D3/2 state is\",round(J2,3),\"hbar\"\n",
- "print \"angle between L and S for D5/2 is\",round(theta1,2),\"degrees\"\n",
- "print \"angle between L and S for D3/2 is\",int(theta2),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "value of L is 2.449 hbar\n",
- "value of S is 0.866 hbar\n",
- "value of J for D5/2 state is 2.958 hbar\n",
- "value of J for D3/2 state is 1.936 hbar\n",
- "angle between L and S for D5/2 is 61.87 degrees\n",
- "angle between L and S for D3/2 is 135 degrees\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.10, Page number 136"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "S=1;\n",
- "L=1; \n",
- "J=1;\n",
- "\n",
- "#Calculation\n",
- "a=L*(L+1)-(L*(L+1));\n",
- "g1=1+(a/(2*L*(L+1))); #lande's g-factor for pure orbital angular momentum\n",
- "b=(S*(S+1)+(S*(S+1)))/(2*S*(S+1)); #lande's g-factor for pure spin angular momentum\n",
- "g2=1+b; #lande's g-factor for pure spin angular momentum\n",
- "c=J*(J+1)+(S*(S+1))-(L*(L+1));\n",
- "g3=1+(c/(2*J*(J+1))); #lande's g-factor for state 3P1\n",
- "\n",
- "#Result\n",
- "print \"lande's g-factor for pure orbital angular momentum is\",g1\n",
- "print \"ande's g-factor for pure spin angular momentum is\",g2\n",
- "print \"lande's g-factor for state 3P1 is\",g3"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "lande's g-factor for pure orbital angular momentum is 1.0\n",
- "ande's g-factor for pure spin angular momentum is 2.0\n",
- "lande's g-factor for state 3P1 is 1.5\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.12, Page number 141"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "EKalpha=21.99; #energy in silver(keV)\n",
- "EKbita=25.145; #energy in silver(keV)\n",
- "E=-25.514; #energy of n=1 state(keV)\n",
- " \n",
- "#Calculation\n",
- "ELalpha=EKbita-EKalpha; #energy of L alpha X ray(keV)\n",
- "E2=-E-EKalpha; #binding energy of L electron(keV)\n",
- "\n",
- "#Result\n",
- "print \"energy of L alpha X ray is\",ELalpha,\"keV\"\n",
- "print \"binding energy of L electron is\",E2,\"keV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy of L alpha X ray is 3.155 keV\n",
- "binding energy of L electron is 3.524 keV\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.13, Page number 141"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "Z=11; #atomic number\n",
- "R=1.097*10**7; #value of R(per m)\n",
- "\n",
- "#Calculation\n",
- "E=(3*h*c*R*(Z-1)**2)/4; #energy of k aplha X-ray(keV)\n",
- "\n",
- "#Result\n",
- "print \"energy of k aplha X-ray is\",round(E*10**16,2),\"*10**-16 keV\"\n",
- "print \"answer given in the book is wrong\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy of k aplha X-ray is 1.64 *10**-16 keV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "prompt_number": 12
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter7_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter7_1.ipynb
deleted file mode 100755
index 45ed5766..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter7_1.ipynb
+++ /dev/null
@@ -1,258 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:1e02050388cdd15ca19e058c38c307c0fd0b145ef71769674c045940ea70b08b"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "7: Atomic physics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.1, Page number 113"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mewB=9.27*10**-24;\n",
- "B=3; #magnetic field(T)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "\n",
- "#Calculation\n",
- "E=2*mewB*B/e; #energy difference(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy difference is\",round(E*10**4,2),\"*10**-4 eV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy difference is 3.48 *10**-4 eV\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.3, Page number 118"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "l=2;\n",
- "s=1/2;\n",
- "j1=2+(1/2);\n",
- "j2=2-(1/2);\n",
- "\n",
- "#Calculation\n",
- "L=math.sqrt(l*(l+1)); #value of L(hbar)\n",
- "S=math.sqrt(s*(s+1)); #value of S(hbar)\n",
- "J1=math.sqrt(j1*(j1+1)); #value of J for D5/2 state(hbar)\n",
- "J2=math.sqrt(j2*(j2+1)); #value of J for D3/2 state(hbar)\n",
- "costheta1=((j1*(j1+1))-(l*(l+1))-(s*(s+1)))/(2*L*S);\n",
- "theta1=math.acos(costheta1); #angle between L and S for D5/2(radian)\n",
- "theta1=theta1*180/math.pi; #angle between L and S for D5/2(degrees)\n",
- "costheta2=((j2*(j2+1))-(l*(l+1))-(s*(s+1)))/(2*L*S);\n",
- "theta2=math.acos(costheta2); #angle between L and S for D3/2(radian)\n",
- "theta2=theta2*180/math.pi; #angle between L and S for D3/2(degrees)\n",
- "\n",
- "#Result\n",
- "print \"value of L is\",round(L,3),\"hbar\"\n",
- "print \"value of S is\",round(S,3),\"hbar\"\n",
- "print \"value of J for D5/2 state is\",round(J1,3),\"hbar\"\n",
- "print \"value of J for D3/2 state is\",round(J2,3),\"hbar\"\n",
- "print \"angle between L and S for D5/2 is\",round(theta1,2),\"degrees\"\n",
- "print \"angle between L and S for D3/2 is\",int(theta2),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "value of L is 2.449 hbar\n",
- "value of S is 0.866 hbar\n",
- "value of J for D5/2 state is 2.958 hbar\n",
- "value of J for D3/2 state is 1.936 hbar\n",
- "angle between L and S for D5/2 is 61.87 degrees\n",
- "angle between L and S for D3/2 is 135 degrees\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.10, Page number 136"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "S=1;\n",
- "L=1; \n",
- "J=1;\n",
- "\n",
- "#Calculation\n",
- "a=L*(L+1)-(L*(L+1));\n",
- "g1=1+(a/(2*L*(L+1))); #lande's g-factor for pure orbital angular momentum\n",
- "b=(S*(S+1)+(S*(S+1)))/(2*S*(S+1)); #lande's g-factor for pure spin angular momentum\n",
- "g2=1+b; #lande's g-factor for pure spin angular momentum\n",
- "c=J*(J+1)+(S*(S+1))-(L*(L+1));\n",
- "g3=1+(c/(2*J*(J+1))); #lande's g-factor for state 3P1\n",
- "\n",
- "#Result\n",
- "print \"lande's g-factor for pure orbital angular momentum is\",g1\n",
- "print \"ande's g-factor for pure spin angular momentum is\",g2\n",
- "print \"lande's g-factor for state 3P1 is\",g3"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "lande's g-factor for pure orbital angular momentum is 1.0\n",
- "ande's g-factor for pure spin angular momentum is 2.0\n",
- "lande's g-factor for state 3P1 is 1.5\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.12, Page number 141"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "EKalpha=21.99; #energy in silver(keV)\n",
- "EKbita=25.145; #energy in silver(keV)\n",
- "E=-25.514; #energy of n=1 state(keV)\n",
- " \n",
- "#Calculation\n",
- "ELalpha=EKbita-EKalpha; #energy of L alpha X ray(keV)\n",
- "E2=-E-EKalpha; #binding energy of L electron(keV)\n",
- "\n",
- "#Result\n",
- "print \"energy of L alpha X ray is\",ELalpha,\"keV\"\n",
- "print \"binding energy of L electron is\",E2,\"keV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy of L alpha X ray is 3.155 keV\n",
- "binding energy of L electron is 3.524 keV\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.13, Page number 141"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "Z=11; #atomic number\n",
- "R=1.097*10**7; #value of R(per m)\n",
- "\n",
- "#Calculation\n",
- "E=(3*h*c*R*(Z-1)**2)/4; #energy of k aplha X-ray(keV)\n",
- "\n",
- "#Result\n",
- "print \"energy of k aplha X-ray is\",round(E*10**16,2),\"*10**-16 keV\"\n",
- "print \"answer given in the book is wrong\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy of k aplha X-ray is 1.64 *10**-16 keV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "prompt_number": 12
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter7_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter7_2.ipynb
deleted file mode 100755
index 45ed5766..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter7_2.ipynb
+++ /dev/null
@@ -1,258 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:1e02050388cdd15ca19e058c38c307c0fd0b145ef71769674c045940ea70b08b"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "7: Atomic physics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.1, Page number 113"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "mewB=9.27*10**-24;\n",
- "B=3; #magnetic field(T)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "\n",
- "#Calculation\n",
- "E=2*mewB*B/e; #energy difference(eV)\n",
- "\n",
- "#Result\n",
- "print \"energy difference is\",round(E*10**4,2),\"*10**-4 eV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy difference is 3.48 *10**-4 eV\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.3, Page number 118"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "l=2;\n",
- "s=1/2;\n",
- "j1=2+(1/2);\n",
- "j2=2-(1/2);\n",
- "\n",
- "#Calculation\n",
- "L=math.sqrt(l*(l+1)); #value of L(hbar)\n",
- "S=math.sqrt(s*(s+1)); #value of S(hbar)\n",
- "J1=math.sqrt(j1*(j1+1)); #value of J for D5/2 state(hbar)\n",
- "J2=math.sqrt(j2*(j2+1)); #value of J for D3/2 state(hbar)\n",
- "costheta1=((j1*(j1+1))-(l*(l+1))-(s*(s+1)))/(2*L*S);\n",
- "theta1=math.acos(costheta1); #angle between L and S for D5/2(radian)\n",
- "theta1=theta1*180/math.pi; #angle between L and S for D5/2(degrees)\n",
- "costheta2=((j2*(j2+1))-(l*(l+1))-(s*(s+1)))/(2*L*S);\n",
- "theta2=math.acos(costheta2); #angle between L and S for D3/2(radian)\n",
- "theta2=theta2*180/math.pi; #angle between L and S for D3/2(degrees)\n",
- "\n",
- "#Result\n",
- "print \"value of L is\",round(L,3),\"hbar\"\n",
- "print \"value of S is\",round(S,3),\"hbar\"\n",
- "print \"value of J for D5/2 state is\",round(J1,3),\"hbar\"\n",
- "print \"value of J for D3/2 state is\",round(J2,3),\"hbar\"\n",
- "print \"angle between L and S for D5/2 is\",round(theta1,2),\"degrees\"\n",
- "print \"angle between L and S for D3/2 is\",int(theta2),\"degrees\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "value of L is 2.449 hbar\n",
- "value of S is 0.866 hbar\n",
- "value of J for D5/2 state is 2.958 hbar\n",
- "value of J for D3/2 state is 1.936 hbar\n",
- "angle between L and S for D5/2 is 61.87 degrees\n",
- "angle between L and S for D3/2 is 135 degrees\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.10, Page number 136"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "S=1;\n",
- "L=1; \n",
- "J=1;\n",
- "\n",
- "#Calculation\n",
- "a=L*(L+1)-(L*(L+1));\n",
- "g1=1+(a/(2*L*(L+1))); #lande's g-factor for pure orbital angular momentum\n",
- "b=(S*(S+1)+(S*(S+1)))/(2*S*(S+1)); #lande's g-factor for pure spin angular momentum\n",
- "g2=1+b; #lande's g-factor for pure spin angular momentum\n",
- "c=J*(J+1)+(S*(S+1))-(L*(L+1));\n",
- "g3=1+(c/(2*J*(J+1))); #lande's g-factor for state 3P1\n",
- "\n",
- "#Result\n",
- "print \"lande's g-factor for pure orbital angular momentum is\",g1\n",
- "print \"ande's g-factor for pure spin angular momentum is\",g2\n",
- "print \"lande's g-factor for state 3P1 is\",g3"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "lande's g-factor for pure orbital angular momentum is 1.0\n",
- "ande's g-factor for pure spin angular momentum is 2.0\n",
- "lande's g-factor for state 3P1 is 1.5\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.12, Page number 141"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "EKalpha=21.99; #energy in silver(keV)\n",
- "EKbita=25.145; #energy in silver(keV)\n",
- "E=-25.514; #energy of n=1 state(keV)\n",
- " \n",
- "#Calculation\n",
- "ELalpha=EKbita-EKalpha; #energy of L alpha X ray(keV)\n",
- "E2=-E-EKalpha; #binding energy of L electron(keV)\n",
- "\n",
- "#Result\n",
- "print \"energy of L alpha X ray is\",ELalpha,\"keV\"\n",
- "print \"binding energy of L electron is\",E2,\"keV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy of L alpha X ray is 3.155 keV\n",
- "binding energy of L electron is 3.524 keV\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 7.13, Page number 141"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "Z=11; #atomic number\n",
- "R=1.097*10**7; #value of R(per m)\n",
- "\n",
- "#Calculation\n",
- "E=(3*h*c*R*(Z-1)**2)/4; #energy of k aplha X-ray(keV)\n",
- "\n",
- "#Result\n",
- "print \"energy of k aplha X-ray is\",round(E*10**16,2),\"*10**-16 keV\"\n",
- "print \"answer given in the book is wrong\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "energy of k aplha X-ray is 1.64 *10**-16 keV\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "prompt_number": 12
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter8.ipynb b/Modern_Physics_By_G.Aruldas/Chapter8.ipynb
deleted file mode 100755
index 014cb0d9..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter8.ipynb
+++ /dev/null
@@ -1,116 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:3bf1b2120b5dacb9d86b4fa6efbc4300ebec3d48ce95ec80e2e6a8f936088a09"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "8: Statistical physics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 8.2, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "rho=10.5; #density of silver(g/cc)\n",
- "M=108; #atomic weight(g/mole)\n",
- "NA=6.02*10**23; #avagadro number(atoms/mole)\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "\n",
- "#Calculation\n",
- "NbyV=rho*NA/M; #number density of conduction electrons(per cc)\n",
- "NbyV=NbyV*10**6; #number density of conduction electrons(per m**3)\n",
- "EF=(h**2/(8*m))*(3*NbyV/math.pi)**(2/3); #fermi energy(J)\n",
- "EF=EF/e; #fermi energy(eV)\n",
- "E=3*EF/5; #mean energy of electron(eV)\n",
- "\n",
- "#Result\n",
- "print \"number density of conduction electrons is\",round(NbyV/10**28,2),\"*10**28 per m**3\"\n",
- "print \"fermi energy is\",round(EF,2),\"eV\"\n",
- "print \"mean energy of electron is\",round(E,2),\"eV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "number density of conduction electrons is 5.85 *10**28 per m**3\n",
- "fermi energy is 5.51 eV\n",
- "mean energy of electron is 3.31 eV\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 8.3, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "T=300; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "EF=5.49; #fermi energy(eV)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "R=1; #assume\n",
- "\n",
- "#Calculation\n",
- "CV=math.pi**2*k*T*R/(2*EF*e); #electronic contribution of Silver(R)\n",
- "\n",
- "#Result\n",
- "print \"electronic contribution of Silver is\",round(CV,5),\"R\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "electronic contribution of Silver is 0.02326 R\n"
- ]
- }
- ],
- "prompt_number": 9
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter8_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter8_1.ipynb
deleted file mode 100755
index 014cb0d9..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter8_1.ipynb
+++ /dev/null
@@ -1,116 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:3bf1b2120b5dacb9d86b4fa6efbc4300ebec3d48ce95ec80e2e6a8f936088a09"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "8: Statistical physics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 8.2, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "rho=10.5; #density of silver(g/cc)\n",
- "M=108; #atomic weight(g/mole)\n",
- "NA=6.02*10**23; #avagadro number(atoms/mole)\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "\n",
- "#Calculation\n",
- "NbyV=rho*NA/M; #number density of conduction electrons(per cc)\n",
- "NbyV=NbyV*10**6; #number density of conduction electrons(per m**3)\n",
- "EF=(h**2/(8*m))*(3*NbyV/math.pi)**(2/3); #fermi energy(J)\n",
- "EF=EF/e; #fermi energy(eV)\n",
- "E=3*EF/5; #mean energy of electron(eV)\n",
- "\n",
- "#Result\n",
- "print \"number density of conduction electrons is\",round(NbyV/10**28,2),\"*10**28 per m**3\"\n",
- "print \"fermi energy is\",round(EF,2),\"eV\"\n",
- "print \"mean energy of electron is\",round(E,2),\"eV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "number density of conduction electrons is 5.85 *10**28 per m**3\n",
- "fermi energy is 5.51 eV\n",
- "mean energy of electron is 3.31 eV\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 8.3, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "T=300; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "EF=5.49; #fermi energy(eV)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "R=1; #assume\n",
- "\n",
- "#Calculation\n",
- "CV=math.pi**2*k*T*R/(2*EF*e); #electronic contribution of Silver(R)\n",
- "\n",
- "#Result\n",
- "print \"electronic contribution of Silver is\",round(CV,5),\"R\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "electronic contribution of Silver is 0.02326 R\n"
- ]
- }
- ],
- "prompt_number": 9
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter8_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter8_2.ipynb
deleted file mode 100755
index 014cb0d9..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter8_2.ipynb
+++ /dev/null
@@ -1,116 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:3bf1b2120b5dacb9d86b4fa6efbc4300ebec3d48ce95ec80e2e6a8f936088a09"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "8: Statistical physics"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 8.2, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "rho=10.5; #density of silver(g/cc)\n",
- "M=108; #atomic weight(g/mole)\n",
- "NA=6.02*10**23; #avagadro number(atoms/mole)\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "\n",
- "#Calculation\n",
- "NbyV=rho*NA/M; #number density of conduction electrons(per cc)\n",
- "NbyV=NbyV*10**6; #number density of conduction electrons(per m**3)\n",
- "EF=(h**2/(8*m))*(3*NbyV/math.pi)**(2/3); #fermi energy(J)\n",
- "EF=EF/e; #fermi energy(eV)\n",
- "E=3*EF/5; #mean energy of electron(eV)\n",
- "\n",
- "#Result\n",
- "print \"number density of conduction electrons is\",round(NbyV/10**28,2),\"*10**28 per m**3\"\n",
- "print \"fermi energy is\",round(EF,2),\"eV\"\n",
- "print \"mean energy of electron is\",round(E,2),\"eV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "number density of conduction electrons is 5.85 *10**28 per m**3\n",
- "fermi energy is 5.51 eV\n",
- "mean energy of electron is 3.31 eV\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 8.3, Page number 164"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "T=300; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "EF=5.49; #fermi energy(eV)\n",
- "e=1.6*10**-19; #conversion factor from J to eV\n",
- "R=1; #assume\n",
- "\n",
- "#Calculation\n",
- "CV=math.pi**2*k*T*R/(2*EF*e); #electronic contribution of Silver(R)\n",
- "\n",
- "#Result\n",
- "print \"electronic contribution of Silver is\",round(CV,5),\"R\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "electronic contribution of Silver is 0.02326 R\n"
- ]
- }
- ],
- "prompt_number": 9
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter9.ipynb b/Modern_Physics_By_G.Aruldas/Chapter9.ipynb
deleted file mode 100755
index fa1ac5e9..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter9.ipynb
+++ /dev/null
@@ -1,418 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:d1e925900cff60559a1ba3f62c2c267140215c90675c4dba42b1a473becca175"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "9: Molecular spectra"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.1, Page number 172"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "twoB=3.8626; #average spacing(per cm)\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #speed of light(m/s)\n",
- "NA=6.022*10**23; #avagadro number(atoms/mole)\n",
- "mC=0.012; #isotopic mass of C(kg/mol)\n",
- "mO=0.016; #isotopic mass of O(kg/mol)\n",
- "\n",
- "#Calculation\n",
- "B=(twoB/2)*100; #average spacing(per m)\n",
- "I=h/(8*math.pi**2*B*c); \n",
- "mew=mC*mO/((mC+mO)*NA); #reduced mass(kg)\n",
- "r=math.sqrt(I/mew); #bond length(m)\n",
- "\n",
- "#Result\n",
- "print \"bond length is\",round(r*10**10,3),\"*10**-10 m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "bond length is 1.128 *10**-10 m\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.2, Page number 173"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "T=300; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #speed of light(m/s)\n",
- "lamda=10**-2; #wavelength(m)\n",
- "\n",
- "#Calculation\n",
- "E=3*k*T/2; #kinetic energy(J)\n",
- "deltaE=h*c/lamda; #energy seperation(J)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy is\",E,\"J\"\n",
- "print \"energy seperation is\",round(deltaE*10**23),\"*10**-23 J\"\n",
- "print \"deltaE is much smaller than E. hence substantial number of molecules will be there\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "kinetic energy is 6.21e-21 J\n",
- "energy seperation is 2.0 *10**-23 J\n",
- "deltaE is much smaller than E. hence substantial number of molecules will be there\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.3, Page number 175"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "ff=1876.06; #frequency of fundamental(per cm)\n",
- "fo=3724.2; #frequency of 1st overtone(per cm)\n",
- "\n",
- "#Calculation\n",
- "#ff=vebar*(1-(2*xe)) and fo=2*vebar*(1-(3*xe)). on solcing we get\n",
- "vebar=1903.98; #equilibrium vibration frequency(per cm)\n",
- "xe=7.33*10**-3; #anharmonicity constant\n",
- "E=vebar/2; #zero point energy(per cm)\n",
- "\n",
- "#Result\n",
- "print \"equilibrium vibration frequency is\",vebar,\"per cm\"\n",
- "print \"anharmonicity constant is\",round(xe*10**3,2),\"*10**-3\"\n",
- "print \"zero point energy is\",round(E),\"per cm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "equilibrium vibration frequency is 1903.98 per cm\n",
- "anharmonicity constant is 7.33 *10**-3\n",
- "zero point energy is 952.0 per cm\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.4, Page number 175"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "m1=1.0087; #mass of 1H(u)\n",
- "m2=35.453; #mass of Cl(u)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda0=3.465*10**-6; #wavelength(m)\n",
- "\n",
- "#Calculation\n",
- "mew=m*m1*m2/(m1+m2); #reduced mass(kg)\n",
- "k=4*math.pi**2*mew*(c/lamda0)**2; #force constant(N/m)\n",
- "\n",
- "#Result\n",
- "print \"force constant is\",round(k,1),\"N/m\"\n",
- "print \"answer varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "force constant is 484.7 N/m\n",
- "answer varies due to rounding off errors\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.5, Page number 187"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamdae=4358.3*10**-8; #excited wavelength(cm)\n",
- "lamda=4768.5*10**-8; #wavelength(cm)\n",
- "\n",
- "#Calculation\n",
- "wne=1/lamdae; #wave number of exciting radiation(per cm)\n",
- "wn=1/lamda; #wave number of Raman line(per cm)\n",
- "new=wne-wn; #vibrational frequency(per cm)\n",
- "\n",
- "#Result\n",
- "print \"vibrational frequency is\",round(new),\"per cm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "vibrational frequency is 1974.0 per cm\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.6, Page number 188"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #speed of light(m/s)\n",
- "sixB=346; #1st rotational Raman line(per cm)\n",
- "m1=1.673*10**-27; #mass of proton(kg)\n",
- "\n",
- "#Calculation\n",
- "m2=m1;\n",
- "B=(sixB/6)*100; #average spacing(per m)\n",
- "I=h/(8*math.pi**2*B*c); \n",
- "mew=m1*m2/(m1+m2); #reduced mass(kg)\n",
- "r=math.sqrt(I/mew); #bond length(m)\n",
- "\n",
- "#Result\n",
- "print \"bond length is\",round(r*10**10,3),\"*10**-10 m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "bond length is 0.762 *10**-10 m\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.7, Page number 193"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "gN=5.585; #value of gN\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "new=120*10**6; #frequency(Hz)\n",
- "mewn=5.0508*10**-27;\n",
- "\n",
- "#Calculation\n",
- "B0=h*new/(gN*mewn); #magnetic field strength(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetic field strength is\",round(B0,3),\"T\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "magnetic field strength is 2.819 T\n"
- ]
- }
- ],
- "prompt_number": 20
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.8, Page number 194"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "gN=5.585; #value of gN\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "mewn=5.0508*10**-27;\n",
- "B0=1.65; #magnetic field(T)\n",
- "new=510*10**6; #frequency separation(Hz)\n",
- "\n",
- "#Calculation\n",
- "new0=gN*mewn*B0/h;\n",
- "delta=new/new0; #chemical shift(ppm)\n",
- "\n",
- "#Result\n",
- "print \"chemical shift is\",round(delta,2),\"ppm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "chemical shift is 7.26 ppm\n"
- ]
- }
- ],
- "prompt_number": 24
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.10, Page number 198"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "new=35*10**9; #frequency(Hz)\n",
- "mewB=9.27*10**-24;\n",
- "B0=1.3; #magnetic field(T)\n",
- "\n",
- "#Calculation\n",
- "g=h*new/(mewB*B0); #electron g-factor\n",
- "\n",
- "#Result\n",
- "print \"electron g-factor is\",round(g,3)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "electron g-factor is 1.924\n"
- ]
- }
- ],
- "prompt_number": 26
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter9_1.ipynb b/Modern_Physics_By_G.Aruldas/Chapter9_1.ipynb
deleted file mode 100755
index fa1ac5e9..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter9_1.ipynb
+++ /dev/null
@@ -1,418 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:d1e925900cff60559a1ba3f62c2c267140215c90675c4dba42b1a473becca175"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "9: Molecular spectra"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.1, Page number 172"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "twoB=3.8626; #average spacing(per cm)\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #speed of light(m/s)\n",
- "NA=6.022*10**23; #avagadro number(atoms/mole)\n",
- "mC=0.012; #isotopic mass of C(kg/mol)\n",
- "mO=0.016; #isotopic mass of O(kg/mol)\n",
- "\n",
- "#Calculation\n",
- "B=(twoB/2)*100; #average spacing(per m)\n",
- "I=h/(8*math.pi**2*B*c); \n",
- "mew=mC*mO/((mC+mO)*NA); #reduced mass(kg)\n",
- "r=math.sqrt(I/mew); #bond length(m)\n",
- "\n",
- "#Result\n",
- "print \"bond length is\",round(r*10**10,3),\"*10**-10 m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "bond length is 1.128 *10**-10 m\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.2, Page number 173"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "T=300; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #speed of light(m/s)\n",
- "lamda=10**-2; #wavelength(m)\n",
- "\n",
- "#Calculation\n",
- "E=3*k*T/2; #kinetic energy(J)\n",
- "deltaE=h*c/lamda; #energy seperation(J)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy is\",E,\"J\"\n",
- "print \"energy seperation is\",round(deltaE*10**23),\"*10**-23 J\"\n",
- "print \"deltaE is much smaller than E. hence substantial number of molecules will be there\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "kinetic energy is 6.21e-21 J\n",
- "energy seperation is 2.0 *10**-23 J\n",
- "deltaE is much smaller than E. hence substantial number of molecules will be there\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.3, Page number 175"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "ff=1876.06; #frequency of fundamental(per cm)\n",
- "fo=3724.2; #frequency of 1st overtone(per cm)\n",
- "\n",
- "#Calculation\n",
- "#ff=vebar*(1-(2*xe)) and fo=2*vebar*(1-(3*xe)). on solcing we get\n",
- "vebar=1903.98; #equilibrium vibration frequency(per cm)\n",
- "xe=7.33*10**-3; #anharmonicity constant\n",
- "E=vebar/2; #zero point energy(per cm)\n",
- "\n",
- "#Result\n",
- "print \"equilibrium vibration frequency is\",vebar,\"per cm\"\n",
- "print \"anharmonicity constant is\",round(xe*10**3,2),\"*10**-3\"\n",
- "print \"zero point energy is\",round(E),\"per cm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "equilibrium vibration frequency is 1903.98 per cm\n",
- "anharmonicity constant is 7.33 *10**-3\n",
- "zero point energy is 952.0 per cm\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.4, Page number 175"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "m1=1.0087; #mass of 1H(u)\n",
- "m2=35.453; #mass of Cl(u)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda0=3.465*10**-6; #wavelength(m)\n",
- "\n",
- "#Calculation\n",
- "mew=m*m1*m2/(m1+m2); #reduced mass(kg)\n",
- "k=4*math.pi**2*mew*(c/lamda0)**2; #force constant(N/m)\n",
- "\n",
- "#Result\n",
- "print \"force constant is\",round(k,1),\"N/m\"\n",
- "print \"answer varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "force constant is 484.7 N/m\n",
- "answer varies due to rounding off errors\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.5, Page number 187"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamdae=4358.3*10**-8; #excited wavelength(cm)\n",
- "lamda=4768.5*10**-8; #wavelength(cm)\n",
- "\n",
- "#Calculation\n",
- "wne=1/lamdae; #wave number of exciting radiation(per cm)\n",
- "wn=1/lamda; #wave number of Raman line(per cm)\n",
- "new=wne-wn; #vibrational frequency(per cm)\n",
- "\n",
- "#Result\n",
- "print \"vibrational frequency is\",round(new),\"per cm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "vibrational frequency is 1974.0 per cm\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.6, Page number 188"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #speed of light(m/s)\n",
- "sixB=346; #1st rotational Raman line(per cm)\n",
- "m1=1.673*10**-27; #mass of proton(kg)\n",
- "\n",
- "#Calculation\n",
- "m2=m1;\n",
- "B=(sixB/6)*100; #average spacing(per m)\n",
- "I=h/(8*math.pi**2*B*c); \n",
- "mew=m1*m2/(m1+m2); #reduced mass(kg)\n",
- "r=math.sqrt(I/mew); #bond length(m)\n",
- "\n",
- "#Result\n",
- "print \"bond length is\",round(r*10**10,3),\"*10**-10 m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "bond length is 0.762 *10**-10 m\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.7, Page number 193"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "gN=5.585; #value of gN\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "new=120*10**6; #frequency(Hz)\n",
- "mewn=5.0508*10**-27;\n",
- "\n",
- "#Calculation\n",
- "B0=h*new/(gN*mewn); #magnetic field strength(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetic field strength is\",round(B0,3),\"T\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "magnetic field strength is 2.819 T\n"
- ]
- }
- ],
- "prompt_number": 20
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.8, Page number 194"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "gN=5.585; #value of gN\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "mewn=5.0508*10**-27;\n",
- "B0=1.65; #magnetic field(T)\n",
- "new=510*10**6; #frequency separation(Hz)\n",
- "\n",
- "#Calculation\n",
- "new0=gN*mewn*B0/h;\n",
- "delta=new/new0; #chemical shift(ppm)\n",
- "\n",
- "#Result\n",
- "print \"chemical shift is\",round(delta,2),\"ppm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "chemical shift is 7.26 ppm\n"
- ]
- }
- ],
- "prompt_number": 24
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.10, Page number 198"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "new=35*10**9; #frequency(Hz)\n",
- "mewB=9.27*10**-24;\n",
- "B0=1.3; #magnetic field(T)\n",
- "\n",
- "#Calculation\n",
- "g=h*new/(mewB*B0); #electron g-factor\n",
- "\n",
- "#Result\n",
- "print \"electron g-factor is\",round(g,3)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "electron g-factor is 1.924\n"
- ]
- }
- ],
- "prompt_number": 26
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file
diff --git a/Modern_Physics_By_G.Aruldas/Chapter9_2.ipynb b/Modern_Physics_By_G.Aruldas/Chapter9_2.ipynb
deleted file mode 100755
index fa1ac5e9..00000000
--- a/Modern_Physics_By_G.Aruldas/Chapter9_2.ipynb
+++ /dev/null
@@ -1,418 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:d1e925900cff60559a1ba3f62c2c267140215c90675c4dba42b1a473becca175"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "9: Molecular spectra"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.1, Page number 172"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "twoB=3.8626; #average spacing(per cm)\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #speed of light(m/s)\n",
- "NA=6.022*10**23; #avagadro number(atoms/mole)\n",
- "mC=0.012; #isotopic mass of C(kg/mol)\n",
- "mO=0.016; #isotopic mass of O(kg/mol)\n",
- "\n",
- "#Calculation\n",
- "B=(twoB/2)*100; #average spacing(per m)\n",
- "I=h/(8*math.pi**2*B*c); \n",
- "mew=mC*mO/((mC+mO)*NA); #reduced mass(kg)\n",
- "r=math.sqrt(I/mew); #bond length(m)\n",
- "\n",
- "#Result\n",
- "print \"bond length is\",round(r*10**10,3),\"*10**-10 m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "bond length is 1.128 *10**-10 m\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.2, Page number 173"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "T=300; #temperature(K)\n",
- "k=1.38*10**-23; #boltzmann constant(J/K)\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #speed of light(m/s)\n",
- "lamda=10**-2; #wavelength(m)\n",
- "\n",
- "#Calculation\n",
- "E=3*k*T/2; #kinetic energy(J)\n",
- "deltaE=h*c/lamda; #energy seperation(J)\n",
- "\n",
- "#Result\n",
- "print \"kinetic energy is\",E,\"J\"\n",
- "print \"energy seperation is\",round(deltaE*10**23),\"*10**-23 J\"\n",
- "print \"deltaE is much smaller than E. hence substantial number of molecules will be there\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "kinetic energy is 6.21e-21 J\n",
- "energy seperation is 2.0 *10**-23 J\n",
- "deltaE is much smaller than E. hence substantial number of molecules will be there\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.3, Page number 175"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "ff=1876.06; #frequency of fundamental(per cm)\n",
- "fo=3724.2; #frequency of 1st overtone(per cm)\n",
- "\n",
- "#Calculation\n",
- "#ff=vebar*(1-(2*xe)) and fo=2*vebar*(1-(3*xe)). on solcing we get\n",
- "vebar=1903.98; #equilibrium vibration frequency(per cm)\n",
- "xe=7.33*10**-3; #anharmonicity constant\n",
- "E=vebar/2; #zero point energy(per cm)\n",
- "\n",
- "#Result\n",
- "print \"equilibrium vibration frequency is\",vebar,\"per cm\"\n",
- "print \"anharmonicity constant is\",round(xe*10**3,2),\"*10**-3\"\n",
- "print \"zero point energy is\",round(E),\"per cm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "equilibrium vibration frequency is 1903.98 per cm\n",
- "anharmonicity constant is 7.33 *10**-3\n",
- "zero point energy is 952.0 per cm\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.4, Page number 175"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "m1=1.0087; #mass of 1H(u)\n",
- "m2=35.453; #mass of Cl(u)\n",
- "c=3*10**8; #velocity of light(m/sec)\n",
- "lamda0=3.465*10**-6; #wavelength(m)\n",
- "\n",
- "#Calculation\n",
- "mew=m*m1*m2/(m1+m2); #reduced mass(kg)\n",
- "k=4*math.pi**2*mew*(c/lamda0)**2; #force constant(N/m)\n",
- "\n",
- "#Result\n",
- "print \"force constant is\",round(k,1),\"N/m\"\n",
- "print \"answer varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "force constant is 484.7 N/m\n",
- "answer varies due to rounding off errors\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.5, Page number 187"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "lamdae=4358.3*10**-8; #excited wavelength(cm)\n",
- "lamda=4768.5*10**-8; #wavelength(cm)\n",
- "\n",
- "#Calculation\n",
- "wne=1/lamdae; #wave number of exciting radiation(per cm)\n",
- "wn=1/lamda; #wave number of Raman line(per cm)\n",
- "new=wne-wn; #vibrational frequency(per cm)\n",
- "\n",
- "#Result\n",
- "print \"vibrational frequency is\",round(new),\"per cm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "vibrational frequency is 1974.0 per cm\n"
- ]
- }
- ],
- "prompt_number": 15
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.6, Page number 188"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "c=3*10**8; #speed of light(m/s)\n",
- "sixB=346; #1st rotational Raman line(per cm)\n",
- "m1=1.673*10**-27; #mass of proton(kg)\n",
- "\n",
- "#Calculation\n",
- "m2=m1;\n",
- "B=(sixB/6)*100; #average spacing(per m)\n",
- "I=h/(8*math.pi**2*B*c); \n",
- "mew=m1*m2/(m1+m2); #reduced mass(kg)\n",
- "r=math.sqrt(I/mew); #bond length(m)\n",
- "\n",
- "#Result\n",
- "print \"bond length is\",round(r*10**10,3),\"*10**-10 m\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "bond length is 0.762 *10**-10 m\n"
- ]
- }
- ],
- "prompt_number": 18
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.7, Page number 193"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "gN=5.585; #value of gN\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "new=120*10**6; #frequency(Hz)\n",
- "mewn=5.0508*10**-27;\n",
- "\n",
- "#Calculation\n",
- "B0=h*new/(gN*mewn); #magnetic field strength(T)\n",
- "\n",
- "#Result\n",
- "print \"magnetic field strength is\",round(B0,3),\"T\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "magnetic field strength is 2.819 T\n"
- ]
- }
- ],
- "prompt_number": 20
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.8, Page number 194"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "gN=5.585; #value of gN\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "mewn=5.0508*10**-27;\n",
- "B0=1.65; #magnetic field(T)\n",
- "new=510*10**6; #frequency separation(Hz)\n",
- "\n",
- "#Calculation\n",
- "new0=gN*mewn*B0/h;\n",
- "delta=new/new0; #chemical shift(ppm)\n",
- "\n",
- "#Result\n",
- "print \"chemical shift is\",round(delta,2),\"ppm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "chemical shift is 7.26 ppm\n"
- ]
- }
- ],
- "prompt_number": 24
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.10, Page number 198"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "h=6.626*10**-34; #planck's constant(Js)\n",
- "new=35*10**9; #frequency(Hz)\n",
- "mewB=9.27*10**-24;\n",
- "B0=1.3; #magnetic field(T)\n",
- "\n",
- "#Calculation\n",
- "g=h*new/(mewB*B0); #electron g-factor\n",
- "\n",
- "#Result\n",
- "print \"electron g-factor is\",round(g,3)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "electron g-factor is 1.924\n"
- ]
- }
- ],
- "prompt_number": 26
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file