summaryrefslogtreecommitdiff
path: root/Modern_Physics_By_G.Aruldas/Chapter17_2.ipynb
blob: 61dae7827c90a67321e5d2fc949f58f5fdccb937 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
{
 "metadata": {
  "name": "",
  "signature": "sha256:d405bf204e77196ade310e0be88ebb97609af7dc21d3bd3e418e5c80ec00e4d3"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "17: Nuclear properties"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 17.1, Page number 324"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "m=1.67*10**-27;    #nucleon mass(kg)\n",
      "R0=1.2*10**-15;    #radius of nucleus(m)\n",
      "\n",
      "#Calculation\n",
      "d=m*3/(4*math.pi*R0**3);   #density of nucleus(kg/m**3)\n",
      "\n",
      "#Result\n",
      "print \"density of nucleus is\",round(d/10**17,1),\"*10**17 kg/m**3\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "density of nucleus is 2.3 *10**17 kg/m**3\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 17.2, Page number 324"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "a=1.2*10**-15;\n",
      "k=9*10**9;   #value of N(Nm**2/C**2)\n",
      "q1=2;\n",
      "q2=90;\n",
      "e=1.6*10**-19;   #conversion factor from J to eV\n",
      "\n",
      "#Calculation\n",
      "r=a*((4**(1/3))+(228**(1/3)));    #distance(m)\n",
      "E=k*q1*q2*e**2/r;    #kinetic energy(J)\n",
      "E=E/(e*10**6);     #kinetic energy(MeV)\n",
      "\n",
      "#Result\n",
      "print \"potential energy is 0. kinetic energy is\",round(E,1),\"MeV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "potential energy is 0. kinetic energy is 28.1 MeV\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 17.3, Page number 326"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "E=2.48*10**4;    #electric field(V/m)\n",
      "m=1.6605*10**-27;    #nucleon mass(kg)\n",
      "e=1.6*10**-19;   #conversion factor from J to eV\n",
      "B=0.75;    #magnetic field(T)\n",
      "\n",
      "#Calculation\n",
      "r1=E*12*m/(e*B**2);    #distance on photographic plate for 12C(m)\n",
      "r1=r1*10**3;   #distance on photographic plate for 12C(mm)\n",
      "r2=E*13*m/(e*B**2);    #distance on photographic plate for 13C(m)\n",
      "r2=r2*10**3;   #distance on photographic plate for 13C(mm)\n",
      "r3=E*14*m/(e*B**2);    #distance on photographic plate for 14C(m)\n",
      "r3=r3*10**3;   #distance on photographic plate for 14C(mm)\n",
      "r4=(2*r2)-(2*r1);   #distance between lines of 13C and 12C(mm)\n",
      "r5=(2*r3)-(2*r2);   #distance between lines of 14C and 13C(mm)\n",
      "r=r4/2;    #distance if ions are doubly charged(mm)\n",
      "\n",
      "#Result\n",
      "print \"distance on photographic plate for 12C is\",round(r1,2),\"mm\"\n",
      "print \"distance on photographic plate for 13C is\",round(r2,2),\"mm\"\n",
      "print \"distance on photographic plate for 14C is\",round(r3,2),\"mm\"\n",
      "print \"distance if ions are doubly charged is\",round(r,2),\"mm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "distance on photographic plate for 12C is 5.49 mm\n",
        "distance on photographic plate for 13C is 5.95 mm\n",
        "distance on photographic plate for 14C is 6.41 mm\n",
        "distance if ions are doubly charged is 0.46 mm\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 17.4, Page number 327"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "n=6;   #number of neutrons\n",
      "p=6;   #number of protons\n",
      "M=12;  #mass of 12C6(u)\n",
      "E=931.5;  #energy(MeV)\n",
      "\n",
      "#Calculation\n",
      "mn=n*1.008665;   #mass of neutrons(u)\n",
      "mp=p*1.007825;    #mass of hydrogen atoms(u)\n",
      "m=mp+mn;   #total mass(u)\n",
      "md=m-M;    #mass deficiency(u)\n",
      "BE=md*E;   #binding energy(MeV)\n",
      "be=BE/12;  #average binding energy per nucleon(MeV)\n",
      "\n",
      "#Result\n",
      "print \"binding energy is\",round(BE,2),\"MeV\"\n",
      "print \"average binding energy per nucleon is\",round(be,2),\"MeV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "binding energy is 92.16 MeV\n",
        "average binding energy per nucleon is 7.68 MeV\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 17.6, Page number 335"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "M22Na=21.9944;   #mass of 22Na(u)\n",
      "m=1.008665;   #mass of last neutron(u)\n",
      "M23Na=22.989767;   #mass of 23Na(u)\n",
      "E=931.5;  #energy(MeV)\n",
      "\n",
      "#Calculation\n",
      "M=M22Na+m;   \n",
      "md=M-M23Na;     #mass deficiency(u)\n",
      "BE=md*E;    #binding energy(MeV)\n",
      "\n",
      "#Result\n",
      "print \"binding energy is\",round(BE,1),\"MeV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "binding energy is 12.4 MeV\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 17.7, Page number 341"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "hbar=1.05*10**-34;   \n",
      "c=3*10**8;   #speed of light(m/s)\n",
      "mpi=140;    #mass of pi-meson(MeV/c**2)\n",
      "e=1.6*10**-13;\n",
      "\n",
      "#Calculation\n",
      "r=hbar*c/(mpi*e);    #range of nuclear force(m)\n",
      "\n",
      "#Result\n",
      "print \"range of nuclear force is\",round(r*10**15,1),\"fm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "range of nuclear force is 1.4 fm\n"
       ]
      }
     ],
     "prompt_number": 13
    }
   ],
   "metadata": {}
  }
 ]
}