1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
{
"metadata": {
"name": "",
"signature": "sha256:3bf1b2120b5dacb9d86b4fa6efbc4300ebec3d48ce95ec80e2e6a8f936088a09"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"8: Statistical physics"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 8.2, Page number 164"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"rho=10.5; #density of silver(g/cc)\n",
"M=108; #atomic weight(g/mole)\n",
"NA=6.02*10**23; #avagadro number(atoms/mole)\n",
"h=6.626*10**-34; #planck's constant(Js)\n",
"m=9.1*10**-31; #mass of electron(kg)\n",
"e=1.6*10**-19; #conversion factor from J to eV\n",
"\n",
"#Calculation\n",
"NbyV=rho*NA/M; #number density of conduction electrons(per cc)\n",
"NbyV=NbyV*10**6; #number density of conduction electrons(per m**3)\n",
"EF=(h**2/(8*m))*(3*NbyV/math.pi)**(2/3); #fermi energy(J)\n",
"EF=EF/e; #fermi energy(eV)\n",
"E=3*EF/5; #mean energy of electron(eV)\n",
"\n",
"#Result\n",
"print \"number density of conduction electrons is\",round(NbyV/10**28,2),\"*10**28 per m**3\"\n",
"print \"fermi energy is\",round(EF,2),\"eV\"\n",
"print \"mean energy of electron is\",round(E,2),\"eV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"number density of conduction electrons is 5.85 *10**28 per m**3\n",
"fermi energy is 5.51 eV\n",
"mean energy of electron is 3.31 eV\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 8.3, Page number 164"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"T=300; #temperature(K)\n",
"k=1.38*10**-23; #boltzmann constant(J/K)\n",
"EF=5.49; #fermi energy(eV)\n",
"e=1.6*10**-19; #conversion factor from J to eV\n",
"R=1; #assume\n",
"\n",
"#Calculation\n",
"CV=math.pi**2*k*T*R/(2*EF*e); #electronic contribution of Silver(R)\n",
"\n",
"#Result\n",
"print \"electronic contribution of Silver is\",round(CV,5),\"R\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"electronic contribution of Silver is 0.02326 R\n"
]
}
],
"prompt_number": 9
}
],
"metadata": {}
}
]
}
|