summaryrefslogtreecommitdiff
path: root/Modern_Physics_By_G.Aruldas/Chapter19.ipynb
blob: c874597089be3728645178128d7fcfce15750586 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
{
 "metadata": {
  "name": "",
  "signature": "sha256:9326f276d5dc99ce97d41c9ca0d5924dbd68f522091536657f41d8cfe038dc31"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "19: Nuclear reactions"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 19.1, Page number 368"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "m2H=2.014102;    #atomic mass of 2H(u)\n",
      "mn=1.008665;    #mass of n(u)\n",
      "m63Cu=62.929599;   #mass of 63Cu(u)\n",
      "m64Zn=63.929144;   #mass of m64Zn(u)\n",
      "E=931.5;    #energy(MeV)\n",
      "Kx=10;   #energy of deutron(MeV)\n",
      "Ky=15;   #energy of neutron(MeV)\n",
      "\n",
      "#Calculation\n",
      "Q=E*(m2H+m63Cu-mn-m64Zn);    #Q-value(MeV)\n",
      "KY=Q+Kx-Ky;    #kinetic energy(MeV)\n",
      "\n",
      "#Result\n",
      "print \"Q-value is\",round(Q,3),\"MeV\"\n",
      "print \"kinetic energy is\",round(KY,3),\"MeV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Q-value is 5.488 MeV\n",
        "kinetic energy is 0.488 MeV\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 19.2, Page number 368"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "m19F=18.998404;    #atomic mass of 19F(u)\n",
      "mH=1.007825;   #mass of H(u)\n",
      "m19O=19.003577;   #mass of 19O(u)\n",
      "mn=1.008665;   #mass of n(u)\n",
      "E=931.5;    #energy(MeV)\n",
      "\n",
      "#Calculation\n",
      "Q=E*(m19F+mn-mH-m19O);    #Q-value(MeV)\n",
      "Kxmin=-Q*(1+(mn/m19F));   #threshold energy(MeV)\n",
      "\n",
      "#Result\n",
      "print \"Q-value is\",round(Q,4),\"MeV\"\n",
      "print \"threshold energy is\",round(Kxmin,2),\"MeV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Q-value is -4.0362 MeV\n",
        "threshold energy is 4.25 MeV\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 19.3, Page number 373"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "mn=1.008665;   #mass of n(u)\n",
      "mu=235.043924;    #mass of 235U(u)\n",
      "mBa=140.91440;    #mass of 141Ba(u)\n",
      "mKr=91.92630;    #mass of Kr(u)\n",
      "E=931.5;    #energy(MeV)\n",
      "\n",
      "#Calculation\n",
      "mr=mn+mu;    #mass of reactants(u)\n",
      "mp=mBa+mKr+(3*mn);   #mass of products(u)\n",
      "md=mr-mp;   #mass difference(u)\n",
      "E=md*E;    #energy released(MeV)\n",
      "\n",
      "#Result\n",
      "print \"energy released is\",round(E,1),\"MeV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "energy released is 173.2 MeV\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 19.4, Page number 373"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "E=200*10**6;    #energy released(eV)\n",
      "e=1.6*10**-19;   #conversion factor from J to eV\n",
      "P=300*10**6;   #power(W)\n",
      "t=1;    #time(s)\n",
      "\n",
      "#Calculation\n",
      "n=P*t/(E*e);    #number of fissions per second\n",
      "\n",
      "#Result\n",
      "print \"number of fissions per second is\",n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "number of fissions per second is 9.375e+18\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 19.5, Page number 378"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "m2H1=2*1.66*10**-27;    #mass of proton(kg)\n",
      "E=931.5;    #energy(MeV)\n",
      "m1=2.014102;\n",
      "m2=3.01609;\n",
      "mH=1.007825;   #mass of H(u)\n",
      "\n",
      "#Calculation\n",
      "E=E*((2*m1)-m2-mH);    #energy released(MeV)\n",
      "n=0.001/m2H1;    #number of nuclei\n",
      "Eg=n*E/2;   #energy released per gm(MeV)\n",
      "\n",
      "#Result\n",
      "print \"energy released per gm is\",round(Eg/10**23,2),\"*10**23 MeV\"\n",
      "print \"answer given in the book is wrong\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "energy released per gm is 6.02 *10**23 MeV\n",
        "answer given in the book is wrong\n"
       ]
      }
     ],
     "prompt_number": 31
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 19.6, Page number 379"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "k=8.99*10**9;   #value of k(Nm**2/C**2)\n",
      "rd=1.5*10**-15;   #radius of deuterium nucleus(m)\n",
      "rt=1.7*10**-15;   #radius of tritium nucleus(m)\n",
      "e=1.6*10**-19;   #conversion factor from J to eV\n",
      "KE=0.225;    #kinetic energy for 1 particle(MeV)\n",
      "k=1.38*10**-23;   #boltzmann constant(J/K)\n",
      "\n",
      "#Calculation\n",
      "K_E=k*e**2/(e*(rd+rt));    #kinetic energy of 2 particles(MeV)\n",
      "T=2*KE*e*10**6/(3*k);   #temperature(K)\n",
      "\n",
      "#Result\n",
      "print \"temperature is\",round(T/10**9),\"*10**9 K\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "temperature is 2.0 *10**9 K\n"
       ]
      }
     ],
     "prompt_number": 35
    }
   ],
   "metadata": {}
  }
 ]
}