summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--demos/lsqlin.dem.sce4
-rw-r--r--demos/lsqnonneg.dem.sce2
-rw-r--r--demos/qpipopt.dem.sce3
-rw-r--r--demos/qpipoptmat.dem.sce36
-rw-r--r--demos/symphony.dem.sce5
-rw-r--r--demos/symphonymat.dem.sce3
-rw-r--r--help/en_US/lsqlin.xml23
-rw-r--r--help/en_US/lsqnonneg.xml13
-rw-r--r--help/en_US/master_help.xml4
-rw-r--r--help/en_US/qpipopt.xml8
-rw-r--r--help/en_US/qpipopt_mat.xml142
-rw-r--r--help/en_US/qpipoptmat.xml68
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/DOCSbin7489 -> 7496 bytes
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TABbin862 -> 868 bytes
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETSbin273 -> 270 bytes
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONSbin36150 -> 36157 bytes
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA2
-rw-r--r--help/en_US/scilab_en_US_help/JavaHelpSearch/TMAPbin16384 -> 16384 bytes
-rw-r--r--help/en_US/scilab_en_US_help/_LaTeX_lsqlin.xml_1.pngbin3026 -> 3129 bytes
-rw-r--r--help/en_US/scilab_en_US_help/_LaTeX_qpipoptmat.xml_1.pngbin3110 -> 3180 bytes
-rw-r--r--help/en_US/scilab_en_US_help/_LaTeX_symphony.xml_1.pngbin2934 -> 3468 bytes
-rw-r--r--help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.pngbin2547 -> 3160 bytes
-rw-r--r--help/en_US/scilab_en_US_help/index.html12
-rw-r--r--help/en_US/scilab_en_US_help/jhelpmap.jhm2
-rw-r--r--help/en_US/scilab_en_US_help/jhelptoc.xml2
-rw-r--r--help/en_US/scilab_en_US_help/lsqlin.html22
-rw-r--r--help/en_US/scilab_en_US_help/lsqnonneg.html12
-rw-r--r--help/en_US/scilab_en_US_help/qpipopt.html13
-rw-r--r--help/en_US/scilab_en_US_help/qpipoptmat.html59
-rw-r--r--help/en_US/scilab_en_US_help/section_19f4f1e5726c01d683e8b82be0a7e910.html12
-rw-r--r--help/en_US/scilab_en_US_help/symphony.html15
-rw-r--r--help/en_US/scilab_en_US_help/symphonymat.html15
-rw-r--r--help/en_US/symphony.xml13
-rw-r--r--help/en_US/symphony_mat.xml202
-rw-r--r--help/en_US/symphonymat.xml13
-rw-r--r--jar/scilab_en_US_help.jarbin214010 -> 215062 bytes
-rw-r--r--macros/lsqlin.binbin51508 -> 52068 bytes
-rw-r--r--macros/lsqlin.sci25
-rw-r--r--macros/lsqnonneg.binbin23408 -> 23608 bytes
-rw-r--r--macros/lsqnonneg.sci13
-rw-r--r--macros/qpipopt.binbin49368 -> 49652 bytes
-rw-r--r--macros/qpipopt.sci8
-rw-r--r--macros/qpipoptmat.binbin51224 -> 51408 bytes
-rw-r--r--macros/qpipoptmat.sci160
-rw-r--r--macros/symphony.binbin54708 -> 54824 bytes
-rw-r--r--macros/symphony.sci299
-rw-r--r--macros/symphonymat.binbin60820 -> 60900 bytes
-rw-r--r--macros/symphonymat.sci13
-rwxr-xr-xsci_gateway/cpp/libFAMOS.sobin122920 -> 122920 bytes
-rw-r--r--tests/unit_tests/lsqlin.dia.ref4
-rw-r--r--tests/unit_tests/lsqlin.tst4
-rw-r--r--tests/unit_tests/qpipopt_base.dia.ref2
-rw-r--r--tests/unit_tests/qpipopt_base.tst1
-rw-r--r--tests/unit_tests/qpipoptmat_base.dia.ref2
-rw-r--r--tests/unit_tests/qpipoptmat_base.tst3
-rw-r--r--tests/unit_tests/symphony_base.dia.ref2
-rw-r--r--tests/unit_tests/symphony_base.tst2
-rw-r--r--tests/unit_tests/symphonymat_base.dia.ref2
-rw-r--r--tests/unit_tests/symphonymat_base.tst3
59 files changed, 435 insertions, 813 deletions
diff --git a/demos/lsqlin.dem.sce b/demos/lsqlin.dem.sce
index d417bf0..fb4bad9 100644
--- a/demos/lsqlin.dem.sce
+++ b/demos/lsqlin.dem.sce
@@ -21,8 +21,10 @@ b = [0.5251
0.2026
0.6721];
[xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b)
+// Press ENTER to continue
halt() // Press return to continue
+//A basic example for equality, inequality and bounds
C = [0.9501 0.7620 0.6153 0.4057
0.2311 0.4564 0.7919 0.9354
0.6068 0.0185 0.9218 0.9169
@@ -44,6 +46,4 @@ beq = 4;
lb = -0.1*ones(4,1);
ub = 2*ones(4,1);
[xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
-halt() // Press return to continue
-
//========= E N D === O F === D E M O =========//
diff --git a/demos/lsqnonneg.dem.sce b/demos/lsqnonneg.dem.sce
index b61af0a..73fa6df 100644
--- a/demos/lsqnonneg.dem.sce
+++ b/demos/lsqnonneg.dem.sce
@@ -15,6 +15,4 @@ d = [
0.0747
0.8405];
[xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg(C,d)
-halt() // Press return to continue
-
//========= E N D === O F === D E M O =========//
diff --git a/demos/qpipopt.dem.sce b/demos/qpipopt.dem.sce
index d929a5c..41b8314 100644
--- a/demos/qpipopt.dem.sce
+++ b/demos/qpipopt.dem.sce
@@ -20,6 +20,7 @@ nbCon = 5;
x0 = repmat(0,nbVar,1);
param = list("MaxIter", 300, "CpuTime", 100);
[xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB,x0,param)
+// Press ENTER to continue
halt() // Press return to continue
//Find the value of x that minimize following function
@@ -39,6 +40,4 @@ ub = [%inf; %inf];
nbVar = 2;
nbCon = 3;
[xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB)
-halt() // Press return to continue
-
//========= E N D === O F === D E M O =========//
diff --git a/demos/qpipoptmat.dem.sce b/demos/qpipoptmat.dem.sce
index 61263a8..bbaa42c 100644
--- a/demos/qpipoptmat.dem.sce
+++ b/demos/qpipoptmat.dem.sce
@@ -3,26 +3,6 @@ mode(1)
// Demo of qpipoptmat.sci
//
-//Find x in R^6 such that:
-halt() // Press return to continue
-
-Aeq= [1,-1,1,0,3,1;
--1,0,-3,-4,5,6;
-2,5,3,0,1,0];
-beq=[1; 2; 3];
-A= [0,1,0,1,2,-1;
--1,0,2,1,1,0];
-b = [-1; 2.5];
-lb=[-1000; -10000; 0; -1000; -1000; -1000];
-ub=[10000; 100; 1.5; 100; 100; 1000];
-x0 = repmat(0,6,1);
-param = list("MaxIter", 300, "CpuTime", 100);
-//and minimize 0.5*x'*Q*x + p'*x with
-f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
-[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param)
-clear H f A b Aeq beq lb ub;
-halt() // Press return to continue
-
//Find the value of x that minimize following function
// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
// Subject to:
@@ -37,6 +17,22 @@ b = [2; 2; 3];
lb = [0; 0];
ub = [%inf; %inf];
[xopt,fopt,exitflag,output,lambda] = qpipoptmat(H,f,A,b,[],[],lb,ub)
+// Press ENTER to continue
halt() // Press return to continue
+//Find x in R^6 such that:
+Aeq= [1,-1,1,0,3,1;
+-1,0,-3,-4,5,6;
+2,5,3,0,1,0];
+beq=[1; 2; 3];
+A= [0,1,0,1,2,-1;
+-1,0,2,1,1,0];
+b = [-1; 2.5];
+lb=[-1000; -10000; 0; -1000; -1000; -1000];
+ub=[10000; 100; 1.5; 100; 100; 1000];
+x0 = repmat(0,6,1);
+param = list("MaxIter", 300, "CpuTime", 100);
+//and minimize 0.5*x'*Q*x + p'*x with
+f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
+[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param)
//========= E N D === O F === D E M O =========//
diff --git a/demos/symphony.dem.sce b/demos/symphony.dem.sce
index c17c14d..0449b3a 100644
--- a/demos/symphony.dem.sce
+++ b/demos/symphony.dem.sce
@@ -24,6 +24,7 @@ xopt = [1 1 0 1 7.25 0 0.25 3.5]
fopt = [8495]
// Calling Symphony
[x,f,status,output] = symphony(8,3,c,isInt,lb,ub,conMatrix,conlb,conub,1)
+// Press ENTER to continue
halt() // Press return to continue
// An advanced case where we set some options in symphony
@@ -107,7 +108,5 @@ xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 ..
// Optimal value
fopt = [ 24381 ]
// Calling Symphony
-[x,f,status,output] = symphony(nbVar,nbCon,p,isInt,lb,ub,conMatrix,conLB,conUB,-1,options)
-halt() // Press return to continue
-
+[x,f,status,output] = symphony(nbVar,nbCon,p,isInt,lb,ub,conMatrix,conLB,conUB,-1,options);
//========= E N D === O F === D E M O =========//
diff --git a/demos/symphonymat.dem.sce b/demos/symphonymat.dem.sce
index 0c968a7..9467e78 100644
--- a/demos/symphonymat.dem.sce
+++ b/demos/symphonymat.dem.sce
@@ -17,6 +17,7 @@ beq = [ 25, 1.25, 1.25]
intcon = [1 2 3 4];
// Calling Symphony
[x,f,status,output] = symphonymat(c,intcon,[],[],Aeq,beq,lb,ub)
+// Press ENTER to continue
halt() // Press return to continue
// An advanced case where we set some options in symphony
@@ -99,6 +100,4 @@ xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 ..
fopt = [ 24381 ]
// Calling Symphony
[x,f,status,output] = symphonymat(objCoef,intcon,conMatrix,conUB,[],[],lb,ub,options);
-halt() // Press return to continue
-
//========= E N D === O F === D E M O =========//
diff --git a/help/en_US/lsqlin.xml b/help/en_US/lsqlin.xml
index 1216bae..1936e11 100644
--- a/help/en_US/lsqlin.xml
+++ b/help/en_US/lsqlin.xml
@@ -24,11 +24,11 @@
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
- x = lsqlin(C,d,A,b)
- x = lsqlin(C,d,A,b,Aeq,beq)
- x = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
- x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0)
- x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,param)
+ xopt = lsqlin(C,d,A,b)
+ xopt = lsqlin(C,d,A,b,Aeq,beq)
+ xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
+ xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0)
+ xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,param)
[xopt,resnorm,residual,exitflag,output,lambda] = lsqlin( ... )
</synopsis>
@@ -66,9 +66,9 @@
<varlistentry><term>exitflag :</term>
<listitem><para> Integer identifying the reason the algorithm terminated.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
- <listitem><para> Structure containing information about the optimization.</para></listitem></varlistentry>
+ <listitem><para> Structure containing information about the optimization. Right now it contains number of iteration.</para></listitem></varlistentry>
<varlistentry><term>lambda :</term>
- <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).</para></listitem></varlistentry>
+ <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.</para></listitem></varlistentry>
</variablelist>
</refsection>
@@ -82,14 +82,14 @@ Search the minimum of a constrained linear least square problem specified by :
\begin{eqnarray}
&amp;\mbox{min}_{x}
&amp; 1/2||C*x - d||_2^2 \\
-&amp; \text{subject to} &amp; A.x \leq b \\
-&amp; &amp; Aeq.x \leq beq \\
+&amp; \text{subject to} &amp; A*x \leq b \\
+&amp; &amp; Aeq*x = beq \\
&amp; &amp; lb \leq x \leq ub \\
\end{eqnarray}
</latex>
</para>
<para>
-We are calling IPOpt for solving the linear least square problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
+We are calling IPOpt for solving the linear least square problem, IPOpt is a library written in C++.
</para>
<para>
</para>
@@ -116,6 +116,7 @@ b = [0.5251
0.2026
0.6721];
[xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b)
+// Press ENTER to continue
]]></programlisting>
</refsection>
@@ -123,6 +124,7 @@ b = [0.5251
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
+//A basic example for equality, inequality and bounds
C = [0.9501 0.7620 0.6153 0.4057
0.2311 0.4564 0.7919 0.9354
0.6068 0.0185 0.9218 0.9169
@@ -144,7 +146,6 @@ beq = 4;
lb = -0.1*ones(4,1);
ub = 2*ones(4,1);
[xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
-
]]></programlisting>
</refsection>
diff --git a/help/en_US/lsqnonneg.xml b/help/en_US/lsqnonneg.xml
index 95c8da1..daf79bf 100644
--- a/help/en_US/lsqnonneg.xml
+++ b/help/en_US/lsqnonneg.xml
@@ -24,8 +24,8 @@
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
- x = lsqnonneg(C,d)
- x = lsqnonneg(C,d,param)
+ xopt = lsqnonneg(C,d)
+ xopt = lsqnonneg(C,d,param)
[xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg( ... )
</synopsis>
@@ -47,9 +47,9 @@
<varlistentry><term>exitflag :</term>
<listitem><para> Integer identifying the reason the algorithm terminated.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
- <listitem><para> Structure containing information about the optimization.</para></listitem></varlistentry>
+ <listitem><para> Structure containing information about the optimization. Right now it contains number of iteration.</para></listitem></varlistentry>
<varlistentry><term>lambda :</term>
- <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).</para></listitem></varlistentry>
+ <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.</para></listitem></varlistentry>
</variablelist>
</refsection>
@@ -68,7 +68,7 @@ Solves nonnegative least-squares curve fitting problems specified by :
</latex>
</para>
<para>
-We are calling IPOpt for solving the nonnegative least-squares curve fitting problems, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
+We are calling IPOpt for solving the nonnegative least-squares curve fitting problems, IPOpt is a library written in C++.
</para>
<para>
</para>
@@ -77,7 +77,7 @@ We are calling IPOpt for solving the nonnegative least-squares curve fitting pro
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
-A basic lsqnonneg problem
+// A basic lsqnonneg problem
C = [
0.0372 0.2869
0.6861 0.7071
@@ -89,7 +89,6 @@ d = [
0.0747
0.8405];
[xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg(C,d)
-
]]></programlisting>
</refsection>
diff --git a/help/en_US/master_help.xml b/help/en_US/master_help.xml
index 999a2d7..e59ac6c 100644
--- a/help/en_US/master_help.xml
+++ b/help/en_US/master_help.xml
@@ -4,10 +4,8 @@
<!ENTITY a3d4ec65684b561d91f7a255acd23f51c SYSTEM "/home/harpreet/symphony_work/symphony/help/en_US/lsqlin.xml">
<!ENTITY aa4a031935f5eed6cfc8fc4a49823b00b SYSTEM "/home/harpreet/symphony_work/symphony/help/en_US/lsqnonneg.xml">
<!ENTITY a6b85f6e0c98751f20b68663a23cb4cd2 SYSTEM "/home/harpreet/symphony_work/symphony/help/en_US/qpipopt.xml">
-<!ENTITY a44928acec52adf395379e18fcff06730 SYSTEM "/home/harpreet/symphony_work/symphony/help/en_US/qpipopt_mat.xml">
<!ENTITY a8549a3935858ed104f4749ca2243456a SYSTEM "/home/harpreet/symphony_work/symphony/help/en_US/qpipoptmat.xml">
<!ENTITY aca972f273143ecb39f56b42e4723ac67 SYSTEM "/home/harpreet/symphony_work/symphony/help/en_US/symphony.xml">
-<!ENTITY a9953e61e8dd264a86df73772d3055e7f SYSTEM "/home/harpreet/symphony_work/symphony/help/en_US/symphony_mat.xml">
<!ENTITY a9910ada35b57b0581e8a77d145abac4a SYSTEM "/home/harpreet/symphony_work/symphony/help/en_US/symphonymat.xml">
<!ENTITY acc223314e8a8bc290a13618df33a6237 SYSTEM "/home/harpreet/symphony_work/symphony/help/en_US/Symphony Native Function/sym_addConstr.xml">
<!ENTITY a5e032b3334f53385f0ce250f0d5c18f2 SYSTEM "/home/harpreet/symphony_work/symphony/help/en_US/Symphony Native Function/sym_addVar.xml">
@@ -86,10 +84,8 @@
&a3d4ec65684b561d91f7a255acd23f51c;
&aa4a031935f5eed6cfc8fc4a49823b00b;
&a6b85f6e0c98751f20b68663a23cb4cd2;
-&a44928acec52adf395379e18fcff06730;
&a8549a3935858ed104f4749ca2243456a;
&aca972f273143ecb39f56b42e4723ac67;
-&a9953e61e8dd264a86df73772d3055e7f;
&a9910ada35b57b0581e8a77d145abac4a;
<chapter xml:id='section_508f0b211d17ea6769714cc144e6b731'>
<title>Symphony Native Functions</title>
diff --git a/help/en_US/qpipopt.xml b/help/en_US/qpipopt.xml
index c0756f8..d9a0e6e 100644
--- a/help/en_US/qpipopt.xml
+++ b/help/en_US/qpipopt.xml
@@ -64,9 +64,9 @@
<varlistentry><term>exitflag :</term>
<listitem><para> Integer identifying the reason the algorithm terminated.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
- <listitem><para> Structure containing information about the optimization.</para></listitem></varlistentry>
+ <listitem><para> Structure containing information about the optimization. Right now it contains number of iteration.</para></listitem></varlistentry>
<varlistentry><term>lambda :</term>
- <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).</para></listitem></varlistentry>
+ <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.</para></listitem></varlistentry>
</variablelist>
</refsection>
@@ -87,7 +87,7 @@ find the minimum of f(x) such that
</latex>
</para>
<para>
-We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
+We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++.
</para>
<para>
</para>
@@ -113,6 +113,7 @@ nbCon = 5;
x0 = repmat(0,nbVar,1);
param = list("MaxIter", 300, "CpuTime", 100);
[xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB,x0,param)
+// Press ENTER to continue
]]></programlisting>
</refsection>
@@ -137,7 +138,6 @@ ub = [%inf; %inf];
nbVar = 2;
nbCon = 3;
[xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB)
-
]]></programlisting>
</refsection>
diff --git a/help/en_US/qpipopt_mat.xml b/help/en_US/qpipopt_mat.xml
deleted file mode 100644
index 7dec2b1..0000000
--- a/help/en_US/qpipopt_mat.xml
+++ /dev/null
@@ -1,142 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-
-<!--
- *
- * This help file was generated from qpipopt_mat.sci using help_from_sci().
- *
- -->
-
-<refentry version="5.0-subset Scilab" xml:id="qpipopt_mat" xml:lang="en"
- xmlns="http://docbook.org/ns/docbook"
- xmlns:xlink="http://www.w3.org/1999/xlink"
- xmlns:svg="http://www.w3.org/2000/svg"
- xmlns:ns3="http://www.w3.org/1999/xhtml"
- xmlns:mml="http://www.w3.org/1998/Math/MathML"
- xmlns:scilab="http://www.scilab.org"
- xmlns:db="http://docbook.org/ns/docbook">
-
- <refnamediv>
- <refname>qpipopt_mat</refname>
- <refpurpose>Solves a linear quadratic problem.</refpurpose>
- </refnamediv>
-
-
-<refsynopsisdiv>
- <title>Calling Sequence</title>
- <synopsis>
- xopt = qpipopt_mat(nbVar,nbCon,Q,p,LB,UB,conMatrix,conLB,conUB)
- x = qpipopt_mat(H,f)
- x = qpipopt_mat(H,f,A,b)
- x = qpipopt_mat(H,f,A,b,Aeq,beq)
- x = qpipopt_mat(H,f,A,b,Aeq,beq,lb,ub)
- [xopt,fopt,exitflag,output,lamda] = qpipopt_mat( ... )
-
- </synopsis>
-</refsynopsisdiv>
-
-<refsection>
- <title>Parameters</title>
- <variablelist>
- <varlistentry><term>H :</term>
- <listitem><para> a n x n matrix of doubles, where n is number of variables, represents coefficients of quadratic in the quadratic problem.</para></listitem></varlistentry>
- <varlistentry><term>f :</term>
- <listitem><para> a n x 1 matrix of doubles, where n is number of variables, represents coefficients of linear in the quadratic problem</para></listitem></varlistentry>
- <varlistentry><term>A :</term>
- <listitem><para> a m x n matrix of doubles, represents the linear coefficients in the inequality constraints</para></listitem></varlistentry>
- <varlistentry><term>b :</term>
- <listitem><para> a column vector of doubles, represents the linear coefficients in the inequality constraints</para></listitem></varlistentry>
- <varlistentry><term>Aeq :</term>
- <listitem><para> a meq x n matrix of doubles, represents the linear coefficients in the equality constraints</para></listitem></varlistentry>
- <varlistentry><term>beq :</term>
- <listitem><para> a vector of doubles, represents the linear coefficients in the equality constraints</para></listitem></varlistentry>
- <varlistentry><term>LB :</term>
- <listitem><para> a n x 1 matrix of doubles, where n is number of variables, contains lower bounds of the variables.</para></listitem></varlistentry>
- <varlistentry><term>UB :</term>
- <listitem><para> a n x 1 matrix of doubles, where n is number of variables, contains upper bounds of the variables.</para></listitem></varlistentry>
- <varlistentry><term>xopt :</term>
- <listitem><para> a nx1 matrix of doubles, the computed solution of the optimization problem.</para></listitem></varlistentry>
- <varlistentry><term>fopt :</term>
- <listitem><para> a 1x1 matrix of doubles, the function value at x.</para></listitem></varlistentry>
- <varlistentry><term>exitflag :</term>
- <listitem><para> Integer identifying the reason the algorithm terminated.</para></listitem></varlistentry>
- <varlistentry><term>output :</term>
- <listitem><para> Structure containing information about the optimization.</para></listitem></varlistentry>
- <varlistentry><term>lambda :</term>
- <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).</para></listitem></varlistentry>
- </variablelist>
-</refsection>
-
-<refsection>
- <title>Description</title>
- <para>
-Search the minimum of a constrained linear quadratic optimization problem specified by :
-find the minimum of f(x) such that
- </para>
- <para>
-<latex>
-\begin{eqnarray}
-&amp;\mbox{min}_{x}
-&amp; 1/2*x'*H*x + f'*x \\
-&amp; \text{subject to} &amp; A.x \leq b \\
-&amp; &amp; Aeq.x \leq beq \\
-&amp; &amp; lb \leq x \leq ub \\
-\end{eqnarray}
-</latex>
- </para>
- <para>
-We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
- </para>
- <para>
-</para>
-</refsection>
-
-<refsection>
- <title>Examples</title>
- <programlisting role="example"><![CDATA[
-//Find x in R^6 such that:
-
-Aeq= [1,-1,1,0,3,1;
--1,0,-3,-4,5,6;
-2,5,3,0,1,0];
-beq=[1; 2; 3];
-A= [0,1,0,1,2,-1;
--1,0,2,1,1,0];
-b = [-1; 2.5];
-lb=[-1000; -10000; 0; -1000; -1000; -1000];
-ub=[10000; 100; 1.5; 100; 100; 1000];
-//and minimize 0.5*x'*Q*x + p'*x with
-f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
-[xopt,fopt,exitflag,output,lambda]=qpipopt_mat(H,f,A,b,Aeq,beq,lb,ub)
-clear H f A b Aeq beq lb ub;
-
- ]]></programlisting>
-</refsection>
-
-<refsection>
- <title>Examples</title>
- <programlisting role="example"><![CDATA[
-//Find the value of x that minimize following function
-// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
-// Subject to:
-// x1 + x2 ≤ 2
-// –x1 + 2x2 ≤ 2
-// 2x1 + x2 ≤ 3
-// 0 ≤ x1, 0 ≤ x2.
-H = [1 -1; -1 2];
-f = [-2; -6];
-A = [1 1; -1 2; 2 1];
-b = [2; 2; 3];
-lb = [0; 0];
-ub = [%inf; %inf];
-[xopt,fopt,exitflag,output,lambda] = qpipopt_mat(H,f,A,b,[],[],lb,ub)
-
- ]]></programlisting>
-</refsection>
-
-<refsection>
- <title>Authors</title>
- <simplelist type="vert">
- <member>Keyur Joshi, Saikiran, Iswarya, Harpreet Singh</member>
- </simplelist>
-</refsection>
-</refentry>
diff --git a/help/en_US/qpipoptmat.xml b/help/en_US/qpipoptmat.xml
index f3830f4..2ea714d 100644
--- a/help/en_US/qpipoptmat.xml
+++ b/help/en_US/qpipoptmat.xml
@@ -24,12 +24,12 @@
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>
- x = qpipoptmat(H,f)
- x = qpipoptmat(H,f,A,b)
- x = qpipoptmat(H,f,A,b,Aeq,beq)
- x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub)
- x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0)
- x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param)
+ xopt = qpipoptmat(H,f)
+ xopt = qpipoptmat(H,f,A,b)
+ xopt = qpipoptmat(H,f,A,b,Aeq,beq)
+ xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub)
+ xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0)
+ xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param)
[xopt,fopt,exitflag,output,lamda] = qpipoptmat( ... )
</synopsis>
@@ -65,9 +65,9 @@
<varlistentry><term>exitflag :</term>
<listitem><para> Integer identifying the reason the algorithm terminated.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
- <listitem><para> Structure containing information about the optimization.</para></listitem></varlistentry>
+ <listitem><para> Structure containing information about the optimization. Right now it contains number of iteration.</para></listitem></varlistentry>
<varlistentry><term>lambda :</term>
- <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).</para></listitem></varlistentry>
+ <listitem><para> Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.</para></listitem></varlistentry>
</variablelist>
</refsection>
@@ -82,14 +82,14 @@ find the minimum of f(x) such that
\begin{eqnarray}
&amp;\mbox{min}_{x}
&amp; 1/2*x'*H*x + f'*x \\
-&amp; \text{subject to} &amp; A.x \leq b \\
-&amp; &amp; Aeq.x \leq beq \\
+&amp; \text{subject to} &amp; A*x \leq b \\
+&amp; &amp; Aeq*x = beq \\
&amp; &amp; lb \leq x \leq ub \\
\end{eqnarray}
</latex>
</para>
<para>
-We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
+We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++.
</para>
<para>
</para>
@@ -98,30 +98,6 @@ We are calling IPOpt for solving the quadratic problem, IPOpt is a library writt
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
-//Find x in R^6 such that:
-
-Aeq= [1,-1,1,0,3,1;
--1,0,-3,-4,5,6;
-2,5,3,0,1,0];
-beq=[1; 2; 3];
-A= [0,1,0,1,2,-1;
--1,0,2,1,1,0];
-b = [-1; 2.5];
-lb=[-1000; -10000; 0; -1000; -1000; -1000];
-ub=[10000; 100; 1.5; 100; 100; 1000];
-x0 = repmat(0,6,1);
-param = list("MaxIter", 300, "CpuTime", 100);
-//and minimize 0.5*x'*Q*x + p'*x with
-f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
-[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param)
-clear H f A b Aeq beq lb ub;
-
- ]]></programlisting>
-</refsection>
-
-<refsection>
- <title>Examples</title>
- <programlisting role="example"><![CDATA[
//Find the value of x that minimize following function
// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
// Subject to:
@@ -136,7 +112,29 @@ b = [2; 2; 3];
lb = [0; 0];
ub = [%inf; %inf];
[xopt,fopt,exitflag,output,lambda] = qpipoptmat(H,f,A,b,[],[],lb,ub)
+// Press ENTER to continue
+
+ ]]></programlisting>
+</refsection>
+<refsection>
+ <title>Examples</title>
+ <programlisting role="example"><![CDATA[
+//Find x in R^6 such that:
+Aeq= [1,-1,1,0,3,1;
+-1,0,-3,-4,5,6;
+2,5,3,0,1,0];
+beq=[1; 2; 3];
+A= [0,1,0,1,2,-1;
+-1,0,2,1,1,0];
+b = [-1; 2.5];
+lb=[-1000; -10000; 0; -1000; -1000; -1000];
+ub=[10000; 100; 1.5; 100; 100; 1000];
+x0 = repmat(0,6,1);
+param = list("MaxIter", 300, "CpuTime", 100);
+//and minimize 0.5*x'*Q*x + p'*x with
+f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
+[xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param)
]]></programlisting>
</refsection>
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS
index 2aa9c2c..9b6386a 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB
index 954ffd9..8f3ddaf 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/DOCS.TAB
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS
index d5a0fd6..d668ed6 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/OFFSETS
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS
index 1fbf883..65379cd 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/POSITIONS
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA
index 93aea58..b5697c6 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/SCHEMA
@@ -1,2 +1,2 @@
JavaSearch 1.0
-TMAP bs=2048 rt=1 fl=-1 id1=1435 id2=1
+TMAP bs=2048 rt=1 fl=-1 id1=1439 id2=1
diff --git a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP
index 141985f..e2f089a 100644
--- a/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP
+++ b/help/en_US/scilab_en_US_help/JavaHelpSearch/TMAP
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/_LaTeX_lsqlin.xml_1.png b/help/en_US/scilab_en_US_help/_LaTeX_lsqlin.xml_1.png
index d89b104..873dc47 100644
--- a/help/en_US/scilab_en_US_help/_LaTeX_lsqlin.xml_1.png
+++ b/help/en_US/scilab_en_US_help/_LaTeX_lsqlin.xml_1.png
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/_LaTeX_qpipoptmat.xml_1.png b/help/en_US/scilab_en_US_help/_LaTeX_qpipoptmat.xml_1.png
index b6e2743..7331197 100644
--- a/help/en_US/scilab_en_US_help/_LaTeX_qpipoptmat.xml_1.png
+++ b/help/en_US/scilab_en_US_help/_LaTeX_qpipoptmat.xml_1.png
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/_LaTeX_symphony.xml_1.png b/help/en_US/scilab_en_US_help/_LaTeX_symphony.xml_1.png
index 07dafd6..96b5161 100644
--- a/help/en_US/scilab_en_US_help/_LaTeX_symphony.xml_1.png
+++ b/help/en_US/scilab_en_US_help/_LaTeX_symphony.xml_1.png
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.png b/help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.png
index 2e81ca1..94c5200 100644
--- a/help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.png
+++ b/help/en_US/scilab_en_US_help/_LaTeX_symphonymat.xml_1.png
Binary files differ
diff --git a/help/en_US/scilab_en_US_help/index.html b/help/en_US/scilab_en_US_help/index.html
index c942e96..03ce98c 100644
--- a/help/en_US/scilab_en_US_help/index.html
+++ b/help/en_US/scilab_en_US_help/index.html
@@ -50,12 +50,6 @@
-<li><a href="qpipopt_mat.html" class="refentry">qpipopt_mat</a> &#8212; <span class="refentry-description">Solves a linear quadratic problem.</span></li>
-
-
-
-
-
<li><a href="qpipoptmat.html" class="refentry">qpipoptmat</a> &#8212; <span class="refentry-description">Solves a linear quadratic problem.</span></li>
@@ -68,12 +62,6 @@
-<li><a href="symphony_mat.html" class="refentry">symphony_mat</a> &#8212; <span class="refentry-description">Solves a mixed integer linear programming constrained optimization problem in intlinprog format.</span></li>
-
-
-
-
-
<li><a href="symphonymat.html" class="refentry">symphonymat</a> &#8212; <span class="refentry-description">Solves a mixed integer linear programming constrained optimization problem in intlinprog format.</span></li>
<li><a href="section_508f0b211d17ea6769714cc144e6b731.html" class="chapter">Symphony Native Functions</a>
diff --git a/help/en_US/scilab_en_US_help/jhelpmap.jhm b/help/en_US/scilab_en_US_help/jhelpmap.jhm
index f046f8a..0226c5e 100644
--- a/help/en_US/scilab_en_US_help/jhelpmap.jhm
+++ b/help/en_US/scilab_en_US_help/jhelpmap.jhm
@@ -6,10 +6,8 @@
<mapID target="lsqlin" url="lsqlin.html"/>
<mapID target="lsqnonneg" url="lsqnonneg.html"/>
<mapID target="qpipopt" url="qpipopt.html"/>
-<mapID target="qpipopt_mat" url="qpipopt_mat.html"/>
<mapID target="qpipoptmat" url="qpipoptmat.html"/>
<mapID target="symphony" url="symphony.html"/>
-<mapID target="symphony_mat" url="symphony_mat.html"/>
<mapID target="symphonymat" url="symphonymat.html"/>
<mapID target="section_508f0b211d17ea6769714cc144e6b731" url="section_508f0b211d17ea6769714cc144e6b731.html"/>
<mapID target="sym_addConstr" url="sym_addConstr.html"/>
diff --git a/help/en_US/scilab_en_US_help/jhelptoc.xml b/help/en_US/scilab_en_US_help/jhelptoc.xml
index 7722be3..f53e713 100644
--- a/help/en_US/scilab_en_US_help/jhelptoc.xml
+++ b/help/en_US/scilab_en_US_help/jhelptoc.xml
@@ -6,10 +6,8 @@
<tocitem target="lsqlin" text="lsqlin"/>
<tocitem target="lsqnonneg" text="lsqnonneg"/>
<tocitem target="qpipopt" text="qpipopt"/>
-<tocitem target="qpipopt_mat" text="qpipopt_mat"/>
<tocitem target="qpipoptmat" text="qpipoptmat"/>
<tocitem target="symphony" text="symphony"/>
-<tocitem target="symphony_mat" text="symphony_mat"/>
<tocitem target="symphonymat" text="symphonymat"/>
<tocitem target="section_508f0b211d17ea6769714cc144e6b731" text="Symphony Native Functions">
<tocitem target="sym_addConstr" text="sym_addConstr"/>
diff --git a/help/en_US/scilab_en_US_help/lsqlin.html b/help/en_US/scilab_en_US_help/lsqlin.html
index bf5a259..b371871 100644
--- a/help/en_US/scilab_en_US_help/lsqlin.html
+++ b/help/en_US/scilab_en_US_help/lsqlin.html
@@ -37,11 +37,11 @@
<div class="refsynopsisdiv"><h3 class="title">Calling Sequence</h3>
- <div class="synopsis"><pre><span class="default">x</span><span class="default"> = </span><span class="functionid">lsqlin</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">)</span>
-<span class="default">x</span><span class="default"> = </span><span class="functionid">lsqlin</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">)</span>
-<span class="default">x</span><span class="default"> = </span><span class="functionid">lsqlin</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">)</span>
-<span class="default">x</span><span class="default"> = </span><span class="functionid">lsqlin</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">,</span><span class="default">x0</span><span class="default">)</span>
-<span class="default">x</span><span class="default"> = </span><span class="functionid">lsqlin</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">,</span><span class="default">x0</span><span class="default">,</span><span class="default">param</span><span class="default">)</span>
+ <div class="synopsis"><pre><span class="default">xopt</span><span class="default"> = </span><span class="functionid">lsqlin</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">)</span>
+<span class="default">xopt</span><span class="default"> = </span><span class="functionid">lsqlin</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">)</span>
+<span class="default">xopt</span><span class="default"> = </span><span class="functionid">lsqlin</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">)</span>
+<span class="default">xopt</span><span class="default"> = </span><span class="functionid">lsqlin</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">,</span><span class="default">x0</span><span class="default">)</span>
+<span class="default">xopt</span><span class="default"> = </span><span class="functionid">lsqlin</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">,</span><span class="default">x0</span><span class="default">,</span><span class="default">param</span><span class="default">)</span>
<span class="default">[</span><span class="default">xopt</span><span class="default">,</span><span class="default">resnorm</span><span class="default">,</span><span class="default">residual</span><span class="default">,</span><span class="default">exitflag</span><span class="default">,</span><span class="default">output</span><span class="default">,</span><span class="default">lambda</span><span class="default">] = </span><span class="functionid">lsqlin</span><span class="default">( ... )</span></pre></div></div>
<div class="refsection"><h3 class="title">Parameters</h3>
@@ -74,14 +74,14 @@
<dt><span class="term">exitflag :</span>
<dd><p class="para">Integer identifying the reason the algorithm terminated.</p></dd></dt>
<dt><span class="term">output :</span>
- <dd><p class="para">Structure containing information about the optimization.</p></dd></dt>
+ <dd><p class="para">Structure containing information about the optimization. Right now it contains number of iteration.</p></dd></dt>
<dt><span class="term">lambda :</span>
- <dd><p class="para">Structure containing the Lagrange multipliers at the solution x (separated by constraint type).</p></dd></dt></dl></div>
+ <dd><p class="para">Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.</p></dd></dt></dl></div>
<div class="refsection"><h3 class="title">Description</h3>
<p class="para">Search the minimum of a constrained linear least square problem specified by :</p>
<p class="para"><span><img src='./_LaTeX_lsqlin.xml_1.png' style='position:relative;top:41px;width:234px;height:90px'/></span></p>
- <p class="para">We are calling IPOpt for solving the linear least square problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.</p>
+ <p class="para">We are calling IPOpt for solving the linear least square problem, IPOpt is a library written in C++.</p>
<p class="para"></p></div>
<div class="refsection"><h3 class="title">Examples</h3>
@@ -102,10 +102,12 @@
<span class="scilabid">b</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0.5251</span>
<span class="scilabnumber">0.2026</span>
<span class="scilabnumber">0.6721</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">resnorm</span><span class="scilabdefault">,</span><span class="scilabid">residual</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">lsqlin</span><span class="scilabopenclose">(</span><span class="scilabid">C</span><span class="scilabdefault">,</span><span class="scilabid">d</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
+<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">resnorm</span><span class="scilabdefault">,</span><span class="scilabid">residual</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">lsqlin</span><span class="scilabopenclose">(</span><span class="scilabid">C</span><span class="scilabdefault">,</span><span class="scilabid">d</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabopenclose">)</span>
+<span class="scilabcomment">// Press ENTER to continue</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Examples</h3>
- <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabid">C</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0.9501</span> <span class="scilabnumber">0.7620</span> <span class="scilabnumber">0.6153</span> <span class="scilabnumber">0.4057</span>
+ <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//A basic example for equality, inequality and bounds</span>
+<span class="scilabid">C</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0.9501</span> <span class="scilabnumber">0.7620</span> <span class="scilabnumber">0.6153</span> <span class="scilabnumber">0.4057</span>
<span class="scilabnumber">0.2311</span> <span class="scilabnumber">0.4564</span> <span class="scilabnumber">0.7919</span> <span class="scilabnumber">0.9354</span>
<span class="scilabnumber">0.6068</span> <span class="scilabnumber">0.0185</span> <span class="scilabnumber">0.9218</span> <span class="scilabnumber">0.9169</span>
<span class="scilabnumber">0.4859</span> <span class="scilabnumber">0.8214</span> <span class="scilabnumber">0.7382</span> <span class="scilabnumber">0.4102</span>
diff --git a/help/en_US/scilab_en_US_help/lsqnonneg.html b/help/en_US/scilab_en_US_help/lsqnonneg.html
index 4f2f661..40139a0 100644
--- a/help/en_US/scilab_en_US_help/lsqnonneg.html
+++ b/help/en_US/scilab_en_US_help/lsqnonneg.html
@@ -37,8 +37,8 @@
<div class="refsynopsisdiv"><h3 class="title">Calling Sequence</h3>
- <div class="synopsis"><pre><span class="default">x</span><span class="default"> = </span><span class="functionid">lsqnonneg</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">)</span>
-<span class="default">x</span><span class="default"> = </span><span class="functionid">lsqnonneg</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">,</span><span class="default">param</span><span class="default">)</span>
+ <div class="synopsis"><pre><span class="default">xopt</span><span class="default"> = </span><span class="functionid">lsqnonneg</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">)</span>
+<span class="default">xopt</span><span class="default"> = </span><span class="functionid">lsqnonneg</span><span class="default">(</span><span class="default">C</span><span class="default">,</span><span class="default">d</span><span class="default">,</span><span class="default">param</span><span class="default">)</span>
<span class="default">[</span><span class="default">xopt</span><span class="default">,</span><span class="default">resnorm</span><span class="default">,</span><span class="default">residual</span><span class="default">,</span><span class="default">exitflag</span><span class="default">,</span><span class="default">output</span><span class="default">,</span><span class="default">lambda</span><span class="default">] = </span><span class="functionid">lsqnonneg</span><span class="default">( ... )</span></pre></div></div>
<div class="refsection"><h3 class="title">Parameters</h3>
@@ -55,18 +55,18 @@
<dt><span class="term">exitflag :</span>
<dd><p class="para">Integer identifying the reason the algorithm terminated.</p></dd></dt>
<dt><span class="term">output :</span>
- <dd><p class="para">Structure containing information about the optimization.</p></dd></dt>
+ <dd><p class="para">Structure containing information about the optimization. Right now it contains number of iteration.</p></dd></dt>
<dt><span class="term">lambda :</span>
- <dd><p class="para">Structure containing the Lagrange multipliers at the solution x (separated by constraint type).</p></dd></dt></dl></div>
+ <dd><p class="para">Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.</p></dd></dt></dl></div>
<div class="refsection"><h3 class="title">Description</h3>
<p class="para">Solves nonnegative least-squares curve fitting problems specified by :</p>
<p class="para"><span><img src='./_LaTeX_lsqnonneg.xml_1.png' style='position:relative;top:19px;width:197px;height:46px'/></span></p>
- <p class="para">We are calling IPOpt for solving the nonnegative least-squares curve fitting problems, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.</p>
+ <p class="para">We are calling IPOpt for solving the nonnegative least-squares curve fitting problems, IPOpt is a library written in C++.</p>
<p class="para"></p></div>
<div class="refsection"><h3 class="title">Examples</h3>
- <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabid">A</span> <span class="scilabid">basic</span> <span class="scilabid">lsqnonneg</span> <span class="scilabid">problem</span>
+ <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">// A basic lsqnonneg problem</span>
<span class="scilabid">C</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span>
<span class="scilabnumber">0.0372</span> <span class="scilabnumber">0.2869</span>
<span class="scilabnumber">0.6861</span> <span class="scilabnumber">0.7071</span>
diff --git a/help/en_US/scilab_en_US_help/qpipopt.html b/help/en_US/scilab_en_US_help/qpipopt.html
index 7588c1d..7cc0560 100644
--- a/help/en_US/scilab_en_US_help/qpipopt.html
+++ b/help/en_US/scilab_en_US_help/qpipopt.html
@@ -20,7 +20,7 @@
</td>
<td width="30%" class="next">
- <span class="next"><a href="qpipopt_mat.html">qpipopt_mat &gt;&gt;</a></span>
+ <span class="next"><a href="qpipoptmat.html">qpipoptmat &gt;&gt;</a></span>
</td>
</tr></table>
@@ -72,15 +72,15 @@
<dt><span class="term">exitflag :</span>
<dd><p class="para">Integer identifying the reason the algorithm terminated.</p></dd></dt>
<dt><span class="term">output :</span>
- <dd><p class="para">Structure containing information about the optimization.</p></dd></dt>
+ <dd><p class="para">Structure containing information about the optimization. Right now it contains number of iteration.</p></dd></dt>
<dt><span class="term">lambda :</span>
- <dd><p class="para">Structure containing the Lagrange multipliers at the solution x (separated by constraint type).</p></dd></dt></dl></div>
+ <dd><p class="para">Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.</p></dd></dt></dl></div>
<div class="refsection"><h3 class="title">Description</h3>
<p class="para">Search the minimum of a constrained linear quadratic optimization problem specified by :
find the minimum of f(x) such that</p>
<p class="para"><span><img src='./_LaTeX_qpipopt.xml_1.png' style='position:relative;top:31px;width:293px;height:70px'/></span></p>
- <p class="para">We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.</p>
+ <p class="para">We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++.</p>
<p class="para"></p></div>
<div class="refsection"><h3 class="title">Examples</h3>
@@ -100,7 +100,8 @@ find the minimum of f(x) such that</p>
<span class="scilabid">nbCon</span> <span class="scilaboperator">=</span> <span class="scilabnumber">5</span><span class="scilabdefault">;</span>
<span class="scilabid">x0</span> <span class="scilaboperator">=</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabid">nbVar</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabid">param</span> <span class="scilaboperator">=</span> <a class="scilabcommand" href="scilab://list">list</a><span class="scilabopenclose">(</span><span class="scilabstring">&#0034;</span><span class="scilabstring">MaxIter</span><span class="scilabstring">&#0034;</span><span class="scilabdefault">,</span> <span class="scilabnumber">300</span><span class="scilabdefault">,</span> <span class="scilabstring">&#0034;</span><span class="scilabstring">CpuTime</span><span class="scilabstring">&#0034;</span><span class="scilabdefault">,</span> <span class="scilabnumber">100</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
-<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span><span class="scilaboperator">=</span><span class="scilabid">qpipopt</span><span class="scilabopenclose">(</span><span class="scilabid">nbVar</span><span class="scilabdefault">,</span><span class="scilabid">nbCon</span><span class="scilabdefault">,</span><span class="scilabid">Q</span><span class="scilabdefault">,</span><span class="scilabid">p</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabid">conMatrix</span><span class="scilabdefault">,</span><span class="scilabid">conLB</span><span class="scilabdefault">,</span><span class="scilabid">conUB</span><span class="scilabdefault">,</span><span class="scilabid">x0</span><span class="scilabdefault">,</span><span class="scilabid">param</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
+<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span><span class="scilaboperator">=</span><span class="scilabid">qpipopt</span><span class="scilabopenclose">(</span><span class="scilabid">nbVar</span><span class="scilabdefault">,</span><span class="scilabid">nbCon</span><span class="scilabdefault">,</span><span class="scilabid">Q</span><span class="scilabdefault">,</span><span class="scilabid">p</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabid">conMatrix</span><span class="scilabdefault">,</span><span class="scilabid">conLB</span><span class="scilabdefault">,</span><span class="scilabid">conUB</span><span class="scilabdefault">,</span><span class="scilabid">x0</span><span class="scilabdefault">,</span><span class="scilabid">param</span><span class="scilabopenclose">)</span>
+<span class="scilabcomment">// Press ENTER to continue</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Examples</h3>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Find the value of x that minimize following function</span>
@@ -138,7 +139,7 @@ find the minimum of f(x) such that</p>
</td>
<td width="30%" class="next">
- <span class="next"><a href="qpipopt_mat.html">qpipopt_mat &gt;&gt;</a></span>
+ <span class="next"><a href="qpipoptmat.html">qpipoptmat &gt;&gt;</a></span>
</td>
</tr></table>
diff --git a/help/en_US/scilab_en_US_help/qpipoptmat.html b/help/en_US/scilab_en_US_help/qpipoptmat.html
index e1d301a..8b81cac 100644
--- a/help/en_US/scilab_en_US_help/qpipoptmat.html
+++ b/help/en_US/scilab_en_US_help/qpipoptmat.html
@@ -12,7 +12,7 @@
<div class="manualnavbar">
<table width="100%"><tr>
<td width="30%">
- <span class="previous"><a href="qpipopt_mat.html">&lt;&lt; qpipopt_mat</a></span>
+ <span class="previous"><a href="qpipopt.html">&lt;&lt; qpipopt</a></span>
</td>
<td width="40%" class="center">
@@ -37,12 +37,12 @@
<div class="refsynopsisdiv"><h3 class="title">Calling Sequence</h3>
- <div class="synopsis"><pre><span class="default">x</span><span class="default"> = </span><span class="functionid">qpipoptmat</span><span class="default">(</span><span class="default">H</span><span class="default">,</span><span class="default">f</span><span class="default">)</span>
-<span class="default">x</span><span class="default"> = </span><span class="functionid">qpipoptmat</span><span class="default">(</span><span class="default">H</span><span class="default">,</span><span class="default">f</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">)</span>
-<span class="default">x</span><span class="default"> = </span><span class="functionid">qpipoptmat</span><span class="default">(</span><span class="default">H</span><span class="default">,</span><span class="default">f</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">)</span>
-<span class="default">x</span><span class="default"> = </span><span class="functionid">qpipoptmat</span><span class="default">(</span><span class="default">H</span><span class="default">,</span><span class="default">f</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">)</span>
-<span class="default">x</span><span class="default"> = </span><span class="functionid">qpipoptmat</span><span class="default">(</span><span class="default">H</span><span class="default">,</span><span class="default">f</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">,</span><span class="default">x0</span><span class="default">)</span>
-<span class="default">x</span><span class="default"> = </span><span class="functionid">qpipoptmat</span><span class="default">(</span><span class="default">H</span><span class="default">,</span><span class="default">f</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">,</span><span class="default">x0</span><span class="default">,</span><span class="default">param</span><span class="default">)</span>
+ <div class="synopsis"><pre><span class="default">xopt</span><span class="default"> = </span><span class="functionid">qpipoptmat</span><span class="default">(</span><span class="default">H</span><span class="default">,</span><span class="default">f</span><span class="default">)</span>
+<span class="default">xopt</span><span class="default"> = </span><span class="functionid">qpipoptmat</span><span class="default">(</span><span class="default">H</span><span class="default">,</span><span class="default">f</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">)</span>
+<span class="default">xopt</span><span class="default"> = </span><span class="functionid">qpipoptmat</span><span class="default">(</span><span class="default">H</span><span class="default">,</span><span class="default">f</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">)</span>
+<span class="default">xopt</span><span class="default"> = </span><span class="functionid">qpipoptmat</span><span class="default">(</span><span class="default">H</span><span class="default">,</span><span class="default">f</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">)</span>
+<span class="default">xopt</span><span class="default"> = </span><span class="functionid">qpipoptmat</span><span class="default">(</span><span class="default">H</span><span class="default">,</span><span class="default">f</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">,</span><span class="default">x0</span><span class="default">)</span>
+<span class="default">xopt</span><span class="default"> = </span><span class="functionid">qpipoptmat</span><span class="default">(</span><span class="default">H</span><span class="default">,</span><span class="default">f</span><span class="default">,</span><span class="default">A</span><span class="default">,</span><span class="default">b</span><span class="default">,</span><span class="default">Aeq</span><span class="default">,</span><span class="default">beq</span><span class="default">,</span><span class="default">lb</span><span class="default">,</span><span class="default">ub</span><span class="default">,</span><span class="default">x0</span><span class="default">,</span><span class="default">param</span><span class="default">)</span>
<span class="default">[</span><span class="default">xopt</span><span class="default">,</span><span class="default">fopt</span><span class="default">,</span><span class="default">exitflag</span><span class="default">,</span><span class="default">output</span><span class="default">,</span><span class="default">lamda</span><span class="default">] = </span><span class="functionid">qpipoptmat</span><span class="default">( ... )</span></pre></div></div>
<div class="refsection"><h3 class="title">Parameters</h3>
@@ -73,20 +73,36 @@
<dt><span class="term">exitflag :</span>
<dd><p class="para">Integer identifying the reason the algorithm terminated.</p></dd></dt>
<dt><span class="term">output :</span>
- <dd><p class="para">Structure containing information about the optimization.</p></dd></dt>
+ <dd><p class="para">Structure containing information about the optimization. Right now it contains number of iteration.</p></dd></dt>
<dt><span class="term">lambda :</span>
- <dd><p class="para">Structure containing the Lagrange multipliers at the solution x (separated by constraint type).</p></dd></dt></dl></div>
+ <dd><p class="para">Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.</p></dd></dt></dl></div>
<div class="refsection"><h3 class="title">Description</h3>
<p class="para">Search the minimum of a constrained linear quadratic optimization problem specified by :
find the minimum of f(x) such that</p>
<p class="para"><span><img src='./_LaTeX_qpipoptmat.xml_1.png' style='position:relative;top:40px;width:284px;height:88px'/></span></p>
- <p class="para">We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.</p>
+ <p class="para">We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++.</p>
<p class="para"></p></div>
<div class="refsection"><h3 class="title">Examples</h3>
- <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Find x in R^6 such that:</span>
+ <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Find the value of x that minimize following function</span>
+<span class="scilabcomment">// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2</span>
+<span class="scilabcomment">// Subject to:</span>
+<span class="scilabcomment">// x1 + x2 ≤ 2</span>
+<span class="scilabcomment">// –x1 + 2x2 ≤ 2</span>
+<span class="scilabcomment">// 2x1 + x2 ≤ 3</span>
+<span class="scilabcomment">// 0 ≤ x1, 0 ≤ x2.</span>
+<span class="scilabid">H</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">f</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">6</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">A</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">b</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">3</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0</span><span class="scilabdefault">;</span> <span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabconstants">%inf</span><span class="scilabdefault">;</span> <span class="scilabconstants">%inf</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
+<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">qpipoptmat</span><span class="scilabopenclose">(</span><span class="scilabid">H</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabopenclose">)</span>
+<span class="scilabcomment">// Press ENTER to continue</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
+<div class="refsection"><h3 class="title">Examples</h3>
+ <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Find x in R^6 such that:</span>
<span class="scilabid">Aeq</span><span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span>
<span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">4</span><span class="scilabdefault">,</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">6</span><span class="scilabdefault">;</span>
<span class="scilabnumber">2</span><span class="scilabdefault">,</span><span class="scilabnumber">5</span><span class="scilabdefault">,</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
@@ -100,24 +116,7 @@ find the minimum of f(x) such that</p>
<span class="scilabid">param</span> <span class="scilaboperator">=</span> <a class="scilabcommand" href="scilab://list">list</a><span class="scilabopenclose">(</span><span class="scilabstring">&#0034;</span><span class="scilabstring">MaxIter</span><span class="scilabstring">&#0034;</span><span class="scilabdefault">,</span> <span class="scilabnumber">300</span><span class="scilabdefault">,</span> <span class="scilabstring">&#0034;</span><span class="scilabstring">CpuTime</span><span class="scilabstring">&#0034;</span><span class="scilabdefault">,</span> <span class="scilabnumber">100</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
<span class="scilabcomment">//and minimize 0.5*x</span><span class="scilabcomment">&#0039;</span><span class="scilabcomment">*Q*x + p</span><span class="scilabcomment">&#0039;</span><span class="scilabcomment">*x with</span>
<span class="scilabid">f</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">3</span><span class="scilabdefault">;</span> <span class="scilabnumber">4</span><span class="scilabdefault">;</span> <span class="scilabnumber">5</span><span class="scilabdefault">;</span> <span class="scilabnumber">6</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span> <span class="scilabid">H</span><span class="scilaboperator">=</span><a class="scilabcommand" href="scilab://eye">eye</a><span class="scilabopenclose">(</span><span class="scilabnumber">6</span><span class="scilabdefault">,</span><span class="scilabnumber">6</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span>
-<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span><span class="scilaboperator">=</span><span class="scilabid">qpipoptmat</span><span class="scilabopenclose">(</span><span class="scilabid">H</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabid">param</span><span class="scilabopenclose">)</span>
-<span class="scilabid">clear</span> <span class="scilabid">H</span> <span class="scilabid">f</span> <span class="scilabid">A</span> <span class="scilabid">b</span> <span class="scilabid">Aeq</span> <span class="scilabid">beq</span> <span class="scilabid">lb</span> <span class="scilabid">ub</span><span class="scilabdefault">;</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
-
-<div class="refsection"><h3 class="title">Examples</h3>
- <div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">//Find the value of x that minimize following function</span>
-<span class="scilabcomment">// f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2</span>
-<span class="scilabcomment">// Subject to:</span>
-<span class="scilabcomment">// x1 + x2 ≤ 2</span>
-<span class="scilabcomment">// –x1 + 2x2 ≤ 2</span>
-<span class="scilabcomment">// 2x1 + x2 ≤ 3</span>
-<span class="scilabcomment">// 0 ≤ x1, 0 ≤ x2.</span>
-<span class="scilabid">H</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">f</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilaboperator">-</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">6</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">A</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span><span class="scilabdefault">;</span> <span class="scilaboperator">-</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span> <span class="scilabnumber">1</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">b</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">2</span><span class="scilabdefault">;</span> <span class="scilabnumber">3</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">0</span><span class="scilabdefault">;</span> <span class="scilabnumber">0</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">ub</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabconstants">%inf</span><span class="scilabdefault">;</span> <span class="scilabconstants">%inf</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">qpipoptmat</span><span class="scilabopenclose">(</span><span class="scilabid">H</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
+<span class="scilabopenclose">[</span><span class="scilabid">xopt</span><span class="scilabdefault">,</span><span class="scilabid">fopt</span><span class="scilabdefault">,</span><span class="scilabid">exitflag</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabdefault">,</span><span class="scilabid">lambda</span><span class="scilabopenclose">]</span><span class="scilaboperator">=</span><span class="scilabid">qpipoptmat</span><span class="scilabopenclose">(</span><span class="scilabid">H</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">A</span><span class="scilabdefault">,</span><span class="scilabid">b</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabid">param</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Authors</h3>
<ul class="itemizedlist"><li class="member">Keyur Joshi, Saikiran, Iswarya, Harpreet Singh</li></ul></div>
@@ -128,7 +127,7 @@ find the minimum of f(x) such that</p>
<tr><td colspan="3" class="next"><a href="http://bugzilla.scilab.org/enter_bug.cgi?product=Scilab%20software&component=Documentation%20pages" class="ulink">Report an issue</a></td></tr>
<tr>
<td width="30%">
- <span class="previous"><a href="qpipopt_mat.html">&lt;&lt; qpipopt_mat</a></span>
+ <span class="previous"><a href="qpipopt.html">&lt;&lt; qpipopt</a></span>
</td>
<td width="40%" class="center">
diff --git a/help/en_US/scilab_en_US_help/section_19f4f1e5726c01d683e8b82be0a7e910.html b/help/en_US/scilab_en_US_help/section_19f4f1e5726c01d683e8b82be0a7e910.html
index 7219261..a79bad0 100644
--- a/help/en_US/scilab_en_US_help/section_19f4f1e5726c01d683e8b82be0a7e910.html
+++ b/help/en_US/scilab_en_US_help/section_19f4f1e5726c01d683e8b82be0a7e910.html
@@ -49,12 +49,6 @@
-<li><a href="qpipopt_mat.html" class="refentry">qpipopt_mat</a> &#8212; <span class="refentry-description">Solves a linear quadratic problem.</span></li>
-
-
-
-
-
<li><a href="qpipoptmat.html" class="refentry">qpipoptmat</a> &#8212; <span class="refentry-description">Solves a linear quadratic problem.</span></li>
@@ -67,12 +61,6 @@
-<li><a href="symphony_mat.html" class="refentry">symphony_mat</a> &#8212; <span class="refentry-description">Solves a mixed integer linear programming constrained optimization problem in intlinprog format.</span></li>
-
-
-
-
-
<li><a href="symphonymat.html" class="refentry">symphonymat</a> &#8212; <span class="refentry-description">Solves a mixed integer linear programming constrained optimization problem in intlinprog format.</span></li>
<li><a href="section_508f0b211d17ea6769714cc144e6b731.html" class="chapter">Symphony Native Functions</a>
diff --git a/help/en_US/scilab_en_US_help/symphony.html b/help/en_US/scilab_en_US_help/symphony.html
index 14e9118..9b2bebe 100644
--- a/help/en_US/scilab_en_US_help/symphony.html
+++ b/help/en_US/scilab_en_US_help/symphony.html
@@ -20,7 +20,7 @@
</td>
<td width="30%" class="next">
- <span class="next"><a href="symphony_mat.html">symphony_mat &gt;&gt;</a></span>
+ <span class="next"><a href="symphonymat.html">symphonymat &gt;&gt;</a></span>
</td>
</tr></table>
@@ -72,13 +72,13 @@
<dt><span class="term">status :</span>
<dd><p class="para">status flag from symphony.</p></dd></dt>
<dt><span class="term">output :</span>
- <dd><p class="para">The output data structure contains detailed informations about the optimization process.</p></dd></dt></dl></div>
+ <dd><p class="para">The output data structure contains detailed informations about the optimization process. Right now it contains number of iteration.</p></dd></dt></dl></div>
<div class="refsection"><h3 class="title">Description</h3>
<p class="para">Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
find the minimum or maximum of f(x) such that</p>
- <p class="para"><span><img src='./_LaTeX_symphony.xml_1.png' style='position:relative;top:31px;width:293px;height:70px'/></span></p>
- <p class="para">We are calling SYMPHONY written in C by gateway files for the actual computation. SYMPHONY was originally written by ​Ted Ralphs, ​Menal Guzelsoy and ​Ashutosh Mahajan.</p>
+ <p class="para"><span><img src='./_LaTeX_symphony.xml_1.png' style='position:relative;top:41px;width:295px;height:90px'/></span></p>
+ <p class="para">We are calling SYMPHONY written in C by gateway files for the actual computation.</p>
<p class="para"></p></div>
<div class="refsection"><h3 class="title">Examples</h3>
@@ -102,7 +102,8 @@ find the minimum or maximum of f(x) such that</p>
<span class="scilabid">xopt</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">1</span> <span class="scilabnumber">0</span> <span class="scilabnumber">1</span> <span class="scilabnumber">7.25</span> <span class="scilabnumber">0</span> <span class="scilabnumber">0.25</span> <span class="scilabnumber">3.5</span><span class="scilabopenclose">]</span>
<span class="scilabid">fopt</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">8495</span><span class="scilabopenclose">]</span>
<span class="scilabcomment">// Calling Symphony</span>
-<span class="scilabopenclose">[</span><span class="scilabid">x</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">status</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">symphony</span><span class="scilabopenclose">(</span><span class="scilabnumber">8</span><span class="scilabdefault">,</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabid">c</span><span class="scilabdefault">,</span><span class="scilabid">isInt</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabid">conMatrix</span><span class="scilabdefault">,</span><span class="scilabid">conlb</span><span class="scilabdefault">,</span><span class="scilabid">conub</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
+<span class="scilabopenclose">[</span><span class="scilabid">x</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">status</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">symphony</span><span class="scilabopenclose">(</span><span class="scilabnumber">8</span><span class="scilabdefault">,</span><span class="scilabnumber">3</span><span class="scilabdefault">,</span><span class="scilabid">c</span><span class="scilabdefault">,</span><span class="scilabid">isInt</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabid">conMatrix</span><span class="scilabdefault">,</span><span class="scilabid">conlb</span><span class="scilabdefault">,</span><span class="scilabid">conub</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span>
+<span class="scilabcomment">// Press ENTER to continue</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Examples</h3>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">// An advanced case where we set some options in symphony</span>
@@ -186,7 +187,7 @@ find the minimum or maximum of f(x) such that</p>
<span class="scilabcomment">// Optimal value</span>
<span class="scilabid">fopt</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span> <span class="scilabnumber">24381</span> <span class="scilabopenclose">]</span>
<span class="scilabcomment">// Calling Symphony</span>
-<span class="scilabopenclose">[</span><span class="scilabid">x</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">status</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">symphony</span><span class="scilabopenclose">(</span><span class="scilabid">nbVar</span><span class="scilabdefault">,</span><span class="scilabid">nbCon</span><span class="scilabdefault">,</span><span class="scilabid">p</span><span class="scilabdefault">,</span><span class="scilabid">isInt</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabid">conMatrix</span><span class="scilabdefault">,</span><span class="scilabid">conLB</span><span class="scilabdefault">,</span><span class="scilabid">conUB</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabid">options</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
+<span class="scilabopenclose">[</span><span class="scilabid">x</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">status</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">symphony</span><span class="scilabopenclose">(</span><span class="scilabid">nbVar</span><span class="scilabdefault">,</span><span class="scilabid">nbCon</span><span class="scilabdefault">,</span><span class="scilabid">p</span><span class="scilabdefault">,</span><span class="scilabid">isInt</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabdefault">,</span><span class="scilabid">conMatrix</span><span class="scilabdefault">,</span><span class="scilabid">conLB</span><span class="scilabdefault">,</span><span class="scilabid">conUB</span><span class="scilabdefault">,</span><span class="scilaboperator">-</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabid">options</span><span class="scilabopenclose">)</span><span class="scilabdefault">;</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Authors</h3>
<ul class="itemizedlist"><li class="member">Keyur Joshi, Saikiran, Iswarya, Harpreet Singh</li></ul></div>
@@ -205,7 +206,7 @@ find the minimum or maximum of f(x) such that</p>
</td>
<td width="30%" class="next">
- <span class="next"><a href="symphony_mat.html">symphony_mat &gt;&gt;</a></span>
+ <span class="next"><a href="symphonymat.html">symphonymat &gt;&gt;</a></span>
</td>
</tr></table>
diff --git a/help/en_US/scilab_en_US_help/symphonymat.html b/help/en_US/scilab_en_US_help/symphonymat.html
index 2e89728..611010b 100644
--- a/help/en_US/scilab_en_US_help/symphonymat.html
+++ b/help/en_US/scilab_en_US_help/symphonymat.html
@@ -12,7 +12,7 @@
<div class="manualnavbar">
<table width="100%"><tr>
<td width="30%">
- <span class="previous"><a href="symphony_mat.html">&lt;&lt; symphony_mat</a></span>
+ <span class="previous"><a href="symphony.html">&lt;&lt; symphony</a></span>
</td>
<td width="40%" class="center">
@@ -69,13 +69,13 @@
<dt><span class="term">status :</span>
<dd><p class="para">status flag from symphony.</p></dd></dt>
<dt><span class="term">output :</span>
- <dd><p class="para">The output data structure contains detailed informations about the optimization process.</p></dd></dt></dl></div>
+ <dd><p class="para">The output data structure contains detailed informations about the optimization process. Right now it contains number of iteration.</p></dd></dt></dl></div>
<div class="refsection"><h3 class="title">Description</h3>
<p class="para">Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
find the minimum or maximum of f(x) such that</p>
- <p class="para"><span><img src='./_LaTeX_symphonymat.xml_1.png' style='position:relative;top:40px;width:205px;height:88px'/></span></p>
- <p class="para">We are calling SYMPHONY written in C by gateway files for the actual computation. SYMPHONY was originally written by ​Ted Ralphs, ​Menal Guzelsoy and ​Ashutosh Mahajan.</p>
+ <p class="para"><span><img src='./_LaTeX_symphonymat.xml_1.png' style='position:relative;top:51px;width:216px;height:110px'/></span></p>
+ <p class="para">We are calling SYMPHONY written in C by gateway files for the actual computation.</p>
<p class="para"></p></div>
<div class="refsection"><h3 class="title">Examples</h3>
@@ -92,7 +92,8 @@ find the minimum or maximum of f(x) such that</p>
<span class="scilabid">beq</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span> <span class="scilabnumber">25</span><span class="scilabdefault">,</span> <span class="scilabnumber">1.25</span><span class="scilabdefault">,</span> <span class="scilabnumber">1.25</span><span class="scilabopenclose">]</span>
<span class="scilabid">intcon</span> <span class="scilaboperator">=</span> <span class="scilabopenclose">[</span><span class="scilabnumber">1</span> <span class="scilabnumber">2</span> <span class="scilabnumber">3</span> <span class="scilabnumber">4</span><span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// Calling Symphony</span>
-<span class="scilabopenclose">[</span><span class="scilabid">x</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">status</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">symphonymat</span><span class="scilabopenclose">(</span><span class="scilabid">c</span><span class="scilabdefault">,</span><span class="scilabid">intcon</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabopenclose">)</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
+<span class="scilabopenclose">[</span><span class="scilabid">x</span><span class="scilabdefault">,</span><span class="scilabid">f</span><span class="scilabdefault">,</span><span class="scilabid">status</span><span class="scilabdefault">,</span><span class="scilabid">output</span><span class="scilabopenclose">]</span> <span class="scilaboperator">=</span> <span class="scilabid">symphonymat</span><span class="scilabopenclose">(</span><span class="scilabid">c</span><span class="scilabdefault">,</span><span class="scilabid">intcon</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabopenclose">[</span><span class="scilabopenclose">]</span><span class="scilabdefault">,</span><span class="scilabid">Aeq</span><span class="scilabdefault">,</span><span class="scilabid">beq</span><span class="scilabdefault">,</span><span class="scilabid">lb</span><span class="scilabdefault">,</span><span class="scilabid">ub</span><span class="scilabopenclose">)</span>
+<span class="scilabcomment">// Press ENTER to continue</span></pre></td><td valign="top"><a href="scilab://scilab.execexample/"><img src="ScilabExecute.png" border="0"/></a></td><td valign="top"><a href="scilab://scilab.editexample/"><img src="ScilabEdit.png" border="0"/></a></td><td></td></tr></table></div></div>
<div class="refsection"><h3 class="title">Examples</h3>
<div class="programlisting"><table border="0" width="100%"><tr><td width="98%"><pre class="scilabcode"><span class="scilabcomment">// An advanced case where we set some options in symphony</span>
@@ -154,7 +155,7 @@ find the minimum or maximum of f(x) such that</p>
<span class="scilabnumber">483</span> <span class="scilabnumber">336</span> <span class="scilabnumber">765</span> <span class="scilabnumber">637</span> <span class="scilabnumber">981</span> <span class="scilabnumber">980</span> <span class="scilabnumber">202</span> <span class="scilabnumber">35</span> <span class="scilabnumber">594</span> <span class="scilabnumber">689</span> <span class="scilabnumber">602</span> <span class="scilabnumber">76</span> <span class="scilabnumber">767</span> <span class="scilabnumber">693</span> <span class="scilabspecial">..</span>
<span class="scilabnumber">893</span> <span class="scilabnumber">160</span> <span class="scilabnumber">785</span> <span class="scilabnumber">311</span> <span class="scilabnumber">417</span> <span class="scilabnumber">748</span> <span class="scilabnumber">375</span> <span class="scilabnumber">362</span> <span class="scilabnumber">617</span> <span class="scilabnumber">553</span> <span class="scilabnumber">474</span> <span class="scilabnumber">915</span> <span class="scilabnumber">457</span> <span class="scilabnumber">261</span> <span class="scilabnumber">350</span> <span class="scilabnumber">635</span> <span class="scilabdefault">;</span>
<span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
-<span class="scilabid">nbVar</span> <span class="scilaboperator">=</span> <a class="scilabcommand" href="scilab://size">size</a><span class="scilabopenclose">(</span><span class="scilabid">objCoef</span><span class="scilabdefault">,</span><span class="scilabnumber">2</span><span class="scilabopenclose">)</span>
+<span class="scilabid">nbVar</span> <span class="scilaboperator">=</span> <a class="scilabcommand" href="scilab://size">size</a><span class="scilabopenclose">(</span><span class="scilabid">objCoef</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabopenclose">)</span>
<span class="scilabid">conUB</span><span class="scilaboperator">=</span><span class="scilabopenclose">[</span><span class="scilabnumber">11927</span> <span class="scilabnumber">13727</span> <span class="scilabnumber">11551</span> <span class="scilabnumber">13056</span> <span class="scilabnumber">13460</span> <span class="scilabopenclose">]</span><span class="scilabdefault">;</span>
<span class="scilabcomment">// Lower Bound of variables</span>
<span class="scilabid">lb</span> <span class="scilaboperator">=</span> <a class="scilabmacro" href="scilab://repmat">repmat</a><span class="scilabopenclose">(</span><span class="scilabnumber">0</span><span class="scilabdefault">,</span><span class="scilabnumber">1</span><span class="scilabdefault">,</span><span class="scilabid">nbVar</span><span class="scilabopenclose">)</span>
@@ -185,7 +186,7 @@ find the minimum or maximum of f(x) such that</p>
<tr><td colspan="3" class="next"><a href="http://bugzilla.scilab.org/enter_bug.cgi?product=Scilab%20software&component=Documentation%20pages" class="ulink">Report an issue</a></td></tr>
<tr>
<td width="30%">
- <span class="previous"><a href="symphony_mat.html">&lt;&lt; symphony_mat</a></span>
+ <span class="previous"><a href="symphony.html">&lt;&lt; symphony</a></span>
</td>
<td width="40%" class="center">
diff --git a/help/en_US/symphony.xml b/help/en_US/symphony.xml
index a80f022..9fb615d 100644
--- a/help/en_US/symphony.xml
+++ b/help/en_US/symphony.xml
@@ -64,7 +64,7 @@
<varlistentry><term>status :</term>
<listitem><para> status flag from symphony.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
- <listitem><para> The output data structure contains detailed informations about the optimization process.</para></listitem></varlistentry>
+ <listitem><para> The output data structure contains detailed informations about the optimization process. Right now it contains number of iteration.</para></listitem></varlistentry>
</variablelist>
</refsection>
@@ -78,14 +78,15 @@ find the minimum or maximum of f(x) such that
<latex>
\begin{eqnarray}
&amp;\mbox{min}_{x}
-&amp; f(x) \\
-&amp; \text{subject to} &amp; conLB \leq C(x) \leq conUB \\
+&amp; f^T*x \\
+&amp; \text{subject to} &amp; conLB \leq C*x \leq conUB \\
&amp; &amp; lb \leq x \leq ub \\
+&amp; &amp; x_i \in \!\, \mathbb{Z}, i \in \!\, I
\end{eqnarray}
</latex>
</para>
<para>
-We are calling SYMPHONY written in C by gateway files for the actual computation. SYMPHONY was originally written by ​Ted Ralphs, ​Menal Guzelsoy and ​Ashutosh Mahajan.
+We are calling SYMPHONY written in C by gateway files for the actual computation.
</para>
<para>
</para>
@@ -115,6 +116,7 @@ xopt = [1 1 0 1 7.25 0 0.25 3.5]
fopt = [8495]
// Calling Symphony
[x,f,status,output] = symphony(8,3,c,isInt,lb,ub,conMatrix,conlb,conub,1)
+// Press ENTER to continue
]]></programlisting>
</refsection>
@@ -203,8 +205,7 @@ xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 ..
// Optimal value
fopt = [ 24381 ]
// Calling Symphony
-[x,f,status,output] = symphony(nbVar,nbCon,p,isInt,lb,ub,conMatrix,conLB,conUB,-1,options)
-
+[x,f,status,output] = symphony(nbVar,nbCon,p,isInt,lb,ub,conMatrix,conLB,conUB,-1,options);
]]></programlisting>
</refsection>
diff --git a/help/en_US/symphony_mat.xml b/help/en_US/symphony_mat.xml
deleted file mode 100644
index 4f6e9c9..0000000
--- a/help/en_US/symphony_mat.xml
+++ /dev/null
@@ -1,202 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-
-<!--
- *
- * This help file was generated from symphony_mat.sci using help_from_sci().
- *
- -->
-
-<refentry version="5.0-subset Scilab" xml:id="symphony_mat" xml:lang="en"
- xmlns="http://docbook.org/ns/docbook"
- xmlns:xlink="http://www.w3.org/1999/xlink"
- xmlns:svg="http://www.w3.org/2000/svg"
- xmlns:ns3="http://www.w3.org/1999/xhtml"
- xmlns:mml="http://www.w3.org/1998/Math/MathML"
- xmlns:scilab="http://www.scilab.org"
- xmlns:db="http://docbook.org/ns/docbook">
-
- <refnamediv>
- <refname>symphony_mat</refname>
- <refpurpose>Solves a mixed integer linear programming constrained optimization problem in intlinprog format.</refpurpose>
- </refnamediv>
-
-
-<refsynopsisdiv>
- <title>Calling Sequence</title>
- <synopsis>
- xopt = symphony_mat(f,intcon,A,b)
- xopt = symphony_mat(f,intcon,A,b,Aeq,beq)
- xopt = symphony_mat(f,intcon,A,b,Aeq,beq,lb,ub)
- xopt = symphony_mat(f,intcon,A,b,Aeq,beq,lb,ub,options)
- [xopt,fopt,status,output] = symphony_mat( ... )
-
- </synopsis>
-</refsynopsisdiv>
-
-<refsection>
- <title>Parameters</title>
- <variablelist>
- <varlistentry><term>f :</term>
- <listitem><para> a 1xn matrix of doubles, where n is number of variables, contains coefficients of the variables in the objective</para></listitem></varlistentry>
- <varlistentry><term>intcon :</term>
- <listitem><para> Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate the components of the decision variable x that are integer-valued. intcon has values from 1 through number of variable</para></listitem></varlistentry>
- <varlistentry><term>A :</term>
- <listitem><para> Linear inequality constraint matrix, specified as a matrix of doubles. A represents the linear coefficients in the constraints A*x ≤ b. A has size M-by-N, where M is the number of constraints and N is number of variables</para></listitem></varlistentry>
- <varlistentry><term>b :</term>
- <listitem><para> Linear inequality constraint vector, specified as a vector of doubles. b represents the constant vector in the constraints A*x ≤ b. b has length M, where A is M-by-N</para></listitem></varlistentry>
- <varlistentry><term>Aeq :</term>
- <listitem><para> Linear equality constraint matrix, specified as a matrix of doubles. Aeq represents the linear coefficients in the constraints Aeq*x = beq. Aeq has size Meq-by-N, where Meq is the number of constraints and N is number of variables</para></listitem></varlistentry>
- <varlistentry><term>beq :</term>
- <listitem><para> Linear equality constraint vector, specified as a vector of doubles. beq represents the constant vector in the constraints Aeq*x = beq. beq has length Meq, where Aeq is Meq-by-N.</para></listitem></varlistentry>
- <varlistentry><term>lb :</term>
- <listitem><para> Lower bounds, specified as a vector or array of doubles. lb represents the lower bounds elementwise in lb ≤ x ≤ ub.</para></listitem></varlistentry>
- <varlistentry><term>ub :</term>
- <listitem><para> Upper bounds, specified as a vector or array of doubles. ub represents the upper bounds elementwise in lb ≤ x ≤ ub.</para></listitem></varlistentry>
- <varlistentry><term>options :</term>
- <listitem><para> a 1xq marix of string, provided to set the paramters in symphony</para></listitem></varlistentry>
- <varlistentry><term>xopt :</term>
- <listitem><para> a 1xn matrix of doubles, the computed solution of the optimization problem</para></listitem></varlistentry>
- <varlistentry><term>fopt :</term>
- <listitem><para> a 1x1 matrix of doubles, the function value at x</para></listitem></varlistentry>
- <varlistentry><term>output :</term>
- <listitem><para> The output data structure contains detailed informations about the optimization process.</para></listitem></varlistentry>
- </variablelist>
-</refsection>
-
-<refsection>
- <title>Description</title>
- <para>
-Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
-find the minimum or maximum of f(x) such that
- </para>
- <para>
-<latex>
-\begin{eqnarray}
-&amp;\mbox{min}_{x}
-&amp; f(x) \\
-&amp; \text{subject to} &amp; conLB \leq C(x) \leq conUB \\
-&amp; &amp; lb \leq x \leq ub \\
-\end{eqnarray}
-</latex>
- </para>
- <para>
-We are calling SYMPHONY written in C by gateway files for the actual computation. SYMPHONY was originally written by ​Ted Ralphs, ​Menal Guzelsoy and ​Ashutosh Mahajan.
- </para>
- <para>
-</para>
-</refsection>
-
-<refsection>
- <title>Examples</title>
- <programlisting role="example"><![CDATA[
-// Objective function
-c = [350*5,330*3,310*4,280*6,500,450,400,100]
-// Lower Bound of variable
-lb = repmat(0,1,8);
-// Upper Bound of variables
-ub = [repmat(1,1,4) repmat(%inf,1,4)];
-// Constraint Matrix
-Aeq = [5,3,4,6,1,1,1,1;
-5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03;
-5*0.03,3*0.03,4*0.04,6*0.04,0.06,0.07,0.08,0.09;]
-beq = [ 25, 1.25, 1.25]
-intcon = [1 2 3 4];
-// Calling Symphony
-[x,f,iter] = symphony_mat(c,intcon,[],[],Aeq,beq,lb,ub);
-
- ]]></programlisting>
-</refsection>
-
-<refsection>
- <title>Examples</title>
- <programlisting role="example"><![CDATA[
-// An advanced case where we set some options in symphony
-// This problem is taken from
-// P.C.Chu and J.E.Beasley
-// "A genetic algorithm for the multidimensional knapsack problem",
-// Journal of Heuristics, vol. 4, 1998, pp63-86.
-// The problem to be solved is:
-// Max sum{j=1,...,n} p(j)x(j)
-// st sum{j=1,...,n} r(i,j)x(j) <= b(i) i=1,...,m
-// x(j)=0 or 1
-// The function to be maximize i.e. P(j)
-objCoef = -1*[ 504 803 667 1103 834 585 811 856 690 832 846 813 868 793 ..
-825 1002 860 615 540 797 616 660 707 866 647 746 1006 608 ..
-877 900 573 788 484 853 942 630 591 630 640 1169 932 1034 ..
-957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 ..
-959 668 507 855 986 831 821 825 868 852 832 828 799 686 ..
-510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 ..
-1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]
-//Constraint Matrix
-conMatrix = [ //Constraint 1
-42 41 523 215 819 551 69 193 582 375 367 478 162 898 ..
-550 553 298 577 493 183 260 224 852 394 958 282 402 604 ..
-164 308 218 61 273 772 191 117 276 877 415 873 902 465 ..
-320 870 244 781 86 622 665 155 680 101 665 227 597 354 ..
-597 79 162 998 849 136 112 751 735 884 71 449 266 420 ..
-797 945 746 46 44 545 882 72 383 714 987 183 731 301 ..
-718 91 109 567 708 507 983 808 766 615 554 282 995 946 651 298;
-//Constraint 2
-509 883 229 569 706 639 114 727 491 481 681 948 687 941 ..
-350 253 573 40 124 384 660 951 739 329 146 593 658 816 ..
-638 717 779 289 430 851 937 289 159 260 930 248 656 833 ..
-892 60 278 741 297 967 86 249 354 614 836 290 893 857 ..
-158 869 206 504 799 758 431 580 780 788 583 641 32 653 ..
-252 709 129 368 440 314 287 854 460 594 512 239 719 751 ..
-708 670 269 832 137 356 960 651 398 893 407 477 552 805 881 850;
-//Constraint 3
-806 361 199 781 596 669 957 358 259 888 319 751 275 177 ..
-883 749 229 265 282 694 819 77 190 551 140 442 867 283 ..
-137 359 445 58 440 192 485 744 844 969 50 833 57 877 ..
-482 732 968 113 486 710 439 747 174 260 877 474 841 422 ..
-280 684 330 910 791 322 404 403 519 148 948 414 894 147 ..
-73 297 97 651 380 67 582 973 143 732 624 518 847 113 ..
-382 97 905 398 859 4 142 110 11 213 398 173 106 331 254 447 ;
-//Constraint 4
-404 197 817 1000 44 307 39 659 46 334 448 599 931 776 ..
-263 980 807 378 278 841 700 210 542 636 388 129 203 110 ..
-817 502 657 804 662 989 585 645 113 436 610 948 919 115 ..
-967 13 445 449 740 592 327 167 368 335 179 909 825 614 ..
-987 350 179 415 821 525 774 283 427 275 659 392 73 896 ..
-68 982 697 421 246 672 649 731 191 514 983 886 95 846 ..
-689 206 417 14 735 267 822 977 302 687 118 990 323 993 525 322;
-//Constrain 5
-475 36 287 577 45 700 803 654 196 844 657 387 518 143 ..
-515 335 942 701 332 803 265 922 908 139 995 845 487 100 ..
-447 653 649 738 424 475 425 926 795 47 136 801 904 740 ..
-768 460 76 660 500 915 897 25 716 557 72 696 653 933 ..
-420 582 810 861 758 647 237 631 271 91 75 756 409 440 ..
-483 336 765 637 981 980 202 35 594 689 602 76 767 693 ..
-893 160 785 311 417 748 375 362 617 553 474 915 457 261 350 635 ;
-];
-nbVar = size(objCoef,2)
-conUB=[11927 13727 11551 13056 13460 ];
-// Lower Bound of variables
-lb = repmat(0,1,nbVar)
-// Upper Bound of variables
-ub = repmat(1,1,nbVar)
-// Lower Bound of constrains
-intcon = []
-for i = 1:nbVar
-intcon = [intcon i];
-end
-// The expected solution :
-// Output variables
-xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 ..
-0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 ..
-0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0]
-// Optimal value
-fopt = [ 24381 ]
-// Calling Symphony
-[x,f,iter] = symphony_mat(objCoef,intcon,conMatrix,conUB,[],[],lb,ub);
-
- ]]></programlisting>
-</refsection>
-
-<refsection>
- <title>Authors</title>
- <simplelist type="vert">
- <member>Keyur Joshi, Saikiran, Iswarya, Harpreet Singh</member>
- </simplelist>
-</refsection>
-</refentry>
diff --git a/help/en_US/symphonymat.xml b/help/en_US/symphonymat.xml
index d811582..ab2ca34 100644
--- a/help/en_US/symphonymat.xml
+++ b/help/en_US/symphonymat.xml
@@ -61,7 +61,7 @@
<varlistentry><term>status :</term>
<listitem><para> status flag from symphony.</para></listitem></varlistentry>
<varlistentry><term>output :</term>
- <listitem><para> The output data structure contains detailed informations about the optimization process.</para></listitem></varlistentry>
+ <listitem><para> The output data structure contains detailed informations about the optimization process. Right now it contains number of iteration.</para></listitem></varlistentry>
</variablelist>
</refsection>
@@ -75,15 +75,16 @@ find the minimum or maximum of f(x) such that
<latex>
\begin{eqnarray}
&amp;\mbox{min}_{x}
-&amp; f(x) \\
-&amp; \text{subject to} &amp; A.x \leq b \\
-&amp; &amp; Aeq.x \leq beq \\
+&amp; f^T*x \\
+&amp; \text{subject to} &amp; A*x \leq b \\
+&amp; &amp; Aeq*x = beq \\
&amp; &amp; lb \leq x \leq ub \\
+&amp; &amp; x_i \in \!\, \mathbb{Z}, i \in \!\, I
\end{eqnarray}
</latex>
</para>
<para>
-We are calling SYMPHONY written in C by gateway files for the actual computation. SYMPHONY was originally written by ​Ted Ralphs, ​Menal Guzelsoy and ​Ashutosh Mahajan.
+We are calling SYMPHONY written in C by gateway files for the actual computation.
</para>
<para>
</para>
@@ -106,6 +107,7 @@ beq = [ 25, 1.25, 1.25]
intcon = [1 2 3 4];
// Calling Symphony
[x,f,status,output] = symphonymat(c,intcon,[],[],Aeq,beq,lb,ub)
+// Press ENTER to continue
]]></programlisting>
</refsection>
@@ -193,7 +195,6 @@ xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 ..
fopt = [ 24381 ]
// Calling Symphony
[x,f,status,output] = symphonymat(objCoef,intcon,conMatrix,conUB,[],[],lb,ub,options);
-
]]></programlisting>
</refsection>
diff --git a/jar/scilab_en_US_help.jar b/jar/scilab_en_US_help.jar
index 3357bbb..b17b700 100644
--- a/jar/scilab_en_US_help.jar
+++ b/jar/scilab_en_US_help.jar
Binary files differ
diff --git a/macros/lsqlin.bin b/macros/lsqlin.bin
index 801025f..d7fccb3 100644
--- a/macros/lsqlin.bin
+++ b/macros/lsqlin.bin
Binary files differ
diff --git a/macros/lsqlin.sci b/macros/lsqlin.sci
index 4a5fa2d..1dc1fd5 100644
--- a/macros/lsqlin.sci
+++ b/macros/lsqlin.sci
@@ -14,11 +14,11 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin (varargin)
// Solves a linear quadratic problem.
//
// Calling Sequence
- // x = lsqlin(C,d,A,b)
- // x = lsqlin(C,d,A,b,Aeq,beq)
- // x = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
- // x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0)
- // x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,param)
+ // xopt = lsqlin(C,d,A,b)
+ // xopt = lsqlin(C,d,A,b,Aeq,beq)
+ // xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
+ // xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0)
+ // xopt = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,param)
// [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin( ... )
//
// Parameters
@@ -36,8 +36,8 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin (varargin)
// resnorm : a double, objective value returned as the scalar value norm(C*x-d)^2.
// residual : a vector of doubles, solution residuals returned as the vector C*x-d.
// exitflag : Integer identifying the reason the algorithm terminated.
- // output : Structure containing information about the optimization.
- // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
+ // output : Structure containing information about the optimization. Right now it contains number of iteration.
+ // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.
//
// Description
// Search the minimum of a constrained linear least square problem specified by :
@@ -46,13 +46,13 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin (varargin)
// \begin{eqnarray}
// &\mbox{min}_{x}
// & 1/2||C*x - d||_2^2 \\
- // & \text{subject to} & A.x \leq b \\
- // & & Aeq.x \leq beq \\
+ // & \text{subject to} & A*x \leq b \\
+ // & & Aeq*x = beq \\
// & & lb \leq x \leq ub \\
// \end{eqnarray}
// </latex>
//
- // We are calling IPOpt for solving the linear least square problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
+ // We are calling IPOpt for solving the linear least square problem, IPOpt is a library written in C++.
//
// Examples
// //A simple linear least square example
@@ -73,8 +73,10 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin (varargin)
// 0.2026
// 0.6721];
// [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b)
+ // // Press ENTER to continue
//
- // Examples
+ // Examples
+ // //A basic example for equality, inequality and bounds
// C = [0.9501 0.7620 0.6153 0.4057
// 0.2311 0.4564 0.7919 0.9354
// 0.6068 0.0185 0.9218 0.9169
@@ -96,7 +98,6 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin (varargin)
// lb = -0.1*ones(4,1);
// ub = 2*ones(4,1);
// [xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
- //
// Authors
// Harpreet Singh
diff --git a/macros/lsqnonneg.bin b/macros/lsqnonneg.bin
index cd8a04a..84e307b 100644
--- a/macros/lsqnonneg.bin
+++ b/macros/lsqnonneg.bin
Binary files differ
diff --git a/macros/lsqnonneg.sci b/macros/lsqnonneg.sci
index 77e5e44..b8694b4 100644
--- a/macros/lsqnonneg.sci
+++ b/macros/lsqnonneg.sci
@@ -14,8 +14,8 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg (varargin)
// Solves nonnegative least-squares curve fitting problems.
//
// Calling Sequence
- // x = lsqnonneg(C,d)
- // x = lsqnonneg(C,d,param)
+ // xopt = lsqnonneg(C,d)
+ // xopt = lsqnonneg(C,d,param)
// [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg( ... )
//
// Parameters
@@ -25,8 +25,8 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg (varargin)
// resnorm : a double, objective value returned as the scalar value norm(C*x-d)^2.
// residual : a vector of doubles, solution residuals returned as the vector C*x-d.
// exitflag : Integer identifying the reason the algorithm terminated.
- // output : Structure containing information about the optimization.
- // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
+ // output : Structure containing information about the optimization. Right now it contains number of iteration.
+ // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.
//
// Description
// Solves nonnegative least-squares curve fitting problems specified by :
@@ -39,10 +39,10 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg (varargin)
// \end{eqnarray}
// </latex>
//
- // We are calling IPOpt for solving the nonnegative least-squares curve fitting problems, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
+ // We are calling IPOpt for solving the nonnegative least-squares curve fitting problems, IPOpt is a library written in C++.
//
// Examples
- // A basic lsqnonneg problem
+ // // A basic lsqnonneg problem
// C = [
// 0.0372 0.2869
// 0.6861 0.7071
@@ -54,7 +54,6 @@ function [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg (varargin)
// 0.0747
// 0.8405];
// [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg(C,d)
- //
// Authors
// Harpreet Singh
diff --git a/macros/qpipopt.bin b/macros/qpipopt.bin
index 2fd432e..584f327 100644
--- a/macros/qpipopt.bin
+++ b/macros/qpipopt.bin
Binary files differ
diff --git a/macros/qpipopt.sci b/macros/qpipopt.sci
index 8b7cecd..affd061 100644
--- a/macros/qpipopt.sci
+++ b/macros/qpipopt.sci
@@ -34,8 +34,8 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
// xopt : a vector of doubles, the computed solution of the optimization problem.
// fopt : a double, the function value at x.
// exitflag : Integer identifying the reason the algorithm terminated.
- // output : Structure containing information about the optimization.
- // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
+ // output : Structure containing information about the optimization. Right now it contains number of iteration.
+ // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.
//
// Description
// Search the minimum of a constrained linear quadratic optimization problem specified by :
@@ -50,7 +50,7 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
// \end{eqnarray}
// </latex>
//
- // We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
+ // We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++.
//
// Examples
// //Find x in R^6 such that:
@@ -70,6 +70,7 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
// x0 = repmat(0,nbVar,1);
// param = list("MaxIter", 300, "CpuTime", 100);
// [xopt,fopt,exitflag,output,lambda]=qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB,x0,param)
+ // // Press ENTER to continue
//
// Examples
// //Find the value of x that minimize following function
@@ -89,7 +90,6 @@ function [xopt,fopt,exitflag,output,lambda] = qpipopt (varargin)
// nbVar = 2;
// nbCon = 3;
// [xopt,fopt,exitflag,output,lambda] = qpipopt(nbVar,nbCon,Q,p,lb,ub,conMatrix,conLB,conUB)
- //
// Authors
// Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
diff --git a/macros/qpipoptmat.bin b/macros/qpipoptmat.bin
index 7a37d9a..ad893f2 100644
--- a/macros/qpipoptmat.bin
+++ b/macros/qpipoptmat.bin
Binary files differ
diff --git a/macros/qpipoptmat.sci b/macros/qpipoptmat.sci
index 3f58e70..eec93ce 100644
--- a/macros/qpipoptmat.sci
+++ b/macros/qpipoptmat.sci
@@ -11,87 +11,85 @@
function [xopt,fopt,exitflag,output,lambda] = qpipoptmat (varargin)
- // Solves a linear quadratic problem.
- //
- // Calling Sequence
- // x = qpipoptmat(H,f)
- // x = qpipoptmat(H,f,A,b)
- // x = qpipoptmat(H,f,A,b,Aeq,beq)
- // x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub)
- // x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0)
- // x = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param)
- // [xopt,fopt,exitflag,output,lamda] = qpipoptmat( ... )
- //
- // Parameters
- // H : a symmetric matrix of doubles, represents coefficients of quadratic in the quadratic problem.
- // f : a vector of doubles, represents coefficients of linear in the quadratic problem
- // A : a vector of doubles, represents the linear coefficients in the inequality constraints
- // b : a vector of doubles, represents the linear coefficients in the inequality constraints
- // Aeq : a matrix of doubles, represents the linear coefficients in the equality constraints
- // beq : a vector of doubles, represents the linear coefficients in the equality constraints
- // LB : a vector of doubles, contains lower bounds of the variables.
- // UB : a vector of doubles, contains upper bounds of the variables.
- // x0 : a vector of doubles, contains initial guess of variables.
- // param : a list containing the the parameters to be set.
- // xopt : a vector of doubles, the computed solution of the optimization problem.
- // fopt : a double, the function value at x.
- // exitflag : Integer identifying the reason the algorithm terminated.
- // output : Structure containing information about the optimization.
- // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
- //
- // Description
- // Search the minimum of a constrained linear quadratic optimization problem specified by :
- // find the minimum of f(x) such that
- //
- // <latex>
- // \begin{eqnarray}
- // &\mbox{min}_{x}
- // & 1/2*x'*H*x + f'*x \\
- // & \text{subject to} & A.x \leq b \\
- // & & Aeq.x \leq beq \\
- // & & lb \leq x \leq ub \\
- // \end{eqnarray}
- // </latex>
- //
- // We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++. The code has been written by ​Andreas Wächter and ​Carl Laird.
- //
- // Examples
- // //Find x in R^6 such that:
- //
- // Aeq= [1,-1,1,0,3,1;
- // -1,0,-3,-4,5,6;
- // 2,5,3,0,1,0];
- // beq=[1; 2; 3];
- // A= [0,1,0,1,2,-1;
- // -1,0,2,1,1,0];
- // b = [-1; 2.5];
- // lb=[-1000; -10000; 0; -1000; -1000; -1000];
- // ub=[10000; 100; 1.5; 100; 100; 1000];
- // x0 = repmat(0,6,1);
- // param = list("MaxIter", 300, "CpuTime", 100);
- // //and minimize 0.5*x'*Q*x + p'*x with
- // f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
- // [xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param)
- // clear H f A b Aeq beq lb ub;
- //
- // Examples
- // //Find the value of x that minimize following function
- // // f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
- // // Subject to:
- // // x1 + x2 ≤ 2
- // // –x1 + 2x2 ≤ 2
- // // 2x1 + x2 ≤ 3
- // // 0 ≤ x1, 0 ≤ x2.
- // H = [1 -1; -1 2];
- // f = [-2; -6];
- // A = [1 1; -1 2; 2 1];
- // b = [2; 2; 3];
- // lb = [0; 0];
- // ub = [%inf; %inf];
- // [xopt,fopt,exitflag,output,lambda] = qpipoptmat(H,f,A,b,[],[],lb,ub)
- //
- // Authors
- // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
+ // Solves a linear quadratic problem.
+ //
+ // Calling Sequence
+ // xopt = qpipoptmat(H,f)
+ // xopt = qpipoptmat(H,f,A,b)
+ // xopt = qpipoptmat(H,f,A,b,Aeq,beq)
+ // xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub)
+ // xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0)
+ // xopt = qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,x0,param)
+ // [xopt,fopt,exitflag,output,lamda] = qpipoptmat( ... )
+ //
+ // Parameters
+ // H : a symmetric matrix of doubles, represents coefficients of quadratic in the quadratic problem.
+ // f : a vector of doubles, represents coefficients of linear in the quadratic problem
+ // A : a vector of doubles, represents the linear coefficients in the inequality constraints
+ // b : a vector of doubles, represents the linear coefficients in the inequality constraints
+ // Aeq : a matrix of doubles, represents the linear coefficients in the equality constraints
+ // beq : a vector of doubles, represents the linear coefficients in the equality constraints
+ // LB : a vector of doubles, contains lower bounds of the variables.
+ // UB : a vector of doubles, contains upper bounds of the variables.
+ // x0 : a vector of doubles, contains initial guess of variables.
+ // param : a list containing the the parameters to be set.
+ // xopt : a vector of doubles, the computed solution of the optimization problem.
+ // fopt : a double, the function value at x.
+ // exitflag : Integer identifying the reason the algorithm terminated.
+ // output : Structure containing information about the optimization. Right now it contains number of iteration.
+ // lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.
+ //
+ // Description
+ // Search the minimum of a constrained linear quadratic optimization problem specified by :
+ // find the minimum of f(x) such that
+ //
+ // <latex>
+ // \begin{eqnarray}
+ // &\mbox{min}_{x}
+ // & 1/2*x'*H*x + f'*x \\
+ // & \text{subject to} & A*x \leq b \\
+ // & & Aeq*x = beq \\
+ // & & lb \leq x \leq ub \\
+ // \end{eqnarray}
+ // </latex>
+ //
+ // We are calling IPOpt for solving the quadratic problem, IPOpt is a library written in C++.
+ //
+ // Examples
+ // //Find the value of x that minimize following function
+ // // f(x) = 0.5*x1^2 + x2^2 - x1*x2 - 2*x1 - 6*x2
+ // // Subject to:
+ // // x1 + x2 ≤ 2
+ // // –x1 + 2x2 ≤ 2
+ // // 2x1 + x2 ≤ 3
+ // // 0 ≤ x1, 0 ≤ x2.
+ // H = [1 -1; -1 2];
+ // f = [-2; -6];
+ // A = [1 1; -1 2; 2 1];
+ // b = [2; 2; 3];
+ // lb = [0; 0];
+ // ub = [%inf; %inf];
+ // [xopt,fopt,exitflag,output,lambda] = qpipoptmat(H,f,A,b,[],[],lb,ub)
+ // // Press ENTER to continue
+ //
+ // Examples
+ // //Find x in R^6 such that:
+ // Aeq= [1,-1,1,0,3,1;
+ // -1,0,-3,-4,5,6;
+ // 2,5,3,0,1,0];
+ // beq=[1; 2; 3];
+ // A= [0,1,0,1,2,-1;
+ // -1,0,2,1,1,0];
+ // b = [-1; 2.5];
+ // lb=[-1000; -10000; 0; -1000; -1000; -1000];
+ // ub=[10000; 100; 1.5; 100; 100; 1000];
+ // x0 = repmat(0,6,1);
+ // param = list("MaxIter", 300, "CpuTime", 100);
+ // //and minimize 0.5*x'*Q*x + p'*x with
+ // f=[1; 2; 3; 4; 5; 6]; H=eye(6,6);
+ // [xopt,fopt,exitflag,output,lambda]=qpipoptmat(H,f,A,b,Aeq,beq,lb,ub,[],param)
+ // Authors
+ // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
//To check the number of input and output argument
diff --git a/macros/symphony.bin b/macros/symphony.bin
index 3dab926..4bca695 100644
--- a/macros/symphony.bin
+++ b/macros/symphony.bin
Binary files differ
diff --git a/macros/symphony.sci b/macros/symphony.sci
index eba9e64..b1a6f28 100644
--- a/macros/symphony.sci
+++ b/macros/symphony.sci
@@ -10,155 +10,156 @@
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
function [xopt,fopt,status,output] = symphony (varargin)
- // Solves a mixed integer linear programming constrained optimization problem.
- //
- // Calling Sequence
- // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB)
- // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB,objSense)
- // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB,objSense,options)
- // [xopt,fopt,status,output] = symphony( ... )
- //
- // Parameters
- // nbVar : a double, number of variables.
- // nbCon : a double, number of constraints.
- // objCoeff : a vector of doubles, represents coefficients of the variables in the objective.
- // isInt : a vector of boolean, represents wether a variable is constrained to be an integer.
- // LB : a vector of doubles, represents lower bounds of the variables.
- // UB : a vector of doubles, represents upper bounds of the variables.
- // conMatrix : a matrix of doubles, represents matrix representing the constraint matrix.
- // conLB : a vector of doubles, represents lower bounds of the constraints.
- // conUB : a vector of doubles, represents upper bounds of the constraints
- // objSense : The sense (maximization/minimization) of the objective. Use 1(sym_minimize ) or -1 (sym_maximize) here.
- // options : a a list containing the the parameters to be set.
- // xopt : a vector of doubles, the computed solution of the optimization problem.
- // fopt : a double, the function value at x.
- // status : status flag from symphony.
- // output : The output data structure contains detailed informations about the optimization process.
- //
- // Description
- // Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
- // find the minimum or maximum of f(x) such that
- //
- // <latex>
- // \begin{eqnarray}
- // &\mbox{min}_{x}
- // & f(x) \\
- // & \text{subject to} & conLB \leq C(x) \leq conUB \\
- // & & lb \leq x \leq ub \\
- // \end{eqnarray}
- // </latex>
- //
- // We are calling SYMPHONY written in C by gateway files for the actual computation. SYMPHONY was originally written by ​Ted Ralphs, ​Menal Guzelsoy and ​Ashutosh Mahajan.
- //
- // Examples
- // //A basic case :
- // // Objective function
- // c = [350*5,330*3,310*4,280*6,500,450,400,100]';
- // // Lower Bound of variable
- // lb = repmat(0,8,1);
- // // Upper Bound of variables
- // ub = [repmat(1,4,1);repmat(%inf,4,1)];
- // // Constraint Matrix
- // conMatrix = [5,3,4,6,1,1,1,1;
- // 5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03;
- // 5*0.03,3*0.03,4*0.04,6*0.04,0.06,0.07,0.08,0.09;]
- // // Lower Bound of constrains
- // conlb = [ 25; 1.25; 1.25]
- // // Upper Bound of constrains
- // conub = [ 25; 1.25; 1.25]
- // // Row Matrix for telling symphony that the is integer or not
- // isInt = [repmat(%t,1,4) repmat(%f,1,4)];
- // xopt = [1 1 0 1 7.25 0 0.25 3.5]
- // fopt = [8495]
- // // Calling Symphony
- // [x,f,status,output] = symphony(8,3,c,isInt,lb,ub,conMatrix,conlb,conub,1)
- //
- // Examples
- // // An advanced case where we set some options in symphony
- // // This problem is taken from
- // // P.C.Chu and J.E.Beasley
- // // "A genetic algorithm for the multidimensional knapsack problem",
- // // Journal of Heuristics, vol. 4, 1998, pp63-86.
- // // The problem to be solved is:
- // // Max sum{j=1,...,n} p(j)x(j)
- // // st sum{j=1,...,n} r(i,j)x(j) <= b(i) i=1,...,m
- // // x(j)=0 or 1
- // // The function to be maximize i.e. P(j)
- // p = [ 504 803 667 1103 834 585 811 856 690 832 846 813 868 793 ..
- // 825 1002 860 615 540 797 616 660 707 866 647 746 1006 608 ..
- // 877 900 573 788 484 853 942 630 591 630 640 1169 932 1034 ..
- // 957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 ..
- // 959 668 507 855 986 831 821 825 868 852 832 828 799 686 ..
- // 510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 ..
- // 1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]';
- // //Constraint Matrix
- // conMatrix = [
- // //Constraint 1
- // 42 41 523 215 819 551 69 193 582 375 367 478 162 898 ..
- // 550 553 298 577 493 183 260 224 852 394 958 282 402 604 ..
- // 164 308 218 61 273 772 191 117 276 877 415 873 902 465 ..
- // 320 870 244 781 86 622 665 155 680 101 665 227 597 354 ..
- // 597 79 162 998 849 136 112 751 735 884 71 449 266 420 ..
- // 797 945 746 46 44 545 882 72 383 714 987 183 731 301 ..
- // 718 91 109 567 708 507 983 808 766 615 554 282 995 946 651 298;
- // //Constraint 2
- // 509 883 229 569 706 639 114 727 491 481 681 948 687 941 ..
- // 350 253 573 40 124 384 660 951 739 329 146 593 658 816 ..
- // 638 717 779 289 430 851 937 289 159 260 930 248 656 833 ..
- // 892 60 278 741 297 967 86 249 354 614 836 290 893 857 ..
- // 158 869 206 504 799 758 431 580 780 788 583 641 32 653 ..
- // 252 709 129 368 440 314 287 854 460 594 512 239 719 751 ..
- // 708 670 269 832 137 356 960 651 398 893 407 477 552 805 881 850;
- // //Constraint 3
- // 806 361 199 781 596 669 957 358 259 888 319 751 275 177 ..
- // 883 749 229 265 282 694 819 77 190 551 140 442 867 283 ..
- // 137 359 445 58 440 192 485 744 844 969 50 833 57 877 ..
- // 482 732 968 113 486 710 439 747 174 260 877 474 841 422 ..
- // 280 684 330 910 791 322 404 403 519 148 948 414 894 147 ..
- // 73 297 97 651 380 67 582 973 143 732 624 518 847 113 ..
- // 382 97 905 398 859 4 142 110 11 213 398 173 106 331 254 447 ;
- // //Constraint 4
- // 404 197 817 1000 44 307 39 659 46 334 448 599 931 776 ..
- // 263 980 807 378 278 841 700 210 542 636 388 129 203 110 ..
- // 817 502 657 804 662 989 585 645 113 436 610 948 919 115 ..
- // 967 13 445 449 740 592 327 167 368 335 179 909 825 614 ..
- // 987 350 179 415 821 525 774 283 427 275 659 392 73 896 ..
- // 68 982 697 421 246 672 649 731 191 514 983 886 95 846 ..
- // 689 206 417 14 735 267 822 977 302 687 118 990 323 993 525 322;
- // //Constrain 5
- // 475 36 287 577 45 700 803 654 196 844 657 387 518 143 ..
- // 515 335 942 701 332 803 265 922 908 139 995 845 487 100 ..
- // 447 653 649 738 424 475 425 926 795 47 136 801 904 740 ..
- // 768 460 76 660 500 915 897 25 716 557 72 696 653 933 ..
- // 420 582 810 861 758 647 237 631 271 91 75 756 409 440 ..
- // 483 336 765 637 981 980 202 35 594 689 602 76 767 693 ..
- // 893 160 785 311 417 748 375 362 617 553 474 915 457 261 350 635 ;
- // ];
- // nbCon = size(conMatrix,1)
- // nbVar = size(conMatrix,2)
- // // Lower Bound of variables
- // lb = repmat(0,nbVar,1)
- // // Upper Bound of variables
- // ub = repmat(1,nbVar,1)
- // // Row Matrix for telling symphony that the is integer or not
- // isInt = repmat(%t,1,nbVar)
- // // Lower Bound of constrains
- // conLB=repmat(0,nbCon,1);
- // // Upper Bound of constraints
- // conUB=[11927 13727 11551 13056 13460 ]';
- // options = list("time_limit", 25);
- // // The expected solution :
- // // Output variables
- // xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 ..
- // 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 ..
- // 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0]
- // // Optimal value
- // fopt = [ 24381 ]
- // // Calling Symphony
- // [x,f,status,output] = symphony(nbVar,nbCon,p,isInt,lb,ub,conMatrix,conLB,conUB,-1,options)
- //
- // Authors
- // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
+ // Solves a mixed integer linear programming constrained optimization problem.
+ //
+ // Calling Sequence
+ // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB)
+ // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB,objSense)
+ // xopt = symphony(nbVar,nbCon,objCoef,isInt,LB,UB,conMatrix,conLB,conUB,objSense,options)
+ // [xopt,fopt,status,output] = symphony( ... )
+ //
+ // Parameters
+ // nbVar : a double, number of variables.
+ // nbCon : a double, number of constraints.
+ // objCoeff : a vector of doubles, represents coefficients of the variables in the objective.
+ // isInt : a vector of boolean, represents wether a variable is constrained to be an integer.
+ // LB : a vector of doubles, represents lower bounds of the variables.
+ // UB : a vector of doubles, represents upper bounds of the variables.
+ // conMatrix : a matrix of doubles, represents matrix representing the constraint matrix.
+ // conLB : a vector of doubles, represents lower bounds of the constraints.
+ // conUB : a vector of doubles, represents upper bounds of the constraints
+ // objSense : The sense (maximization/minimization) of the objective. Use 1(sym_minimize ) or -1 (sym_maximize) here.
+ // options : a a list containing the the parameters to be set.
+ // xopt : a vector of doubles, the computed solution of the optimization problem.
+ // fopt : a double, the function value at x.
+ // status : status flag from symphony.
+ // output : The output data structure contains detailed informations about the optimization process. Right now it contains number of iteration.
+ //
+ // Description
+ // Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
+ // find the minimum or maximum of f(x) such that
+ //
+ // <latex>
+ // \begin{eqnarray}
+ // &\mbox{min}_{x}
+ // & f^T*x \\
+ // & \text{subject to} & conLB \leq C*x \leq conUB \\
+ // & & lb \leq x \leq ub \\
+ // & & x_i \in \!\, \mathbb{Z}, i \in \!\, I
+ // \end{eqnarray}
+ // </latex>
+ //
+ // We are calling SYMPHONY written in C by gateway files for the actual computation.
+ //
+ // Examples
+ // //A basic case :
+ // // Objective function
+ // c = [350*5,330*3,310*4,280*6,500,450,400,100]';
+ // // Lower Bound of variable
+ // lb = repmat(0,8,1);
+ // // Upper Bound of variables
+ // ub = [repmat(1,4,1);repmat(%inf,4,1)];
+ // // Constraint Matrix
+ // conMatrix = [5,3,4,6,1,1,1,1;
+ // 5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03;
+ // 5*0.03,3*0.03,4*0.04,6*0.04,0.06,0.07,0.08,0.09;]
+ // // Lower Bound of constrains
+ // conlb = [ 25; 1.25; 1.25]
+ // // Upper Bound of constrains
+ // conub = [ 25; 1.25; 1.25]
+ // // Row Matrix for telling symphony that the is integer or not
+ // isInt = [repmat(%t,1,4) repmat(%f,1,4)];
+ // xopt = [1 1 0 1 7.25 0 0.25 3.5]
+ // fopt = [8495]
+ // // Calling Symphony
+ // [x,f,status,output] = symphony(8,3,c,isInt,lb,ub,conMatrix,conlb,conub,1)
+ // // Press ENTER to continue
+ //
+ // Examples
+ // // An advanced case where we set some options in symphony
+ // // This problem is taken from
+ // // P.C.Chu and J.E.Beasley
+ // // "A genetic algorithm for the multidimensional knapsack problem",
+ // // Journal of Heuristics, vol. 4, 1998, pp63-86.
+ // // The problem to be solved is:
+ // // Max sum{j=1,...,n} p(j)x(j)
+ // // st sum{j=1,...,n} r(i,j)x(j) <= b(i) i=1,...,m
+ // // x(j)=0 or 1
+ // // The function to be maximize i.e. P(j)
+ // p = [ 504 803 667 1103 834 585 811 856 690 832 846 813 868 793 ..
+ // 825 1002 860 615 540 797 616 660 707 866 647 746 1006 608 ..
+ // 877 900 573 788 484 853 942 630 591 630 640 1169 932 1034 ..
+ // 957 798 669 625 467 1051 552 717 654 388 559 555 1104 783 ..
+ // 959 668 507 855 986 831 821 825 868 852 832 828 799 686 ..
+ // 510 671 575 740 510 675 996 636 826 1022 1140 654 909 799 ..
+ // 1162 653 814 625 599 476 767 954 906 904 649 873 565 853 1008 632]';
+ // //Constraint Matrix
+ // conMatrix = [
+ // //Constraint 1
+ // 42 41 523 215 819 551 69 193 582 375 367 478 162 898 ..
+ // 550 553 298 577 493 183 260 224 852 394 958 282 402 604 ..
+ // 164 308 218 61 273 772 191 117 276 877 415 873 902 465 ..
+ // 320 870 244 781 86 622 665 155 680 101 665 227 597 354 ..
+ // 597 79 162 998 849 136 112 751 735 884 71 449 266 420 ..
+ // 797 945 746 46 44 545 882 72 383 714 987 183 731 301 ..
+ // 718 91 109 567 708 507 983 808 766 615 554 282 995 946 651 298;
+ // //Constraint 2
+ // 509 883 229 569 706 639 114 727 491 481 681 948 687 941 ..
+ // 350 253 573 40 124 384 660 951 739 329 146 593 658 816 ..
+ // 638 717 779 289 430 851 937 289 159 260 930 248 656 833 ..
+ // 892 60 278 741 297 967 86 249 354 614 836 290 893 857 ..
+ // 158 869 206 504 799 758 431 580 780 788 583 641 32 653 ..
+ // 252 709 129 368 440 314 287 854 460 594 512 239 719 751 ..
+ // 708 670 269 832 137 356 960 651 398 893 407 477 552 805 881 850;
+ // //Constraint 3
+ // 806 361 199 781 596 669 957 358 259 888 319 751 275 177 ..
+ // 883 749 229 265 282 694 819 77 190 551 140 442 867 283 ..
+ // 137 359 445 58 440 192 485 744 844 969 50 833 57 877 ..
+ // 482 732 968 113 486 710 439 747 174 260 877 474 841 422 ..
+ // 280 684 330 910 791 322 404 403 519 148 948 414 894 147 ..
+ // 73 297 97 651 380 67 582 973 143 732 624 518 847 113 ..
+ // 382 97 905 398 859 4 142 110 11 213 398 173 106 331 254 447 ;
+ // //Constraint 4
+ // 404 197 817 1000 44 307 39 659 46 334 448 599 931 776 ..
+ // 263 980 807 378 278 841 700 210 542 636 388 129 203 110 ..
+ // 817 502 657 804 662 989 585 645 113 436 610 948 919 115 ..
+ // 967 13 445 449 740 592 327 167 368 335 179 909 825 614 ..
+ // 987 350 179 415 821 525 774 283 427 275 659 392 73 896 ..
+ // 68 982 697 421 246 672 649 731 191 514 983 886 95 846 ..
+ // 689 206 417 14 735 267 822 977 302 687 118 990 323 993 525 322;
+ // //Constrain 5
+ // 475 36 287 577 45 700 803 654 196 844 657 387 518 143 ..
+ // 515 335 942 701 332 803 265 922 908 139 995 845 487 100 ..
+ // 447 653 649 738 424 475 425 926 795 47 136 801 904 740 ..
+ // 768 460 76 660 500 915 897 25 716 557 72 696 653 933 ..
+ // 420 582 810 861 758 647 237 631 271 91 75 756 409 440 ..
+ // 483 336 765 637 981 980 202 35 594 689 602 76 767 693 ..
+ // 893 160 785 311 417 748 375 362 617 553 474 915 457 261 350 635 ;
+ // ];
+ // nbCon = size(conMatrix,1)
+ // nbVar = size(conMatrix,2)
+ // // Lower Bound of variables
+ // lb = repmat(0,nbVar,1)
+ // // Upper Bound of variables
+ // ub = repmat(1,nbVar,1)
+ // // Row Matrix for telling symphony that the is integer or not
+ // isInt = repmat(%t,1,nbVar)
+ // // Lower Bound of constrains
+ // conLB=repmat(0,nbCon,1);
+ // // Upper Bound of constraints
+ // conUB=[11927 13727 11551 13056 13460 ]';
+ // options = list("time_limit", 25);
+ // // The expected solution :
+ // // Output variables
+ // xopt = [0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 ..
+ // 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 ..
+ // 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0]
+ // // Optimal value
+ // fopt = [ 24381 ]
+ // // Calling Symphony
+ // [x,f,status,output] = symphony(nbVar,nbCon,p,isInt,lb,ub,conMatrix,conLB,conUB,-1,options);
+ // Authors
+ // Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
//To check the number of input and output argument
[lhs , rhs] = argn();
diff --git a/macros/symphonymat.bin b/macros/symphonymat.bin
index 8d42926..08b1616 100644
--- a/macros/symphonymat.bin
+++ b/macros/symphonymat.bin
Binary files differ
diff --git a/macros/symphonymat.sci b/macros/symphonymat.sci
index 5aab6e5..40b07eb 100644
--- a/macros/symphonymat.sci
+++ b/macros/symphonymat.sci
@@ -32,7 +32,7 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// xopt : a vector of double, the computed solution of the optimization problem
// fopt : a doubles, the function value at x
// status : status flag from symphony.
- // output : The output data structure contains detailed informations about the optimization process.
+ // output : The output data structure contains detailed informations about the optimization process. Right now it contains number of iteration.
//
// Description
// Search the minimum or maximum of a constrained mixed integer linear programming optimization problem specified by :
@@ -41,14 +41,15 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// <latex>
// \begin{eqnarray}
// &\mbox{min}_{x}
- // & f(x) \\
- // & \text{subject to} & A.x \leq b \\
- // & & Aeq.x \leq beq \\
+ // & f^T*x \\
+ // & \text{subject to} & A*x \leq b \\
+ // & & Aeq*x = beq \\
// & & lb \leq x \leq ub \\
+ // & & x_i \in \!\, \mathbb{Z}, i \in \!\, I
// \end{eqnarray}
// </latex>
//
- // We are calling SYMPHONY written in C by gateway files for the actual computation. SYMPHONY was originally written by ​Ted Ralphs, ​Menal Guzelsoy and ​Ashutosh Mahajan.
+ // We are calling SYMPHONY written in C by gateway files for the actual computation.
//
// Examples
// // Objective function
@@ -65,6 +66,7 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// intcon = [1 2 3 4];
// // Calling Symphony
// [x,f,status,output] = symphonymat(c,intcon,[],[],Aeq,beq,lb,ub)
+ // // Press ENTER to continue
//
// Examples
// // An advanced case where we set some options in symphony
@@ -147,7 +149,6 @@ function [xopt,fopt,status,iter] = symphonymat (varargin)
// fopt = [ 24381 ]
// // Calling Symphony
// [x,f,status,output] = symphonymat(objCoef,intcon,conMatrix,conUB,[],[],lb,ub,options);
- //
// Authors
// Keyur Joshi, Saikiran, Iswarya, Harpreet Singh
diff --git a/sci_gateway/cpp/libFAMOS.so b/sci_gateway/cpp/libFAMOS.so
index d4464aa..ccad147 100755
--- a/sci_gateway/cpp/libFAMOS.so
+++ b/sci_gateway/cpp/libFAMOS.so
Binary files differ
diff --git a/tests/unit_tests/lsqlin.dia.ref b/tests/unit_tests/lsqlin.dia.ref
index a2b9630..9fbe23f 100644
--- a/tests/unit_tests/lsqlin.dia.ref
+++ b/tests/unit_tests/lsqlin.dia.ref
@@ -76,7 +76,7 @@ C = [0.9501 0.7620 0.6153 0.4057
[xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
assert_close ( xopt , [ -0.1, -0.1, 0.1599089, 0.4089598 ]' , 0.0005 );
-assert_close ( residual , [ 0.0352969 0.0876228 -0.3532508 0.1452700 0.1212324 ]' , 0.0005 );
+assert_close ( residual , [-0.0352969 -0.0876228 0.3532508 -0.1452700 -0.1212324 ]' , 0.0005 );
assert_close ( resnorm , [ 0.1695104] , 0.0005 );
-
assert_checkequal( exitflag , int32(0) );
+printf("Test Successful");
diff --git a/tests/unit_tests/lsqlin.tst b/tests/unit_tests/lsqlin.tst
index a2b9630..9fbe23f 100644
--- a/tests/unit_tests/lsqlin.tst
+++ b/tests/unit_tests/lsqlin.tst
@@ -76,7 +76,7 @@ C = [0.9501 0.7620 0.6153 0.4057
[xopt,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
assert_close ( xopt , [ -0.1, -0.1, 0.1599089, 0.4089598 ]' , 0.0005 );
-assert_close ( residual , [ 0.0352969 0.0876228 -0.3532508 0.1452700 0.1212324 ]' , 0.0005 );
+assert_close ( residual , [-0.0352969 -0.0876228 0.3532508 -0.1452700 -0.1212324 ]' , 0.0005 );
assert_close ( resnorm , [ 0.1695104] , 0.0005 );
-
assert_checkequal( exitflag , int32(0) );
+printf("Test Successful");
diff --git a/tests/unit_tests/qpipopt_base.dia.ref b/tests/unit_tests/qpipopt_base.dia.ref
index 5587ddc..0cc59f1 100644
--- a/tests/unit_tests/qpipopt_base.dia.ref
+++ b/tests/unit_tests/qpipopt_base.dia.ref
@@ -72,5 +72,5 @@ nbCon = 3;
assert_close ( xopt , [0.6666667 1.3333333]' , 1.e-7 );
assert_close ( fopt , [ - 8.2222223] , 1.e-7 );
-
assert_checkequal( exitflag , int32(0) );
+printf("Test Successful");
diff --git a/tests/unit_tests/qpipopt_base.tst b/tests/unit_tests/qpipopt_base.tst
index 5587ddc..eee8b91 100644
--- a/tests/unit_tests/qpipopt_base.tst
+++ b/tests/unit_tests/qpipopt_base.tst
@@ -74,3 +74,4 @@ assert_close ( xopt , [0.6666667 1.3333333]' , 1.e-7 );
assert_close ( fopt , [ - 8.2222223] , 1.e-7 );
assert_checkequal( exitflag , int32(0) );
+printf("Test Successfull")
diff --git a/tests/unit_tests/qpipoptmat_base.dia.ref b/tests/unit_tests/qpipoptmat_base.dia.ref
index a03fc4e..e99255c 100644
--- a/tests/unit_tests/qpipoptmat_base.dia.ref
+++ b/tests/unit_tests/qpipoptmat_base.dia.ref
@@ -69,5 +69,5 @@ ub = [%inf; %inf];
assert_close ( xopt , [0.6666667 1.3333333]' , 1.e-7 );
assert_close ( fopt , [ - 8.2222223] , 1.e-7 );
-
assert_checkequal( exitflag , int32(0) );
+printf("Test Successful");
diff --git a/tests/unit_tests/qpipoptmat_base.tst b/tests/unit_tests/qpipoptmat_base.tst
index a03fc4e..482457d 100644
--- a/tests/unit_tests/qpipoptmat_base.tst
+++ b/tests/unit_tests/qpipoptmat_base.tst
@@ -69,5 +69,6 @@ ub = [%inf; %inf];
assert_close ( xopt , [0.6666667 1.3333333]' , 1.e-7 );
assert_close ( fopt , [ - 8.2222223] , 1.e-7 );
-
assert_checkequal( exitflag , int32(0) );
+
+printf("Test Successfull")
diff --git a/tests/unit_tests/symphony_base.dia.ref b/tests/unit_tests/symphony_base.dia.ref
index fd11db0..64dfeea 100644
--- a/tests/unit_tests/symphony_base.dia.ref
+++ b/tests/unit_tests/symphony_base.dia.ref
@@ -83,5 +83,5 @@ status = sym_getStatus();
assert_close ( x , [1 1 0 1 7.25 0 0.25 3.5] , 1.e-7 );
assert_close ( f , [ 8495] , 1.e-7 );
-
assert_checkequal( status , 227 );
+printf("Test Successful");
diff --git a/tests/unit_tests/symphony_base.tst b/tests/unit_tests/symphony_base.tst
index a1f9e2b..5ec76ee 100644
--- a/tests/unit_tests/symphony_base.tst
+++ b/tests/unit_tests/symphony_base.tst
@@ -80,5 +80,5 @@ isInt = [repmat(%t,1,4) repmat(%f,1,4)];
assert_close ( x , [1 1 0 1 7.25 0 0.25 3.5]' , 1.e-7 );
assert_close ( f , [ 8495] , 1.e-7 );
-
assert_checkequal( status , 227 );
+
diff --git a/tests/unit_tests/symphonymat_base.dia.ref b/tests/unit_tests/symphonymat_base.dia.ref
index 1e6f74a..1d26663 100644
--- a/tests/unit_tests/symphonymat_base.dia.ref
+++ b/tests/unit_tests/symphonymat_base.dia.ref
@@ -79,5 +79,5 @@ status = sym_getStatus();
assert_close ( x , [1 1 0 1 7.25 0 0.25 3.5] , 1.e-7 );
assert_close ( f , [ 8495] , 1.e-7 );
-
assert_checkequal( status , 227 );
+printf("Test Successful");
diff --git a/tests/unit_tests/symphonymat_base.tst b/tests/unit_tests/symphonymat_base.tst
index 2465738..9b32e42 100644
--- a/tests/unit_tests/symphonymat_base.tst
+++ b/tests/unit_tests/symphonymat_base.tst
@@ -76,5 +76,6 @@ intcon = [1 2 3 4];
assert_close ( x , [1 1 0 1 7.25 0 0.25 3.5]' , 1.e-7 );
assert_close ( f , [ 8495] , 1.e-7 );
-
assert_checkequal( status , 227 );
+
+printf("Test Successfull")