summaryrefslogtreecommitdiff
path: root/macros/lsqnonneg.sci
blob: b8694b448cec50513076e3ab724ecbf337fd5f9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// Author: Harpreet Singh
// Organization: FOSSEE, IIT Bombay
// Email: harpreet.mertia@gmail.com
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt


function [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg (varargin)
	// Solves nonnegative least-squares curve fitting problems.
	//
	//   Calling Sequence
	//   xopt = lsqnonneg(C,d)
	//   xopt = lsqnonneg(C,d,param)
	//   [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg( ... )
	//   
	//   Parameters
	//   C : a matrix of doubles, represents the multiplier of the solution x in the expression C*x - d. C is M-by-N, where M is the number of equations, and N is the number of elements of x.
	//   d : a vector of doubles, represents the additive constant term in the expression C*x - d. d is M-by-1, where M is the number of equations.
	//   xopt : a vector of doubles, the computed solution of the optimization problem.
	//   resnorm : a double, objective value returned as the scalar value norm(C*x-d)^2.
	//   residual : a vector of doubles, solution residuals returned as the vector C*x-d.
	//   exitflag : Integer identifying the reason the algorithm terminated.
	//   output : Structure containing information about the optimization. Right now it contains number of iteration.
	//   lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).It contains lower, upper and linear equality, inequality constraints.
	//   
	//   Description
	//   Solves nonnegative least-squares curve fitting problems specified by :
	//
	//   <latex>
	//    \begin{eqnarray}
	//    &\mbox{min}_{x}
	//    & 1/2||C*x - d||_2^2  \\
	//    & & x \geq 0 \\
	//    \end{eqnarray}
	//   </latex>
	//   
	//   We are calling IPOpt for solving the nonnegative least-squares curve fitting problems, IPOpt is a library written in C++.
	//    
	// Examples 
	// // A basic lsqnonneg problem
	//	C = [
	//		0.0372    0.2869
	//		0.6861    0.7071
	//		0.6233    0.6245
	//		0.6344    0.6170];
	//	d = [
	//    	0.8587
	//    	0.1781
	//   	0.0747
	//	    0.8405];
	// [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg(C,d)
	// Authors
	// Harpreet Singh


	//To check the number of input and output argument
	[lhs , rhs] = argn();

	//To check the number of argument given by user
	if ( rhs < 2 | rhs > 3 ) then
		errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set of [2 3]"), "lsqlin", rhs);
		error(errmsg)
	end

	C = varargin(1);
	d = varargin(2);
	nbVar = size(C,2);
	if ( rhs<3 | size(varargin(3)) ==0 ) then
		param = list();
	else
		param =varargin(10);
	end

	if (type(param) ~= 15) then
		errmsg = msprintf(gettext("%s: param should be a list "), "lsqlin");
		error(errmsg);
	end


	if (modulo(size(param),2)) then
		errmsg = msprintf(gettext("%s: Size of parameters should be even"), "lsqlin");
		error(errmsg);
	end

	options = list(	"MaxIter"     , [3000], ...
					"CpuTime"   , [600] ...
	);

	for i = 1:(size(param))/2

		select param(2*i-1)
			case "MaxIter" then
				options(2*i) = param(2*i);
			case "CpuTime" then
				options(2*i) = param(2*i);
			else
				errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "lsqlin", param(2*i-1));
				error(errmsg)
		end
	end

	// Check if the user gives row vector 
	// and Changing it to a column matrix


	if (size(d,2)== [nbVar]) then
		d=d';
	end

	//Check the size of f which should equal to the number of variable
	if ( size(d,1) ~= size(C,1)) then
		errmsg = msprintf(gettext("%s: The number of rows in C must be equal the number of elements of d"), "lsqlin");
		error(errmsg);
	end

	//Converting it into Quadratic Programming Problem

	Q = C'*C;
	p = [-C'*d]';
	op_add = d'*d;
	LB = repmat(0,1,nbVar);
	UB = repmat(%inf,1,nbVar);	
	x0 = repmat(0,1,nbVar);;
	conMatrix = [];
	nbCon = size(conMatrix,1);
	conLB = [];
	conUB = [] ; 
	[xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,Q,p,conMatrix,conLB,conUB,LB,UB,x0,options);

	xopt = xopt';
	residual = -1*(C*xopt-d);
	resnorm = residual'*residual;
	exitflag = status;
	output = struct("Iterations"      , []);
	output.Iterations = iter;
   lambda = struct("lower"           , [], ..
                   "upper"           , []);
   
   lambda.lower = Zl;
   lambda.upper = Zu;

	select status 
		case 0 then
			printf("\nOptimal Solution Found.\n");
		case 1 then
			printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n");
		case 2 then
			printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n");
		case 3 then
			printf("\nStop at Tiny Step\n");
		case 4 then
			printf("\nSolved To Acceptable Level\n");
		case 5 then
			printf("\nConverged to a point of local infeasibility.\n");
		case 6 then
			printf("\nStopping optimization at current point as requested by user.\n");
		case 7 then
			printf("\nFeasible point for square problem found.\n");
		case 8 then 
			printf("\nIterates diverging; problem might be unbounded.\n");
		case 9 then
			printf("\nRestoration Failed!\n");
		case 10 then
			printf("\nError in step computation (regularization becomes too large?)!\n");
		case 12 then
			printf("\nProblem has too few degrees of freedom.\n");
		case 13 then
			printf("\nInvalid option thrown back by IPOpt\n");
		case 14 then
			printf("\nNot enough memory.\n");
		case 15 then
			printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify IPOPT Authors.\n");
		else
			printf("\nInvalid status returned. Notify the Toolbox authors\n");
		break;
	end

endfunction