1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// Author: Harpreet Singh
// Organization: FOSSEE, IIT Bombay
// Email: harpreet.mertia@gmail.com
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
function [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg (varargin)
// Solves nonnegative least-squares curve fitting problems.
//
// Calling Sequence
// x = lsqnonneg(C,d)
// x = lsqnonneg(C,d,param)
// [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg( ... )
//
// Parameters
// C : a matrix of doubles, represents the multiplier of the solution x in the expression C*x - d. C is M-by-N, where M is the number of equations, and N is the number of elements of x.
// d : a vector of doubles, represents the additive constant term in the expression C*x - d. d is M-by-1, where M is the number of equations.
// xopt : a vector of doubles, the computed solution of the optimization problem.
// resnorm : a double, objective value returned as the scalar value norm(C*x-d)^2.
// residual : a vector of doubles, solution residuals returned as the vector C*x-d.
// exitflag : Integer identifying the reason the algorithm terminated.
// output : Structure containing information about the optimization.
// lambda : Structure containing the Lagrange multipliers at the solution x (separated by constraint type).
//
// Description
// Solves nonnegative least-squares curve fitting problems specified by :
//
// <latex>
// \begin{eqnarray}
// &\mbox{min}_{x}
// & 1/2||C*x - d||_2^2 \\
// & & x \geq 0 \\
// \end{eqnarray}
// </latex>
//
// We are calling IPOpt for solving the nonnegative least-squares curve fitting problems, IPOpt is a library written in C++. The code has been written by Andreas Wächter and Carl Laird.
//
// Examples
// A basic lsqnonneg problem
// C = [
// 0.0372 0.2869
// 0.6861 0.7071
// 0.6233 0.6245
// 0.6344 0.6170];
// d = [
// 0.8587
// 0.1781
// 0.0747
// 0.8405];
// [xopt,resnorm,residual,exitflag,output,lambda] = lsqnonneg(C,d)
//
// Authors
// Harpreet Singh
//To check the number of input and output argument
[lhs , rhs] = argn();
//To check the number of argument given by user
if ( rhs < 2 | rhs > 3 ) then
errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be in the set of [2 3]"), "lsqlin", rhs);
error(errmsg)
end
C = varargin(1);
d = varargin(2);
nbVar = size(C,2);
if ( rhs<3 | size(varargin(3)) ==0 ) then
param = list();
else
param =varargin(10);
end
if (type(param) ~= 15) then
errmsg = msprintf(gettext("%s: param should be a list "), "lsqlin");
error(errmsg);
end
if (modulo(size(param),2)) then
errmsg = msprintf(gettext("%s: Size of parameters should be even"), "lsqlin");
error(errmsg);
end
options = list( "MaxIter" , [3000], ...
"CpuTime" , [600] ...
);
for i = 1:(size(param))/2
select param(2*i-1)
case "MaxIter" then
options(2*i) = param(2*i);
case "CpuTime" then
options(2*i) = param(2*i);
else
errmsg = msprintf(gettext("%s: Unrecognized parameter name ''%s''."), "lsqlin", param(2*i-1));
error(errmsg)
end
end
// Check if the user gives row vector
// and Changing it to a column matrix
if (size(d,2)== [nbVar]) then
d=d';
end
//Check the size of f which should equal to the number of variable
if ( size(d,1) ~= size(C,1)) then
errmsg = msprintf(gettext("%s: The number of rows in C must be equal the number of elements of d"), "lsqlin");
error(errmsg);
end
//Converting it into Quadratic Programming Problem
Q = C'*C;
p = [-C'*d]';
op_add = d'*d;
LB = repmat(0,1,nbVar);
UB = repmat(%inf,1,nbVar);
x0 = repmat(0,1,nbVar);;
conMatrix = [];
nbCon = size(conMatrix,1);
conLB = [];
conUB = [] ;
[xopt,fopt,status,iter,Zl,Zu,lmbda] = solveqp(nbVar,nbCon,Q,p,conMatrix,conLB,conUB,LB,UB,x0,options);
xopt = xopt';
residual = -1*(C*xopt-d);
resnorm = residual'*residual;
exitflag = status;
output = struct("Iterations" , []);
output.Iterations = iter;
lambda = struct("lower" , [], ..
"upper" , []);
lambda.lower = Zl;
lambda.upper = Zu;
select status
case 0 then
printf("\nOptimal Solution Found.\n");
case 1 then
printf("\nMaximum Number of Iterations Exceeded. Output may not be optimal.\n");
case 2 then
printf("\nMaximum CPU Time exceeded. Output may not be optimal.\n");
case 3 then
printf("\nStop at Tiny Step\n");
case 4 then
printf("\nSolved To Acceptable Level\n");
case 5 then
printf("\nConverged to a point of local infeasibility.\n");
case 6 then
printf("\nStopping optimization at current point as requested by user.\n");
case 7 then
printf("\nFeasible point for square problem found.\n");
case 8 then
printf("\nIterates diverging; problem might be unbounded.\n");
case 9 then
printf("\nRestoration Failed!\n");
case 10 then
printf("\nError in step computation (regularization becomes too large?)!\n");
case 12 then
printf("\nProblem has too few degrees of freedom.\n");
case 13 then
printf("\nInvalid option thrown back by IPOpt\n");
case 14 then
printf("\nNot enough memory.\n");
case 15 then
printf("\nINTERNAL ERROR: Unknown SolverReturn value - Notify IPOPT Authors.\n");
else
printf("\nInvalid status returned. Notify the Toolbox authors\n");
break;
end
endfunction
|