summaryrefslogtreecommitdiff
path: root/3776
diff options
context:
space:
mode:
Diffstat (limited to '3776')
-rw-r--r--3776/CH1/EX1.1/Ex1_1.sce2
-rw-r--r--3776/CH1/EX1.2/Ex1_2.sce22
-rw-r--r--3776/CH1/EX1.3/Ex1_3.sce18
-rw-r--r--3776/CH1/EX1.6/Ex1_6.sce6
-rw-r--r--3776/CH1/EX1.7/Ex1_7.sce66
-rw-r--r--3776/CH1/EX1.8/Ex1_8.sce4
-rw-r--r--3776/CH10/EX10.1/Ex10_1.sce9
-rw-r--r--3776/CH10/EX10.10/Ex10_10.sce6
-rw-r--r--3776/CH10/EX10.11/Ex10_11.sce6
-rw-r--r--3776/CH10/EX10.13/Ex10_13.sce2
-rw-r--r--3776/CH10/EX10.15/Ex10_15.sce23
-rw-r--r--3776/CH10/EX10.16/Ex10_16.sce12
-rw-r--r--3776/CH11/EX11.11/Ex11_11.sce91
-rw-r--r--3776/CH11/EX11.2/Ex11_2.sce10
-rw-r--r--3776/CH11/EX11.6/Ex11_6.sce48
-rw-r--r--3776/CH11/EX11.7/Ex11_7.sce21
-rw-r--r--3776/CH11/EX11.8/Ex11_8.sce13
-rw-r--r--3776/CH11/EX11.9/Ex11_9.sce31
-rw-r--r--3776/CH12/EX12.10/Ex12_10.sce4
-rw-r--r--3776/CH12/EX12.3/Ex12_3.sce2
-rw-r--r--3776/CH12/EX12.5/Ex12_5.sce6
-rw-r--r--3776/CH2/EX2.11/Ex2_11.sce17
-rw-r--r--3776/CH2/EX2.12/Ex2_12.sce7
-rw-r--r--3776/CH2/EX2.19/Ex2_19.sce4
-rw-r--r--3776/CH2/EX2.2/Ex2_2.sce6
-rw-r--r--3776/CH2/EX2.4/Ex2_4.sce14
-rw-r--r--3776/CH2/EX2.6/Ex2_6.sce26
-rw-r--r--3776/CH2/EX2.7/Ex2_7.sce11
-rw-r--r--3776/CH3/EX3.2/Ex3_2.sce12
-rw-r--r--3776/CH3/EX3.3/Ex3_3.sce20
-rw-r--r--3776/CH3/EX3.4/Ex3_4.sce4
-rw-r--r--3776/CH3/EX3.5/Ex3_5.sce14
-rw-r--r--3776/CH4/EX4.16/Ex4_16.sce15
-rw-r--r--3776/CH4/EX4.3/Ex4_3.sce15
-rw-r--r--3776/CH4/EX4.4/Ex4_4.sce17
-rw-r--r--3776/CH4/EX4.5/Ex4_5.sce21
-rw-r--r--3776/CH4/EX4.7/Ex4_7.sce4
-rw-r--r--3776/CH4/EX4.9/Ex4_9.sce28
-rw-r--r--3776/CH5/EX5.1/Ex5_1.sce2
-rw-r--r--3776/CH5/EX5.2/Ex5_2.sce4
-rw-r--r--3776/CH5/EX5.3/Ex5_3.sce16
-rw-r--r--3776/CH5/EX5.4/Ex5_4.sce4
-rw-r--r--3776/CH5/EX5.9/Ex5_9.sce4
-rw-r--r--3776/CH6/EX6.10/Ex6_10.sce2
-rw-r--r--3776/CH6/EX6.14/Ex6_14.sce13
-rw-r--r--3776/CH6/EX6.15/Ex6_15.sce14
-rw-r--r--3776/CH6/EX6.18/Ex6_18.sce2
-rw-r--r--3776/CH6/EX6.24/Ex6_24.sce16
-rw-r--r--3776/CH6/EX6.3/Ex6_3.sce24
-rw-r--r--3776/CH6/EX6.4/Ex6_4.sce2
-rw-r--r--3776/CH6/EX6.5/Ex6_5.sce8
-rw-r--r--3776/CH6/EX6.8/Ex6_8.sce10
-rw-r--r--3776/CH6/EX6.9/Ex6_9.sce28
-rw-r--r--3776/CH7/EX7.1/Ex7_1.sce6
-rw-r--r--3776/CH7/EX7.2/Ex7_2.sce6
-rw-r--r--3776/CH7/EX7.6/Ex7_6.sce2
-rw-r--r--3776/CH7/EX7.8/Ex7_8.sce2
-rw-r--r--3776/CH7/EX7.9/Ex7_9.sce4
-rw-r--r--3776/CH8/EX8.1/Ex8_1.sce6
-rw-r--r--3776/CH8/EX8.3/Ex8_3.sce11
-rw-r--r--3776/CH8/EX8.4/Ex8_4.sce19
-rw-r--r--3776/CH8/EX8.7/Ex8_7.sce4
-rw-r--r--3776/CH8/EX8.8/Ex8_8.sce17
-rw-r--r--3776/CH9/EX9.4/Ex9_4.sce20
-rw-r--r--3776/CH9/EX9.5/Ex9_5.sce17
-rw-r--r--3776/CH9/EX9.6/Ex9_6.sce8
-rw-r--r--3776/CH9/EX9.8/Ex9_8.sce4
67 files changed, 490 insertions, 422 deletions
diff --git a/3776/CH1/EX1.1/Ex1_1.sce b/3776/CH1/EX1.1/Ex1_1.sce
index f0d2002bc..ea165c7b0 100644
--- a/3776/CH1/EX1.1/Ex1_1.sce
+++ b/3776/CH1/EX1.1/Ex1_1.sce
@@ -11,7 +11,7 @@ BC = 1.0 //m
CF = 2.5 //m
contact_area = 200*200 // sq.mm , The contact area at c
-//caliculations
+//calculations
//Balancing forces in the x direction:
// Balncing the moments about C and B:
Fx = 0
diff --git a/3776/CH1/EX1.2/Ex1_2.sce b/3776/CH1/EX1.2/Ex1_2.sce
index 90d76b556..04492aa43 100644
--- a/3776/CH1/EX1.2/Ex1_2.sce
+++ b/3776/CH1/EX1.2/Ex1_2.sce
@@ -1,24 +1,24 @@
clear
-//Given
+//Given
load_distributed = 20 //kN/sq.m, This is the load distributed over the pier
-H = 2 // m, Total height
-h = 1 //m , point of investigation
-base = 1.5 //m The length of crossection in side veiw
+H = 2 // m, Total height
+h = 1 //m , point of investigation
+base = 1.5 //m The length of crossection in side view
top = 0.5 //m ,The length where load is distributed on top
-base_inv = 1 //m , the length at the point of investigation
-area = 0.5*1 //m ,The length at a-a crossection
+base_inv = 1 //m , the length at the point of investigation
+area = 0.5*1 //m ,The length at a-a cross-section
density_conc = 25 //kN/sq.m
-//caliculation of total weight
+//calculation of total weight
-v_total = ((top+base)/2)*top*H //sq.m ,The total volume
+v_total = ((top+base)/2)*top*H //sq.m ,The total volume
w_total = v_total* density_conc //kN , The total weight
-R_top = (top**2)*load_distributed //kN , THe reaction force due to load distribution
+R_top = (top**2)*load_distributed //kN , THe reaction force due to load distribution
reaction_net = w_total + R_top
-//caliculation of State of stress at 1m
+//calculation of State of stress at 1m
v_inv = ((top+base_inv)/2)*top*h //sq.m ,The total volume from 1m to top
w_inv = v_inv*density_conc //kN , The total weight from 1m to top
reaction_net = w_inv + R_top //kN
Stress = reaction_net/area //kN/sq.m
printf("\n The total weight of pier is %0.3f kN",w_total)
-printf("\n The stress at 1 m above is %0.1f kN/m**2",Stress)
+printf("\n The stress at 1 m above is %0.1f kN/sq.m",Stress)
diff --git a/3776/CH1/EX1.3/Ex1_3.sce b/3776/CH1/EX1.3/Ex1_3.sce
index 05d597de5..60497acef 100644
--- a/3776/CH1/EX1.3/Ex1_3.sce
+++ b/3776/CH1/EX1.3/Ex1_3.sce
@@ -4,15 +4,15 @@ clear
d_pins = 0.375 //inch
load1 = 3 //kips
AB_x = 6 //inch,X-component
-AB_y = 3 //inch,Y-component
+AB_y = 3 //inch,Y-component
BC_y = 6 //inch,Y-component
BC_x = 6 //inch,X-component
-area_AB = 0.25*0.5 //inch*2
-area_net = 0.20*2*(0.875-0.375) //inch*2
-area_BC = 0.875*0.25 //inch*2
-area_pin = d_pins*2*0.20 //inch*2
+area_AB = 0.25*0.5 //inch*2
+area_net = 0.20*2*(0.875-0.375) //inch*2
+area_BC = 0.875*0.25 //inch*2
+area_pin = d_pins*2*0.20 //inch*2
area_pin_crossection = 2*3.14*((d_pins/2)**2)
-//caliculations
+//calculations
slope = AB_y/ AB_x //For AB
slope = BC_y/ BC_x //For BC
@@ -27,18 +27,18 @@ F_C_x = -(load1*BC_x)/(BC_y + AB_y ) //kips, F_C_x X-component of F_c
F_A= ((5**0.5)/2)*F_A_x //kips
F_A_y = 0.5*F_A_x //kips
-//X,Y components of F_C
+//X,Y components of F_C
F_C= (2**0.5)*F_C_x //kips
F_C_y = F_C_x //kips
T_stress_AB = F_A/area_AB //ksi , Tensile stress in main bar AB
stress_clevis = F_A/area_net //ksi ,Tensile stress in clevis of main bar AB
-c_strees_BC = F_C/area_BC //ksi , Comprensive stress in main bar BC
+c_stress_BC = F_C/area_BC //ksi , Compressive stress in main bar BC
B_stress_pin = F_C/area_pin //ksi , Bearing stress in pin at C
To_stress_pin = F_C/area_pin_crossection //ksi , torsion stress in pin at C
printf("\n Tensile stress in main bar AB: %0.1f ksi",T_stress_AB)
printf("\n Tensile stress in clevis of main bar AB: %0.1f ksi",stress_clevis)
-printf("\n Comprensive stress in main bar BC: %0.1f ksi",-c_strees_BC)
+printf("\n Compressive stress in main bar BC: %0.1f ksi",-c_stress_BC)
printf("\n Bearing stress in pin at C: %0.2f ksi",-B_stress_pin)
printf("\n torsion stress in pin at C: %0.2f ksi",-To_stress_pin)
diff --git a/3776/CH1/EX1.6/Ex1_6.sce b/3776/CH1/EX1.6/Ex1_6.sce
index ba7d7e038..11a4a83f1 100644
--- a/3776/CH1/EX1.6/Ex1_6.sce
+++ b/3776/CH1/EX1.6/Ex1_6.sce
@@ -5,10 +5,10 @@ frequency = 10 //Hz
stress_allow = 200 //MPa
R = 0.5 //m
-//caliculations
+//calculations
//
w = 2*%pi*frequency //rad/sec
a = (w**2)*R //sq.m/sec
F = mass*a //N
-A_req = F/stress_allow //sq.m , The required area for aloowing stress
-printf("\n The required size of rod is: %0.2f sq.m",A_req)
+A_req = F/stress_allow //sq.mm , The required area for allowing stress
+printf("\n The required size of rod is: %0.2f sq.mm",A_req)
diff --git a/3776/CH1/EX1.7/Ex1_7.sce b/3776/CH1/EX1.7/Ex1_7.sce
index a9cde7839..b4256e15b 100644
--- a/3776/CH1/EX1.7/Ex1_7.sce
+++ b/3776/CH1/EX1.7/Ex1_7.sce
@@ -6,21 +6,69 @@ L_n_2 = 15 //kips ,live load 2
stress_allow = 22 //ksi
phi = 0.9 //probalistic coefficients
y_stress = 36 //ksi,Yeild strength
-//According to AISR
+//According to AISR
//a
p_1 = D_n + L_n_1 //kips since the total load is sum of dead load and live load
p_2 = D_n + L_n_2 //kips, For second live load
-Area_1 = p_1/stress_allow //in*2 ,the allowable area for the allowed stress
-Area_2 = p_2/stress_allow //in*2
-printf("\n the allowable area for live load %0.3f is %0.3f in*2",L_n_1,Area_1)
-printf("\n the allowable area for live load %0.3f is %0.3f in*2",L_n_2,Area_2)
+Area_1 = p_1/stress_allow //sq.in ,the allowable area for the allowed stress
+Area_2 = p_2/stress_allow //sq.in
+printf("\n the allowable area for live load %0.3f is %0.3f sq.in",L_n_1,Area_1)
+printf("\n the allowable area for live load %0.3f is %0.3f sq.in",L_n_2,Area_2)
//b
//area_crossection= (1.2*D_n +1.6L_n)/(phi*y_stress)
-area_crossection_1= (1.2*D_n +1.6*L_n_1)/(phi*y_stress) //in*2,crossection area for first live load
-area_crossection_2= (1.2*D_n +1.6*L_n_2)/(phi*y_stress) //in*2,crossection area for second live load
-printf("\n the crossection area for live load %0.3f is %0.3f in*2",L_n_1,area_crossection_1)
-printf("\n the crossection area for live load %0.3f is %0.3f in*2",L_n_2,area_crossection_2)
+area_crossection_1= (1.2*D_n +1.6*L_n_1)/(phi*y_stress) //sq.in,crossection area for first live load
+area_crossection_2= (1.2*D_n +1.6*L_n_2)/(phi*y_stress) //sq.in,crossection area for second live load
+printf("\n the crossection area for live load %0.3f is %0.3f sq.in",L_n_1,area_crossection_1)
+printf("\n the crossection area for live load %0.3f is %0.3f sq.in",L_n_2,area_crossection_2)
+
+//c
+
+//calculating safety indices for a)
+
+mu_r1=1.05*Area_1*y_stress//kips
+del_R=0.11
+mu_q1 = 6//kips
+del_q1 = 0.093
+
+mu_r2=1.05*Area_2 *y_stress//kips
+mu_q2 = 20//kips
+del_q2 = 0.189
+
+beta_1 = log(mu_r1/mu_q1)/(del_R**2+del_q1**2)**0.5
+beta_2 = log(mu_r2/mu_q2)/(del_R**2+del_q2**2)**0.5
+
+
+
+printf("\n Safety index for a) beta1 is %0.3f ",beta_1)
+printf("\n Safety index for a) beta2 is %0.3f ",beta_2)
+
+
+
+
+
+
+
+
+//calculating safety indices for b)
+
+mu_r1=1.05*area_crossection_1*y_stress//kips
+del_R=0.11
+mu_q1 = 6//kips
+del_q1 = 0.093
+
+mu_r2=1.05*area_crossection_2*y_stress//kips
+mu_q2 = 20//kips
+del_q2 = 0.189
+
+beta_1 = log(mu_r1/mu_q1)/(del_R**2+del_q1**2)**0.5
+beta_2 = log(mu_r2/mu_q2)/(del_R**2+del_q2**2)**0.5
+
+beta_1 = log(mu_r1/mu_q1)/(del_R**2+del_q1**2)**0.5
+beta_2 = log(mu_r2/mu_q2)/(del_R**2+del_q2**2)**0.5
+
+printf("\n Safety index for b) beta1 is %0.3f ",beta_1)
+printf("\n Safety index for b) beta2 is %0.3f ",beta_2)
diff --git a/3776/CH1/EX1.8/Ex1_8.sce b/3776/CH1/EX1.8/Ex1_8.sce
index e30f1631e..3673b9dd1 100644
--- a/3776/CH1/EX1.8/Ex1_8.sce
+++ b/3776/CH1/EX1.8/Ex1_8.sce
@@ -1,13 +1,13 @@
clear
//Given
-A_angle = 2 //in*2
+A_angle = 2 //sq.in
stress_allow = 20 //ksi, The maximum alowable stress
F = stress_allow*A_angle //K, The maximum force
AD = 3 //in, from the figure
DC = 1.06 //in, from the figure
strength_AWS = 5.56 // kips/in,Allowable strength according to AWS
-//caliculations
+//calculations
//momentum at point "d" is equal to 0
R_1 = (F*DC)/AD //k,Resultant force developed by the weld
R_2 = (F*(AD-DC))/AD //k,Resultant force developed by the weld
diff --git a/3776/CH10/EX10.1/Ex10_1.sce b/3776/CH10/EX10.1/Ex10_1.sce
index dfc409a95..63307cca9 100644
--- a/3776/CH10/EX10.1/Ex10_1.sce
+++ b/3776/CH10/EX10.1/Ex10_1.sce
@@ -1,10 +1,11 @@
clear
-//Given
+//Given
dia = 400 //mm - The diameter of a pulley
-E = 2001 //Gpa - Youngs modulus
+E = 200 //GPa - Youngs modulus
t = 0.6 //mm - The thickness of band
-c = t/2 //mm - The maximum stress is seen
-//Caliculations
+c = t/2 //mm - The maximum stress is seen
+//calculations
stress_max = E*c*(10**3)/(dia/2) //MPa - The maximum stress on the crossection occurs at the ends
printf("\n The maximum bending stress developed in the saw %0.3f MPa",stress_max)
+// answer varies from the book
diff --git a/3776/CH10/EX10.10/Ex10_10.sce b/3776/CH10/EX10.10/Ex10_10.sce
index b9e6eac7c..403def9d1 100644
--- a/3776/CH10/EX10.10/Ex10_10.sce
+++ b/3776/CH10/EX10.10/Ex10_10.sce
@@ -1,8 +1,8 @@
clear
-k = 24.0*(10**12) //N.mm2 Flexure rigidity
-E = 200.0 //Gpa - Youngs modulus of the string
+k = 24.0*(10**12) //N.sq.mm Flexure rigidity
+E = 200.0 //GPa - Youngs modulus of the string
l = 5000.0 //mm - The length of the string
-C_A = 300.0 //mm2 - crossection area
+C_A = 300.0 //sq.mm - crossection area
P = 50.0 //KN - The force applies at the end
a = 2000.0 //mm - The distance C-F
x = 1//X - let it be a variable X
diff --git a/3776/CH10/EX10.11/Ex10_11.sce b/3776/CH10/EX10.11/Ex10_11.sce
index a514a0eb8..7fd39419e 100644
--- a/3776/CH10/EX10.11/Ex10_11.sce
+++ b/3776/CH10/EX10.11/Ex10_11.sce
@@ -8,11 +8,11 @@ I_Z = 315 //in^4 - the moment of inertia wrt Z axis
I_y = 8.13 //in^4 - the moment of inertia wrt Y axis
o = 5 // degrees - the angle of acting force
P = 2000 //k the acting force
-P_h = P*sin((%pi/180)*(o)) //k - The horizantal component of P
+P_h = P*sin((%pi/180)*(o)) //k - The horizontal component of P
P_v = P*cos((%pi/180)*(o)) //k - The vertical component of P
-e_h = P_h*(L**3)/(3*E*I_y) // the horizantal component of deflection
+e_h = P_h*(L**3)/(3*E*I_y) // the horizontal component of deflection
e_v = P_v*(L**3)/(3*E*I_Z ) // the vertical component of deflection
e = ((e_h**2 + e_v**2)**0.5)
-printf("\n the horizantal component of deflection %0.3f in",e_h)
+printf("\n the horizontal component of deflection %0.3f in",e_h)
printf("\n the vertical component of deflection %0.3f in",e_v)
printf("\n the resultant deflection %0.3f in",e)
diff --git a/3776/CH10/EX10.13/Ex10_13.sce b/3776/CH10/EX10.13/Ex10_13.sce
index e2688eb46..75bc3aa0d 100644
--- a/3776/CH10/EX10.13/Ex10_13.sce
+++ b/3776/CH10/EX10.13/Ex10_13.sce
@@ -6,7 +6,7 @@ m = 15.3 // mass of the falling body
h = 75.0 //mm - The height of the falling body
p = m*9.81 //N the force acted due to the body
L = 1000.0 //mm The length of the cantilever
-E = 200 //Gpa The youngs modulus of the material used
+E = 200 //GPa The youngs modulus of the material used
I = (l**4)/12 //mm - the moment of inertia
k = 300 //N/mm -the stiffness of the spring
//Rigid supports
diff --git a/3776/CH10/EX10.15/Ex10_15.sce b/3776/CH10/EX10.15/Ex10_15.sce
index 72f3ed920..62eb98e8c 100644
--- a/3776/CH10/EX10.15/Ex10_15.sce
+++ b/3776/CH10/EX10.15/Ex10_15.sce
@@ -1,17 +1,14 @@
clear
//Given
-E = 30*(10**3) //ksi - The youngs modulus of the material
+E = 30*(10**3) //ksi - The youngs modulus of the material
stress_y = 40 //ksi - yield stress
-stress_max = 24.2 //ksi - the maximum stress
-l = 2 //in - The length of the crossection
+stress_max = 24.4 //ksi - the maximum stress
+l = 2 //in - The length of the crossection
b = 3 //in - the width of the crossection
-h = 3 //in - the depth of the crossection
-//lets check ultimate capacity for a 2 in deep section
-M_ul = stress_y*b*(l**2)/4 //K-in the ultimate capacity
-curvature = 2*stress_y/(E*(h/2) ) //in*-1 the curvature of the beam
-curvature_max = stress_max/(E*(h/2)) //in*-1 The maximum curvature
-printf("\n the ultimate capacity %0.3f k-in",M_ul)
-printf("\n the ultimate curvature %0.3f in *-1",curvature_max)
-printf("\n E given in equation is wrong")
-printf("\n Actual E in question is 30*10**3")
-
+h = 2 //in - the depth of the crossection
+//lets check ultimate capacity for a 2 in deep section
+M_ul = stress_max*b*(l**2)/4 //K-in the ultimate capacity
+curvature = 2*stress_y/(E*(h/2) ) //per inch the curvature of the beam
+curvature_max = stress_max/(E*(b/2)) //per inch The maximum curvature
+printf("\n the curvature in 11-in is %e per inch",curvature)
+printf("\n the ultimate curvature %e per inch",curvature_max)
diff --git a/3776/CH10/EX10.16/Ex10_16.sce b/3776/CH10/EX10.16/Ex10_16.sce
index 7cce6d1d2..d1e701290 100644
--- a/3776/CH10/EX10.16/Ex10_16.sce
+++ b/3776/CH10/EX10.16/Ex10_16.sce
@@ -1,12 +1,12 @@
clear
-//Given
-l_ad = 1600 //mm - The total length of the beam
+//Given
+l_ad = 1600 //mm - The total length of the beam
l_ab = 600 //mm - The length of AB
l_bc = 600 //mm - The length of BC
-e_1 = 0.24 //mm - deflection
+e_1 = 0.24 //mm - deflection
e_2 = 0.48 //mm - deflection
-E = 35 //Gpa
-//Caliculation
+E = 35 //GPa
+//calculation
A_afe = -(l_ab+l_bc)*e_1*(10**-3)/(2*E)
A_afe = -(l_ab)*e_2*(10**-3)/(4*E)
@@ -15,4 +15,4 @@ x_1 = 1200 //com from B
x_2 = 800 //com from B
y_b = A_afe*x_1 + A_afe*x_2 //mm The maximum deflection at tip B
printf("\n The maximum deflection at tip B %0.2f mm",y_b)
-printf("\n The slope at the tip B %0.2f radians",y_1_b)
+printf("\n The slope at the tip B %e radians",y_1_b)
diff --git a/3776/CH11/EX11.11/Ex11_11.sce b/3776/CH11/EX11.11/Ex11_11.sce
index 510361b42..ba17c5e84 100644
--- a/3776/CH11/EX11.11/Ex11_11.sce
+++ b/3776/CH11/EX11.11/Ex11_11.sce
@@ -1,59 +1,48 @@
clear
//
-P = 200.0 //K The force on the beam
+P = 200.0 //K The force on the beam
L = 15 //ft - The length of the rod
-F_y = 50.0 //ksi
+F_y = 50.0 //ksi
F_a = F_y/(5.0/3) //ksi -AISC MANUAL ,allowable axial stress if axial force is alone
F_b = F_a //Allowable compressive bending stress
M_1 = 600.0 //k-in - The moment acting on the ends of the rod
M_2 = 800.0 //k-in - the moment acting on the other end of teh rod
-B_x = 0.264 //in - Extracted from AISC manual
-E = 29*(10**3)
-A = P/F_a + M_2*B_x/F_b //in2- The minimum area
+B_x = 0.264 //in - Extracted from AISC manual
+E = 29*(10**3)
+A = P/F_a + M_2*B_x/F_b //sq.in- The minimum area
printf("\n \n The minimum area is %0.2f in^2",A)
-//we will select W10x49 section
-A_s = 14.4 //in2 - The area of the section
-r_min = 2.54 //in The minimum radius
-r_x = 4.35 //in
-f_a = P/A_s //Ksi- The computed axial stress
-f_b = M_2*B_x/A_s //Computed bending stess
-C_c = ((2*(%pi**2)*E/F_y)**0.5) //Slenderness ratio L/R
-C_s = L*12/r_min // Slenderness ratio L/R of the present situation
-if C_s <C_c then
- printf("\n The following approch is solvable")
-else
- printf("\n The caliculation is not possible")
- end
-F_a_1 = 19.3 //Ksi - AISC lets try this
-c_m = 0.6 - 0.4*(-M_1/M_2)
-F_e = (12*(%pi**2)*E)/(23*(L*12/r_x)**2)
-k = f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b //Condition mentioned in AISC
-if k>1 then
- printf("\n The following W10x49 section is not satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b %0.3f >1",k)
-else
- printf("\n The following W10x49 section is satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b %0.3f <1",k)
- end
-//trail - 2
-//Lets take W10 x 60
-A_s = 17.6 //in2 - The area of the section
-r_min = 2.57 //in The minimum radius
-r_x = 4.39 //in
-f_a = P/A_s //Ksi- The computed axial stress
-f_b = M_2*B_x/A_s //Computed bending stess
-C_c = ((2*(%pi**2)*E/F_y)**0.5) //Slenderness ratio L/R
-C_s = L*12/r_min // Slenderness ratio L/R of the present situation
-if C_s <C_c then
- printf("\n The following approch is solvable")
-else
- printf("\n The caliculation is not possible")
- end
-F_a_1 = 19.3 //Ksi - AISC lets try this
-c_m = 0.6 - 0.4*(-M_1/M_2)
-F_e = (12*(%pi**2)*E)/(23*(L*12/r_x)**2)
-k = f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b //Condition mentioned in AISC
-if k>1 then
- printf("\n The following W10x49 section is not satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b %0.3f >1",k)
-else
- printf("\n The following W10x49 section is satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b %0.3f <1",k)
- end
-printf("\n small variation due to rounding off errors") \ No newline at end of file
+
+
+
+
+for i=1:2
+
+ st =['W10x49', 'W10x60']
+ printf("\n we will select %s section",st(i))
+
+ A_s = [14.4, 17.6 ] //sq.in - The area of the section
+ r_min = [2.54 , 2.57 ] //in The minimum radius
+ r_x = [4.35 ,4.39] //in
+ f_a = P/A_s(i) //Ksi- The computed axial stress
+ f_b = M_2*B_x/A_s(i) //Computed bending stess
+ C_c = ((2*(%pi**2)*E/F_y)**0.5) //Slenderness ratio L/R
+ C_s = L*12/r_min(i) // Slenderness ratio L/R of the present situation
+ if C_s <C_c then
+ printf("\n Since calculated Le/r ratio is less than Cc, we can apply the second ASD formula")
+ else
+ printf("\n The calculation is not possible")
+ end
+ F_a_1 = 19.3 //Ksi - AISC lets try this
+ c_m = 0.6 - 0.4*(-M_1/M_2)
+ F_e = (12*(%pi**2)*E)/(23*(L*12/r_x(i))**2)
+ k = f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b //Condition mentioned in AISC
+ if k>1 then
+ printf("\n The following %s section is not satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b %0.3f >1",st(i),k)
+ else
+ printf("\n The following %s section is satisfying our constraints since f_a/F_a_1 + c_m*f_b*(1-(f_a/F_e))/F_b %0.3f <1",st(i),k)
+ end
+
+end
+
+
+printf("\n small variation due to rounding off errors")
diff --git a/3776/CH11/EX11.2/Ex11_2.sce b/3776/CH11/EX11.2/Ex11_2.sce
index a11f41c53..eb888504a 100644
--- a/3776/CH11/EX11.2/Ex11_2.sce
+++ b/3776/CH11/EX11.2/Ex11_2.sce
@@ -3,14 +3,14 @@ clear
//
h = 60 //mm - the length of the crossection
b = 100 //mm - the width of hte crossection
-E = 200 //Gpa - The youngs modulus
+E = 200 //GPa - The youngs modulus
stress_cr = 250 //MPa - The proportionality limit
-//Caliculations
+//calculations
I = b*(h**3)/12 //mm3 The momentof inertia of the crossection
-A = h*b //mm2 - The area of teh crossection
-//From Eulier formula
+A = h*b //sq.mm - The area of teh crossection
+//From Euler formula
r_min = ((I/A)**0.5) //mm - The radius of the gyration
-//(l/r)**2= (%pi**2)*E/stress_cr //From Eulier formula
+//(l/r)**2= (%pi**2)*E/stress_cr //From Euler formula
l = (((%pi**2)*E*(10**3)/stress_cr)**0.5)*r_min //mm - the length after which the beam starts buckling
printf("\n The length after which the beam starts buckling is %0.0f mm",l)
diff --git a/3776/CH11/EX11.6/Ex11_6.sce b/3776/CH11/EX11.6/Ex11_6.sce
index a095bf461..a2b8da993 100644
--- a/3776/CH11/EX11.6/Ex11_6.sce
+++ b/3776/CH11/EX11.6/Ex11_6.sce
@@ -2,36 +2,54 @@ clear
//Given
//
L = 15 //ft - The length of the each rod
-A = 46.7 //in2 - The length of the crossection
+A = 46.7 //sq.in - The length of the crossection
r_min = 4 //in - The radius of gyration
stress_yp = 36 //ksi - the yielding point stress
E = 29*(10**3) //ksi - The youngs modulus
C_c = ((2*(%pi**2)*E/stress_yp)**0.5) //Slenderness ratio L/R
-C_s = L*12/r_min // Slenderness ratio L/R of the present situation
-//According to AISC formulas
-if (C_s <C_c) then
- printf ("a)The following approch is solvable")
+C_s1 = L*12/r_min // Slenderness ratio L/R of the present situation
+//According to AISC formulas
+printf ("a)calculated Le/r ratio is %f",C_s1)
+if (C_s1 <C_c) then
+ printf ("\n a)Since calculated Le/r ratio is less than Cc(126), we can apply the second ASD formula")
else
- print ("The caliculation is not possible")
+ print ("The calculation is not possible")
end
-F_S = 5.0/3 +3*C_s/(8*C_c) -(3*C_s**3)/(8*C_c**3) //Safety factor
-Stress_all = (1 - (C_s**2)/(2*C_c**2))*stress_yp/F_S //The allowable strees
+F_S = 5.0/3 +3*C_s1/(8*C_c) -(C_s1**3)/(8*C_c**3) //Safety factor
+Stress_all = (1 - (C_s1**2)/(2*C_c**2))*stress_yp/F_S //The allowable stress
printf("\n a) The allowable stress in this case is %0.2f kips",Stress_all)
+printf("\n a) The allowable pressure in this case is %0.2f kips",Stress_all*A)
+
//Part - B
//Given
L = 40 //ft - The length of the each rod
-A = 46.7 //in2 - The length of the crossection
+A = 46.7 //sq.in - The length of the crossection
r_min = 4 //in - The radius of gyration
stress_yp = 36 //ksi - the yielding point stress
E = 29*(10**3) //ksi - The youngs modulus
C_c = ((2*(%pi**2)*E/stress_yp)**0.5) //Slenderness ratio L/R
-C_s = L*12/r_min // Slenderness ratio L/R of the present situation
-//According to AISC formulas
+C_s = L*12/r_min // Slenderness ratio L/R of the present situation
+//According to AISC formulas
+printf ("\n b)calculated Le/r ratio is %f",C_s)
if C_s <C_c then
- printf("b) The following approch is solvable")
+ printf("\n b)Since calculated Le/r ratio is less than Cc, we can apply the second ASD formula")
else
- printf("The caliculation is not possible")
+ printf("The calculation is not possible")
end
-F_S = 5.0/3 +3*C_s/(8*C_c) -(3*C_s**3)/(8*C_c**3) //Safety factor
-Stress_all = (1 - (C_s**2)/(2*C_c**2))*stress_yp/F_S //The allowable strees
+F_S = 5.0/3 +3*C_s/(8*C_c) -(C_s**3)/(8*C_c**3) //Safety factor
+Stress_all = (1 - (C_s**2)/(2*C_c**2))*stress_yp/F_S //The allowable stress
printf("\n b) The allowable stress in this case is %0.2f kips",Stress_all)
+printf("\n b) The allowable pressure in this case is %0.2f kips",Stress_all*A)
+printf("\n Similarly, for a column fixed at one end")
+C_s = L*12/r_min*.8 // Slenderness ratio L/R of the present situation
+//According to AISC formulas
+printf ("\n b)calculated Le/r ratio is %f",C_s)
+if C_s <C_c then
+ printf("\n b)Since calculated Le/r ratio is less than Cc, we can apply the second ASD formula")
+else
+ printf("The calculation is not possible")
+end
+F_S = 5.0/3 +3*C_s/(8*C_c) -(C_s**3)/(8*C_c**3) //Safety factor
+Stress_all = (1 - (C_s**2)/(2*C_c**2))*stress_yp/F_S //The allowable stress
+printf("\n b) The allowable stress in this case is %0.2f kips",Stress_all)
+printf("\n b) The allowable pressure in this case is %0.0f kips",Stress_all*A)
diff --git a/3776/CH11/EX11.7/Ex11_7.sce b/3776/CH11/EX11.7/Ex11_7.sce
index a265e2104..f933f32cd 100644
--- a/3776/CH11/EX11.7/Ex11_7.sce
+++ b/3776/CH11/EX11.7/Ex11_7.sce
@@ -1,20 +1,23 @@
clear
//Given
//
-L = 15 //ft - The length of the each rod
-p = 200 //kips The concentric load applied
+L = 15 //ft - The length of the each rod
+p = 200 //kips The concentric load applied
r_min = 2.10 //in - The radius of gyration
stress_yp = 50 //ksi - the yielding point stress
E = 29*(10**3) //ksi - The youngs modulus
C_c = ((2*(%pi**2)*E/stress_yp)**0.5) //Slenderness ratio L/R
C_s = L*12/r_min //Slenderness ratio L/R present situation
+printf("\n C_s = %0.2f ",C_s)
+printf("\n C_c = %0.2f ",C_c)
+
if C_s <C_c then
- printf("a)The following approch is solvable")
+ printf ("\nSince calculated C_s is less than Cc, we can apply the second ASD formula.")
else
- printf("The caliculation is not possible")
+ printf("The calculation is not possible")
end
-F_S = 5.0/3 +3*C_s/(8*C_c) -(3*C_s**3)/(8*C_c**3) //Safety factor
-Stress_all = (1 - (C_s**2)/(2*C_c**2))*stress_yp/F_S //The allowable strees
-a = p/Stress_all //in2 the alloawble area of the beam
-printf("\n The allowable stress in this case is %0.2f kips",Stress_all)
-printf("\n This stress requires %0.2f in2",a)
+F_S = 5.0/3 +3*C_s/(8*C_c) -(C_s**3)/(8*C_c**3) //Safety factor
+Stress_all = (1 - (C_s**2)/(2*C_c**2))*stress_yp/F_S //The allowable stress
+a = p/Stress_all //sq.in the allowable area of the beam
+printf("\n The allowable stress in this case is %0.0f kips",Stress_all)
+printf("\n This stress requires %0.2f sq.in",a)
diff --git a/3776/CH11/EX11.8/Ex11_8.sce b/3776/CH11/EX11.8/Ex11_8.sce
index 84736d445..64d8b2256 100644
--- a/3776/CH11/EX11.8/Ex11_8.sce
+++ b/3776/CH11/EX11.8/Ex11_8.sce
@@ -2,18 +2,19 @@ clear
//Given
//
L = 15.0 //ft - The length of the each rod
-A = 46.7 //in2 - The length of the crossection
+A = 46.7 //sq.in - The length of the crossection
r_min = 4 //in - The radius of gyration
stress_yp = 36.0 //ksi - the yielding point stress
E = 29*(10**3) //ksi - The youngs modulus
lamda = L*12*((stress_yp/E)**0.5)/(4*(%pi)) //column slenderness ratio
if lamda<1.5 then
- printf("The following approach is right")
+ printf("Since lamda<1.5 we can apply the AISC LFRD formula")
else
printf("The following approach is wrong")
end
-stress_cr = (0.658**(lamda**2))*stress_yp //ksi - The critical stress
-P_n = stress_cr*A //kips //Nominal compressive strength
+stress_cr = (0.658**(lamda**2))*stress_yp //ksi - The critical stress
+P_n = stress_cr*A //kips //Nominal compressive strength
o = 0.85 //Resistance factor
-p_u = o*P_n //kips ,column design compressive strength
-printf("\n column design compressive strength %0.3f kips",p_u)
+p_u = o*P_n //kips ,column design compressive strength
+printf("\ncolumn design compressive strength %0.3f kips",p_u)
+// small variation due to rounding off errors
diff --git a/3776/CH11/EX11.9/Ex11_9.sce b/3776/CH11/EX11.9/Ex11_9.sce
index 98dcadcc9..ecc7bb597 100644
--- a/3776/CH11/EX11.9/Ex11_9.sce
+++ b/3776/CH11/EX11.9/Ex11_9.sce
@@ -1,16 +1,16 @@
clear
-//Given
-//FOR FLANGS
-l = 5 //in - The length of the flang
-b = 5 //in - Teh width of the flang
-t = 0.312 //in - the thickness of the flang
+//Given
+//FOR FLANGE
+l = 5 //in - The length of the flange
+b = 5 //in - Teh width of the flange
+t = 0.312 //in - the thickness of the flange
L = 20 //in - Length of the beam, Extracted from AISC manuals
-A = 4.563 //in2 - The area of crossection of the beam
-r = 1.188 //in - radius of the gyration, Extracted from AISC manuals
-//b/t- value of the flang
-k = (5 -t)/(2*t) //b/t ratio
+A = 4.563 //sq.in - The area of crossection of the beam
+r = 1.188 //in - radius of the gyration, Extracted from AISC manuals
+//b/t- value of the flange
+k = (5 -t)/(2*t) //b/t ratio
//AISC, lets check maximum allowable stress for slang
-Stressf_all = 23.1 - 0.79*k //ksi The maximum allowable stress in case of flang,AISC
+Stressf_all = 23.1 - 0.79*k //ksi The maximum allowable stress in case of flange,AISC
//web width thickness ratio
k_2 = (5 -2*t)/(t)
@@ -20,17 +20,16 @@ if k_2<16 then
//a) Overall buckling investment
k_31 = L/r //slenderness ratio
Stressb_all = 20.2 - 0.126*k_31//ksi The maximum allowable stress in case of Buckling,AISC
-p_allow = A*Stressf_all //kips The allowable concentric load
+p_allow = A*Stressf_all //kips The allowable concentric load
//b) Overall buckling investmen
-L_2 = 60 //in
+L_2 = 60 //in
k_3 = L_2/r //slenderness ratio
Stressb_all_2 = 20.2 - 0.126*k_3//ksi The maximum allowable stress in case of Buckling,AISC
-p_allow_2 = A*Stressb_all_2 //kips The allowable concentric load
+p_allow_2 = A*Stressb_all_2 //kips The allowable concentric load
printf("\n The maximum allowable stress in case of web width %0.2f ksi",Stressw_all)
-printf("\n The maximum allowable stress in case of flang %0.2f ksi",Stressf_all)
+printf("\n The maximum allowable stress in case of flange %0.2f ksi",Stressf_all)
printf("\n a) The maximum allowable load in case of Buckling %0.2f kips",p_allow)
printf("\n b) The maximum allowable load in case of Buckling %0.2f kips",p_allow_2)
-printf("\n small variation due to rounding off errors")
-
+// small variation due to rounding off errors
diff --git a/3776/CH12/EX12.10/Ex12_10.sce b/3776/CH12/EX12.10/Ex12_10.sce
index 68fe4e541..31260aee0 100644
--- a/3776/CH12/EX12.10/Ex12_10.sce
+++ b/3776/CH12/EX12.10/Ex12_10.sce
@@ -1,7 +1,7 @@
clear
//Given
-A_1 = 0.125 //in2 , The area of the crossection of AB
-A_2 = 0.219 //in2 , The area of the crossection of BC
+A_1 = 0.125 //sq.in , The area of the crossection of AB
+A_2 = 0.219 //sq.in , The area of the crossection of BC
l_1 = 3*(5**0.5) //in , The length of AB
l_2 = 6*(2**0.5) //in , The length of BC
p = 3 //k , Force acting on the system
diff --git a/3776/CH12/EX12.3/Ex12_3.sce b/3776/CH12/EX12.3/Ex12_3.sce
index f99a26393..889a51fee 100644
--- a/3776/CH12/EX12.3/Ex12_3.sce
+++ b/3776/CH12/EX12.3/Ex12_3.sce
@@ -11,7 +11,7 @@ l_ab = 2.5 //mt - The length of the rod
l_bc = 2 //mt - The length of the rod
A_ab = 5*(10**-4) //mt2 the areaof ab
A_bc = 5*(10**-3) //mt2 the areaof bc
-E = 70 //Gpa The youngs modulus of the material
+E = 70 //GPa The youngs modulus of the material
e_a =(p_ab*l_ab*F_ab/(A_ab*E) + p_bc*l_bc*F_bc/(A_bc*E))*(10**-6) //KN-m
//Part -2 due to flexure
I = 60*10**6 //mm4 - the moment of inertia
diff --git a/3776/CH12/EX12.5/Ex12_5.sce b/3776/CH12/EX12.5/Ex12_5.sce
index c7bb91a72..cd3e6dbc7 100644
--- a/3776/CH12/EX12.5/Ex12_5.sce
+++ b/3776/CH12/EX12.5/Ex12_5.sce
@@ -7,8 +7,8 @@ F_ab = 2500 //lb
F_bc = -2500 //lb
l_ab = 60 //in - The length of the rod
l_bc = 60 //in - The length of the rod
-A_ab = 0.15 //in2 the areaof ab
-A_bc = 0.25 //in2 the areaof bc
+A_ab = 0.15 //sq.in the areaof ab
+A_bc = 0.25 //sq.in the areaof bc
E = 30*(10**6) //psi The youngs modulus of the material
//Part_a
e_a =p_ab*l_ab*F_ab/(A_ab*E) + p_bc*l_bc*F_bc/(A_bc*E) //lb-in the deflection
@@ -16,7 +16,7 @@ e_a =p_ab*l_ab*F_ab/(A_ab*E) + p_bc*l_bc*F_bc/(A_bc*E) //lb-in the deflection
p_bd = 1 //lb The recorded virtual loading
F_bd = 1 //lb
l_bd = 40 //in - The length of the rod
-A_bd = 0.1 //in2 the areaof ab
+A_bd = 0.1 //sq.in the areaof ab
e_a_1 =p_ab*p_ab*l_ab/(A_ab*E) + p_bc*p_bc*l_bc/(A_bc*E) +p_bd*p_bd*l_bd/(A_bd*E) //lb-in the deflection
//Since the produced defelection should compensate the other one
x_d = e_a/e_a_1
diff --git a/3776/CH2/EX2.11/Ex2_11.sce b/3776/CH2/EX2.11/Ex2_11.sce
index c4e15f631..4f9a017ec 100644
--- a/3776/CH2/EX2.11/Ex2_11.sce
+++ b/3776/CH2/EX2.11/Ex2_11.sce
@@ -1,21 +1,26 @@
clear
-mass = 4 //kg
+mass = 4 //kg
dist = 1 //mt freely falling distance
l = 1500 //mm length of rod
d = 15 //mm diameter
l_ab = 6.71 //inch
l_bc = 8.29 //inch
-E = 200 //GPA youngs modulus
+E = 200 //GPA youngs modulus
k = 4.5 // N/mm stiffness costant
F = mass*9.81// The force applying
-Area = 3.14*(d**2)/4
-// Two cases
-//youngs modulus
+Area = 3.14*(d**2)/4
+// Two cases
+//youngs modulus
e_y = F*l/(Area*E*(10**3))
// stiffness
-e_f = F/k
+e_f = F/k
//total
e = e_y +e_f
k = 1+(2/(e*(10**-3)))
stress_max_1 = F*(1+(k**0.5))/Area
printf("\n The maximum stress is: %0.3f MPa",stress_max_1)
+
+//for the rod without washer
+k2 = 1+(2/(e_y*(10**-3)))
+stress_max_2 = F*(1+(k2**0.5))/Area
+printf("\n The maximum stress for the rod without washer is: %0.3f MPa",stress_max_2)
diff --git a/3776/CH2/EX2.12/Ex2_12.sce b/3776/CH2/EX2.12/Ex2_12.sce
index b4a566a08..fb8e4ffb6 100644
--- a/3776/CH2/EX2.12/Ex2_12.sce
+++ b/3776/CH2/EX2.12/Ex2_12.sce
@@ -1,9 +1,10 @@
clear
-flex_a = 1//f
-flex_b = 2//f
+flex_a = 1 //f
+flex_b = 2 //f
//removing lower support and solving FBD
e = -2 -(2+1)//fp
//e_1 = (2+1+1)*R
//e_1 = -e Making the elongations zero since the both ends are fixed
-R = e/(2+1+1.0) //P
+R = -e/(2+1+1.0) //P
+//since sum of forces are 0
printf("\n The reactions at bottom is %0.3f P",R)
diff --git a/3776/CH2/EX2.19/Ex2_19.sce b/3776/CH2/EX2.19/Ex2_19.sce
index 2f56f7092..cf1308495 100644
--- a/3776/CH2/EX2.19/Ex2_19.sce
+++ b/3776/CH2/EX2.19/Ex2_19.sce
@@ -3,8 +3,8 @@ clear
l = 30 //in - The length of the rod
p_1 = 80 //kips - The Force on the end
p_2 = 125 //kips - The force on the other end
-A_s = 0.5 //in2 - The crossection of the steel rod
-A_a = 0.5 //in2 - The crossection of the aluminium
+A_s = 0.5 //sq.in - The crossection of the steel rod
+A_a = 0.5 //sq.in - The crossection of the aluminium
E_a = 10*(10**6) //psi - The youngs modulus of the aluminium
E_s = 30*(10**6) //psi - The youngs modulus of the steel
//Internally stastically indeterminant
diff --git a/3776/CH2/EX2.2/Ex2_2.sce b/3776/CH2/EX2.2/Ex2_2.sce
index 9e6317279..88d9c4ad6 100644
--- a/3776/CH2/EX2.2/Ex2_2.sce
+++ b/3776/CH2/EX2.2/Ex2_2.sce
@@ -5,9 +5,9 @@ l_cd = 1500 //mm - length of rod cd
p_ob = 100 //kN - Force in rods
p_bc = -150 //KN
p_cd = 50 //KN
-A_ob = 1000 //mm2 - Area of rod ob
-A_bc = 2000 //mm2 - Area of rod bc
-A_cd = 1000 //mm2 - Area of rod cd
+A_ob = 1000 //sq.mm - Area of rod ob
+A_bc = 2000 //sq.mm - Area of rod bc
+A_cd = 1000 //sq.mm - Area of rod cd
E = 200.0 //GPA
// the total deflection is algebraic sums of `deflection in each module
e_1 = p_ob*l_ob/(A_ob*E)
diff --git a/3776/CH2/EX2.4/Ex2_4.sce b/3776/CH2/EX2.4/Ex2_4.sce
index 76ea23bb6..2a8f3fa43 100644
--- a/3776/CH2/EX2.4/Ex2_4.sce
+++ b/3776/CH2/EX2.4/Ex2_4.sce
@@ -1,21 +1,23 @@
clear
-p_app = 3 //kips - applied force
-P_A = 2.23 //kips
+p_app = 3 //kips - applied force
+P_A = 2.23 //kips
p_B = -2.83 //kips - compressive force
l_ab = 6.71 //inch
l_bc = 8.29 //inch
s_ab = 17.8 //ksi - tensile stress
s_bc = -12.9 //ksi - compressive stress
-E = 10.6 * (10**3) //ksi -youngs modulus
+E = 10.6 * (10**3) //ksi -youngs modulus
e_ab = s_ab*l_ab/E //elongation
e_bc = s_bc*l_bc/E //contraction
-x = -e_bc/e_ab //the Ratio of cosines of the deflected angles
-// t_1 and t_2 be deflected angles
+x = -e_bc/e_ab //the Ratio of cosines of the deflected angles
+// t_1 and t_2 be deflected angles
//t_2 = 180-45-26.6-t_1 the sum of angles is 360
//applying cos on both sides
t_1=atand(1.29)
e = e_ab/cosd((t_1)) //inch
-k = p_app/e // kips/in vertical stiffness of the combination
+e_t = e*cosd(11.2)
+k = p_app/e_t // kips/in vertical stiffness of the combination
printf("\n The vertical stiffness of the combination is %0.3f kips/inch",k) //answer in textbook is 167
+// answer varies due to rounding off errors
diff --git a/3776/CH2/EX2.6/Ex2_6.sce b/3776/CH2/EX2.6/Ex2_6.sce
index 844997aec..a5dcb9d0f 100644
--- a/3776/CH2/EX2.6/Ex2_6.sce
+++ b/3776/CH2/EX2.6/Ex2_6.sce
@@ -1,15 +1,15 @@
clear
-dia = 50 //mm - diameter of aluminium
-p = 100 // KN - instant force applid
-dia_c = 0.1215 //mm- change in diameter
+dia = 50 //mm - diameter of aluminium
+p = 100 // KN - instant force applied
+dia_c = 0.01215 //mm- change in diameter
l_c = 0.219 //mm - change in length
-l = 300 //mm - length
-strain_dia = dia_c/dia // lateral strain
-strain_l = l_c/l //longitudinal strain
-po = strain_dia/strain_l // poission ratio
-area = 3.14*dia*dia/4 //mm2 area
-E = p*l/(area*l_c) //N/mm2 youngs modulus
-printf("\n The lateral strain is: %0.3f no units",strain_dia)
-printf("\n The longitudinal strain is: %0.3f no units",strain_l)
-printf("\n The poissions ratio is: %0.3f no units",po)
-printf("\n Youngs modulus: %0.2f N/sq.mm",E)
+l = 300 //mm - length
+strain_dia = -dia_c/dia // lateral strain
+strain_l = -l_c/l //longitudinal strain
+po = strain_dia/strain_l // Poisson ratio
+area = 3.14*dia*dia/4 //sq.mm area
+E = p*l/(area*l_c) //N/sq.mm youngs modulus
+printf("\n The lateral strain is: %e mm/mm",strain_dia)
+printf("\n The longitudinal strain is: %e no units",strain_l)
+printf("\n The Poissons ratio is: %0.3f no units",po)
+printf("\n Youngs modulus: %0.2f GPa",E)
diff --git a/3776/CH2/EX2.7/Ex2_7.sce b/3776/CH2/EX2.7/Ex2_7.sce
index c452c6448..0bfdaefa3 100644
--- a/3776/CH2/EX2.7/Ex2_7.sce
+++ b/3776/CH2/EX2.7/Ex2_7.sce
@@ -1,15 +1,16 @@
clear
T = 12.9*(10**-6) ///F
-t = 100.00 // F
+t = 100.00 // F
l_ab = 6.71 //inch
l_bc = 8.49 //inch
-e_ab = T*t*l_ab //in-elongation
+e_ab = T*t*l_ab //in-elongation
e_bc = T*t*l_bc //in-elongation
-k = e_ab/e_bc // ratio of cosines of deflected angles
-// t_1 and t_2 be deflected angles
-//t_2 = 180-45-26.6-t_1 the sum of angles is 360
+k = e_ab/e_bc // ratio of cosines of deflected angles
+// t_1 and t_2 be deflected angles
+//t_2 = 45+26.6-t_1 the sum of angles is 360
//applying cos on both sides
t_1 = atand(0.5)
//
e = e_bc/cosd(t_1)
printf("\n The displacement in point B is : %e in",e )
+printf("\n It forms an angle of %f degrees with vertical",45-t_1 )
diff --git a/3776/CH3/EX3.2/Ex3_2.sce b/3776/CH3/EX3.2/Ex3_2.sce
index 8a3a5388c..759864b7f 100644
--- a/3776/CH3/EX3.2/Ex3_2.sce
+++ b/3776/CH3/EX3.2/Ex3_2.sce
@@ -1,14 +1,14 @@
clear
//Given
a = 50 //mm - length of a cube
-E = 200 // Gpa - the youngs modulus
-v = 0.25 // no units- poissions ratio
+E = 200 // GPa - the youngs modulus
+v = 0.25 // no units- Poissons ratio
pressure = 200 // MPa - pressure acting on all sides
//pressure is a compressive stress
-S_x = -200 // Gpa - The stress in X direction
-S_y = -200 // Gpa - The stress in Y direction
-S_z = -200 // Gpa - The stress in Z direction
-//Caliculations
+S_x = -200 // GPa - The stress in X direction
+S_y = -200 // GPa - The stress in Y direction
+S_z = -200 // GPa - The stress in Z direction
+//calculations
e = S_x*(10**-3)/E - v*S_y*(10**-3)/E-v*S_z*(10**-3)/E//mm - considering all three directions
x = e*a //mmThe change in the dimension between parallel faces
diff --git a/3776/CH3/EX3.3/Ex3_3.sce b/3776/CH3/EX3.3/Ex3_3.sce
index 655ef3251..a63e8aa67 100644
--- a/3776/CH3/EX3.3/Ex3_3.sce
+++ b/3776/CH3/EX3.3/Ex3_3.sce
@@ -1,16 +1,16 @@
clear
//Given
-R = 1000 // mm - radius of the cylinder
+R = 1000 // mm - radius of the cylinder
t = 10 //mm - thickness of the cylinder
-p_in = 0.80 //Mpa- Internal pressure
-E = 200 //Mpa- youngs modulus
-v = 0.25 // poission ratio
-//caliculations
+p_in = 0.80 //Mpa- Internal pressure
+E = 200 //Mpa- youngs modulus
+v = 0.25 // Poisson ratio
+//calculations
-Stress_1 = p_in*R/t //MPa -Hoop stress //From derived expressions
-Stress_2 = p_in*R/(2*t) //Mpa- Longitudinal stress
+Stress_1 = p_in*R/t //MPa -Hoop stress //From derived expressions
+Stress_2 = p_in*R/(2*t) //Mpa- Longitudinal stress
e = Stress_1*(10**-3)/E-v*Stress_2*(10**-3)/E
-dia_change = e*R //mm- The change in daimeter of the cylinder
-printf("\n The Hoop stress is %0.3f mm",Stress_1)
-printf("\n The longitudinal stress is %0.3f",Stress_2)
+dia_change = e*R //mm- The change in daimeter of the cylinder
+printf("\n The Hoop stress is %0.3f MPa",Stress_1)
+printf("\n The longitudinal stress is %0.3f MPa",Stress_2)
printf("\n The change in daimeter of the cylinder is %0.3f mm",dia_change)
diff --git a/3776/CH3/EX3.4/Ex3_4.sce b/3776/CH3/EX3.4/Ex3_4.sce
index 550b6a893..f0d1c0d96 100644
--- a/3776/CH3/EX3.4/Ex3_4.sce
+++ b/3776/CH3/EX3.4/Ex3_4.sce
@@ -3,10 +3,10 @@ clear
R = 1000 //mm - radius of the cylinder
th = 10 //mm - thickness of the cylinder
E = 200 //Mpa- youngs modulus
-v = 0.25 // poission ratio
+v = 0.25 // Poisson ratio
p_in = 0.80 //Mpa- Internal pressure
t = 10 //mm - thickness of the cylinder
-//caliculations
+//calculations
Stress_1 = p_in*R/(2*t) //MPa -Hoop stress //From derived expressions
Stress_2 = p_in*R/(2*t) //Mpa- Longitudinal stress
diff --git a/3776/CH3/EX3.5/Ex3_5.sce b/3776/CH3/EX3.5/Ex3_5.sce
index 4fe17f46f..78714b79b 100644
--- a/3776/CH3/EX3.5/Ex3_5.sce
+++ b/3776/CH3/EX3.5/Ex3_5.sce
@@ -1,15 +1,15 @@
clear
//Given
-p_in = 0.7 //MPa - internal pressure
-n_bolts = 20 // number of bolts
-dia = 650 //mm - bolt circle diameter
-stress_allow = 125 //mm Maximum alowable stress
+p_in = 0.7 //MPa - internal pressure
+n_bolts = 20 // number of bolts
+dia = 650 //mm - bolt circle diameter
+stress_allow = 125 //MPa Maximum alowable stress
Stress_conc = 2 //stress concentration
-d = 25 //mm
-//caliculations
+d = 25 //mm
+//calculations
F = p_in*3.14*(((dia-2*d)/2)**2)*(10**6) //N
F_each = F/n_bolts //N- force per each Bolt
-A = Stress_conc*F_each/(stress_allow*(10**6)) //mm2 The bolt area
+A = Stress_conc*F_each/(stress_allow*(10**6)) //sq.mm The bolt area
Bolt_dia = 2*((A/3.14)**0.5) //mm the bolt daimeter
printf("\n The diameter of each bolt is %0.1f mm",Bolt_dia)
diff --git a/3776/CH4/EX4.16/Ex4_16.sce b/3776/CH4/EX4.16/Ex4_16.sce
index d62fbcd29..0d9997618 100644
--- a/3776/CH4/EX4.16/Ex4_16.sce
+++ b/3776/CH4/EX4.16/Ex4_16.sce
@@ -1,12 +1,13 @@
clear
-//Given
+//Given
dia_out = 10 //mm- outer diameter of shaft
-dia_in = 8 //mm- inner diameter of shaft
-c_out = dia_out/2 //mm - outer Radius of shaft
-c_in = dia_in/2 //mm - inner radius of shaft
-T = 40 //N/mm -Torque in the shaft
-//caliculations
-
+dia_in = 8 //mm- inner diameter of shaft
+c_out = dia_out/2 //mm - outer Radius of shaft
+c_in = dia_in/2 //mm - inner radius of shaft
+T = 40 //N/mm -Torque in the shaft
+//calculations
+dia_mean = (dia_out+dia_in)/2
+dia_diff = dia_out-dia_in
J = 3.14*((dia_out**4)- (dia_in**4))/32 //mm4
shear_T_max = T*c_out*(10**3)/J // The maximum torsion shear in the shaft
shear_T_min = T*c_in*(10**3)/J // The maximum torsion shear in the shaft
diff --git a/3776/CH4/EX4.3/Ex4_3.sce b/3776/CH4/EX4.3/Ex4_3.sce
index 7ad10bbe6..86dcaed1c 100644
--- a/3776/CH4/EX4.3/Ex4_3.sce
+++ b/3776/CH4/EX4.3/Ex4_3.sce
@@ -1,14 +1,15 @@
clear
-//Given
+//Given
dia_out = 20 //mm- outer diameter of shaft
-dia_in = 16 //mm- inner diameter of shaft
-c_out = dia_out/2 //mm - outer Radius of shaft
-c_in = dia_in/2 //mm - inner radius of shaft
-T = 40 //N/mm -Torque in the shaft
-//caliculations
+dia_in = 16 //mm- inner diameter of shaft
+c_out = dia_out/2 //mm - outer Radius of shaft
+c_in = dia_in/2 //mm - inner radius of shaft
+T = 40 //N/mm -Torque in the shaft
+//calculations
J = 3.14*((dia_out**4)- (dia_in**4))/32 //mm4
shear_T_max = T*c_out*(10**3)/J // The maximum torsion shear in the shaft
shear_T_min = T*c_in*(10**3)/J // The maximum torsion shear in the shaft
-printf("\n The maximum shear due to torsion is %0.2f MPa",shear_T_max)
+printf("\n The maximum shear due to torsion is %e MPa",shear_T_max)
+ //answer in textbook is wrong
printf("\n The minimum shear due to torsion is %0.0f MPa",shear_T_min)
diff --git a/3776/CH4/EX4.4/Ex4_4.sce b/3776/CH4/EX4.4/Ex4_4.sce
index 105784f04..d6f4a901b 100644
--- a/3776/CH4/EX4.4/Ex4_4.sce
+++ b/3776/CH4/EX4.4/Ex4_4.sce
@@ -1,16 +1,15 @@
clear
//Given
-hp = 10 // horse power of motor
-f = 30 // given
-shear_T = 55 //MPa - The maximum shearing in the shaft
-//caliculations
+hp = 10 // horse power of motor
+f = 30 // given
+shear_T = 55 //MPa - The maximum shear in the shaft
+//calculations
-T = 119*hp/f // N.m The torsion in the shaft
+T = 119*hp/f // N.m The torsion in the shaft
//j/c=T/shear_T=K
k = T*(10**3)/shear_T //mm3
//c3=2K/3.14
-c = ((2*k/3)**0.33) //mm - The radius of the shaft
-diamter = 2*c //mm - The diameter of the shaft
-printf("\n The Diameter of the shaft used is %0.2f mm",diamter)
+c = ((2*k/3)**0.33) //mm - The radius of the shaft
+diameter = 2*c //mm - The diameter of the shaft
+printf("\n The Diameter of the shaft used is %0.2f mm",diameter)
printf("\n For practical purposes, a 16-mm shaft would probably be selected")
-
diff --git a/3776/CH4/EX4.5/Ex4_5.sce b/3776/CH4/EX4.5/Ex4_5.sce
index 8d033dc9a..edd0d1fe6 100644
--- a/3776/CH4/EX4.5/Ex4_5.sce
+++ b/3776/CH4/EX4.5/Ex4_5.sce
@@ -1,23 +1,24 @@
clear
-//Given
+//Given
hp = 200 //Horse power
stress_sh = 10000 //psi- shear stress
-rpm_1 = 20.0 // The rpm at which this shaft1 operates
+rpm_1 = 20.0 // The rpm at which this shaft1 operates
rpm_2 = 20000.0 // The rpm at which this shaft2 operates
T_1= hp*63000.0/rpm_1 //in-lb Torsion due to rpm1
T_2= hp*63000/rpm_2 //in-lb Torsion due to rpm1
-//caliculations
+//calculations
//j/c=T/shear_T=K
-k_1= T_1/stress_sh //mm3
+k_1= T_1/stress_sh //cu.in
//c3=2K/3.14
-c_1= ((2*k_1/3)**0.33) //mm - The radius of the shaft
-diamter_1 = 2*c_1 //mm - The diameter of the shaft
-printf("\n The Diameter of the shaft1 is %0.2f mm",diamter_1)
+//c_1= ((2*k_1/3)**0.33) //mm - The radius of the shaft
+diamter_1 = (16*k_1/%pi)**(1/3) //mm - The diameter of the shaft
+printf("\n The Diameter of the shaft1 is %0.2f in",diamter_1)
//j/c=T/shear_T=K
k_2= T_2/stress_sh //mm3
//c3=2K/3.14
-c_2= ((2*k_2/3)**0.33) //mm - The radius of the shaft
-diamter_2 = 2*c_2 //mm - The diameter of the shaft
-printf("\n The Diameter of the shaft2 is %0.3f mm",diamter_2)
+//c_2= ((2*k_2/3)**0.33) //mm - The radius of the shaft
+diamter_2 = (16*k_2/%pi)**(1/3) //mm - The diameter of the shaft
+
+printf("\n The Diameter of the shaft2 is %0.3f in",diamter_2)
diff --git a/3776/CH4/EX4.7/Ex4_7.sce b/3776/CH4/EX4.7/Ex4_7.sce
index 6b437ff50..2aa479f09 100644
--- a/3776/CH4/EX4.7/Ex4_7.sce
+++ b/3776/CH4/EX4.7/Ex4_7.sce
@@ -10,8 +10,8 @@ l_cd = 300 //mm - length of cd
l_de = 500.0 //mm - length of de
d_1 = 25 //mm - outer diameter
d_2 = 50 //mm - inner diameter
-G = 80 //Gpa -shear modulus
-//Caliculations
+G = 80 //GPa -shear modulus
+//calculations
J_ab = 3.14*(d_1**4)/32 //mm4
J_bc = 3.14*(d_1**4)/32 //mm4
diff --git a/3776/CH4/EX4.9/Ex4_9.sce b/3776/CH4/EX4.9/Ex4_9.sce
index 5260a4497..31b57e941 100644
--- a/3776/CH4/EX4.9/Ex4_9.sce
+++ b/3776/CH4/EX4.9/Ex4_9.sce
@@ -1,30 +1,30 @@
clear
-//given
-//its a statistally indeterminant
-//we will take of one of the support
-//Given
-T_ab = 0 //N.m - torsion in AB
+//given
+//its a statistally indeterminant
+//we will take of one of the support
+//Given
+T_ab = 0 //N.m - torsion in AB
T_bc = 150 //N.m - torsion in BC
T_cd = 150 //N.m - torsion in CD
T_de = 1150 //N.m - torsion in DE
l_ab = 250 //mm - length of AB
l_bc = 200 //mm - length of BC
-l_cd = 300 //mm - length of cd
+l_cd = 300 //mm - length of cd
l_de = 500.0//mm - length of de
-d_1 = 25 //mm - outer diameter
+d_1 = 25 //mm - outer diameter
d_2 = 50 //mm - inner diameter
-//Caliculations
+//calculations
J_ab = 3.14*(d_1**4)/32 //mm4
J_bc = 3.14*(d_1**4)/32 //mm4
J_cd = 3.14*(d_2**4 - d_1**4)/32 //mm4
J_de = 3.14*(d_2**4 - d_1**4)/32 //mm4
-G = 80 //Gpa -shear modulus
-rad = T_ab*l_ab/(J_ab*G)+ T_bc*l_bc/(J_bc*G)+ T_cd*l_cd/(J_cd*G)+ T_de*l_de/(J_de*G)
+G = 80 //GPa -shear modulus
+rad = T_ab*l_ab/(J_ab*G)+ T_bc*l_bc/(J_bc*G)+ T_cd*l_cd/(J_cd*G)+ T_de*l_de/(J_de*G)
//now lets consider T_A then the torsion is only T_A
// T_A*(l_ab/(J_ab*G)+ l_bc/(J_bc*G)+ l_cd/(J_cd*G)+ l_de/(J_de*G)) +rad = 0
-// since there will be no displacement
-T_A =-rad/(l_ab/(J_ab*G)+ l_bc/(J_bc*G)+ l_cd/(J_cd*G)+ l_de/(J_de*G)) //Torsion at A
+// since there will be no displacement
+T_A =rad/(l_ab/(J_ab*G)+ l_bc/(J_bc*G)+ l_cd/(J_cd*G)+ l_de/(J_de*G)) //Torsion at A
T_B = 1150 - T_A //n-m F_X = 0 torsion at B
-printf("\n The Torsion at rigid end A is %0.2f N-m",T_A)
-printf("\n The Torsion at rigid end B is %0.2f N-m",T_B)
+printf("\n The Torsion at rigid end A is %0.0f N-m",T_A)
+printf("\n The Torsion at rigid end B is %d N-m",T_B)
diff --git a/3776/CH5/EX5.1/Ex5_1.sce b/3776/CH5/EX5.1/Ex5_1.sce
index f223bc45a..7d38e393a 100644
--- a/3776/CH5/EX5.1/Ex5_1.sce
+++ b/3776/CH5/EX5.1/Ex5_1.sce
@@ -7,7 +7,7 @@ R_1 = 100 //N - The Force acting
l_2 = 0.2 //mt -R_1 acting point the distance from 'a'
R_2 = 160 //N The Force acting
l_3 = 0.3 //mt -R_2 acting point the distance from 'a'
-//caliculations
+//calculations
//F_X = 0 forces in x directions
R_A_X = 0 // since there are no forces in X-direction
diff --git a/3776/CH5/EX5.2/Ex5_2.sce b/3776/CH5/EX5.2/Ex5_2.sce
index 53aac0bc3..d285b7978 100644
--- a/3776/CH5/EX5.2/Ex5_2.sce
+++ b/3776/CH5/EX5.2/Ex5_2.sce
@@ -2,8 +2,8 @@ clear
//Given
P_Max = 10 //N - the maximum distribution in a triangular distribution
L = 3 //mt the total length of force distribution
-L_X = 5 //mt - the horizantal length of the rod
-//caliculations
+L_X = 5 //mt - the horizontal length of the rod
+//calculations
F_y = P_Max*L*0.5 //N - The force due to triangular distribition
L_com = 2*L /3 //mt - the resultant force acting as a result of distribution acting position
diff --git a/3776/CH5/EX5.3/Ex5_3.sce b/3776/CH5/EX5.3/Ex5_3.sce
index 44cb6144a..46e8c4366 100644
--- a/3776/CH5/EX5.3/Ex5_3.sce
+++ b/3776/CH5/EX5.3/Ex5_3.sce
@@ -2,26 +2,26 @@ clear
//given
F = 5 //K - force acting on the system
tan1 = (4/3) // the Tan of the angle of force with x axis
-l_ab = 12 //inch - the total length of ab
+l_ab = 12 //inch - the total length of ab
l = 3 // inch - Distance from 'a'
-//caliculation
+//calculation
F_X = 4 //K
F_Y = 3 //k
//M_A = 0 momentum at point a is zero
-// F_X*l- R_B_Y*l_ab = 0
+// F_X*l- R_B_Y*l_ab = 0
R_B_Y = F_X*l/l_ab
//M_B= 0 momentum at point b is zero
// R_A_Y*l_ab - F_X*(l_ab - l)
R_A_Y = F_X*(l_ab - l)/l_ab
-
+
//F_X = 0 forces in x directions
-R_A_X = F_Y + R_B_Y
+R_A_X = F_Y + R_B_Y
R_B_X = R_B_Y // since the angle is 45 (180/%pi)*
-//resultants
-R_A = (R_A_X**2 + R_A_Y**2**0.5)
-R_B = (R_B_X**2 + R_B_Y**2**0.5)
+//resultants
+R_A = (R_A_X**2 + R_A_Y**2)**0.5
+R_B = (R_B_X**2 + R_B_Y**2)**0.5
printf("The X,Y components and resultant of reaction force at A is %0.3f, %0.3f,%0.3f N",R_A_X,R_A_Y,R_A)
printf("\nThe X,Y components and resultant of reaction force at B is %0.3f, %0.3f,%0.3f N",R_B_X,R_B_Y,R_B)
diff --git a/3776/CH5/EX5.4/Ex5_4.sce b/3776/CH5/EX5.4/Ex5_4.sce
index 2a3e57db7..2a3235419 100644
--- a/3776/CH5/EX5.4/Ex5_4.sce
+++ b/3776/CH5/EX5.4/Ex5_4.sce
@@ -2,8 +2,8 @@ clear
//Given
P_Max = 10 //N - the maximum distribution in a triangular distribution
L = 3 //mt the total length of force distribution
-L_X = 5 //mt - the horizantal length of the rod
-//caliculations
+L_X = 5 //mt - the horizontal length of the rod
+//calculations
F_y = P_Max*L*0.5 //N - The force due to triangular distribition
L_com = 2*L /3 //mt - the resultant force acting as a result of distribution acting position
diff --git a/3776/CH5/EX5.9/Ex5_9.sce b/3776/CH5/EX5.9/Ex5_9.sce
index 245adc229..87a133ed4 100644
--- a/3776/CH5/EX5.9/Ex5_9.sce
+++ b/3776/CH5/EX5.9/Ex5_9.sce
@@ -2,8 +2,8 @@ clear
//Given
P_Max = 10 //N - the maximum distribution in a triangular distribution
L = 3 //mt the total length of force distribution
-L_X = 5 //mt - the horizantal length of the rod
-//caliculations
+L_X = 5 //mt - the horizontal length of the rod
+//calculations
F_y = P_Max*L*0.5 //N - The force due to triangular distribition
L_com = 2*L /3 //mt - the resultant force acting as a result of distribution acting position
diff --git a/3776/CH6/EX6.10/Ex6_10.sce b/3776/CH6/EX6.10/Ex6_10.sce
index 43f31cf7d..b81c2de1f 100644
--- a/3776/CH6/EX6.10/Ex6_10.sce
+++ b/3776/CH6/EX6.10/Ex6_10.sce
@@ -3,7 +3,7 @@ clear
l = 50.0 //mm - the length of the beam
b = 50.0 //mm - the width of the beam
M = 2083 //Nm
-A = l*b //mm2 - The area
+A = l*b //sq.mm - The area
//straight beam
I = b*(l**3)/12.0 //mm4 - The moment of inertia of the beam
c_1= l/2 // the distance where the stress is maximum
diff --git a/3776/CH6/EX6.14/Ex6_14.sce b/3776/CH6/EX6.14/Ex6_14.sce
index 6198c1458..3a12216ff 100644
--- a/3776/CH6/EX6.14/Ex6_14.sce
+++ b/3776/CH6/EX6.14/Ex6_14.sce
@@ -1,12 +1,13 @@
clear
-//given
+//given
//from example 6.9
St_ul = 2500 //psi - ultimate strength
-st_yl = 40000 //psi _ yielding strength
-b = 10 //in - width from example
-A = 2 //in2 The area of the steel
-d = 20
+st_yl = 40000 //psi _ yielding strength
+b = 10 //in - width from example
+A = 2 //sq.in The area of the steel
+d = 20
t_ul = st_yl*A //ultimate capasity
y = t_ul/(St_ul*b*0.85) //in 0.85 because its customary
-M_ul = t_ul*(d-y/2)/12 //ft-lb Plastic moment
+M_ul = t_ul*(d-y/2)/12 //ft-lb Plastic moment
printf("\n The plastic moment of the system is %0.3f ft-lb",M_ul)
+ //answer in the textbook is wrong
diff --git a/3776/CH6/EX6.15/Ex6_15.sce b/3776/CH6/EX6.15/Ex6_15.sce
index ca2df4451..cfbab548a 100644
--- a/3776/CH6/EX6.15/Ex6_15.sce
+++ b/3776/CH6/EX6.15/Ex6_15.sce
@@ -1,12 +1,12 @@
clear
-//Given
-//From example 5.8
-W = 4.0 //N/m - The force distribution
+//Given
+//From example 5.8
+W = 4.0 //N/m - The force distribution
L = 3 // m - The length of the force applied
M = W*L/8.0 // KN.m The moment due to force distribution
-o = 30 // the angle of force applid to horizantal
-l = 150.0 //mm length of the crossection
-b = 100.0 //mm - width of the crossection
+o = 30 // the angle of force applied to horizontal
+l = 150.0 //mm length of the crossection
+b = 100.0 //mm - width of the crossection
//
M_z = M*(cos(3.14/6))
M_y = M*(sin(%pi/6))
@@ -14,4 +14,4 @@ I_z = b*(l**3)/12.0
I_y = l*(b**3)/12.0
//tanb = I_z /I_y *tan30
b = atand((I_z*tan(3.14/6.0)/I_y))
-printf("\n The angle at which neutral axis locates is %0.3f degrees",b)
+printf("\n The angle at which neutral axis located by is %0.3f degrees",b)
diff --git a/3776/CH6/EX6.18/Ex6_18.sce b/3776/CH6/EX6.18/Ex6_18.sce
index ccce2e9e8..ae568d544 100644
--- a/3776/CH6/EX6.18/Ex6_18.sce
+++ b/3776/CH6/EX6.18/Ex6_18.sce
@@ -1,7 +1,7 @@
clear
l = 50 //mm - The length of the beam
b = 50 //mm - The width of the beam
-A = l*b //mm2 - The area of the beam
+A = l*b //sq.mm - The area of the beam
p = 8.33 //KN - The force applied on the beam
stress_max = p*(10**3)/A //MPa After cutting section A--b
printf("\n The maximum stress in the beam %0.3f MPa ",stress_max )
diff --git a/3776/CH6/EX6.24/Ex6_24.sce b/3776/CH6/EX6.24/Ex6_24.sce
index 1aac53ebb..ba4fa87eb 100644
--- a/3776/CH6/EX6.24/Ex6_24.sce
+++ b/3776/CH6/EX6.24/Ex6_24.sce
@@ -4,25 +4,25 @@ M = 10 //KN.m - The moment applied
I_max = 23.95*(10**6) //mm4 - I_z The moment of inertia
I_min = 2.53*(10**6) //mm4 - I_y The moment of inertia
o = 14.34 // degress the principle axis rotated
-//Coponents of M in Y,Z direction
+//Coponents of M in Y,Z direction
M_z = M*(10**6)*cos((%pi/180)*(o))
M_y = M*(10**6)*sin((%pi/180)*(o))
//tanb = I_z /I_y *tan14.34
b = atan((I_max*tan((%pi/180)*(o))/I_min ))
-B = (180/%pi)*(b)
+B = (180/%pi)*(b)
y_p = 122.9 // mm - principle axis Y cordinate
z_p = -26.95 //mm - principle axis z cordinate
stress_B = - M_z*y_p/I_max + M_y*z_p/I_min //MPa - Maximum tensile stress
y_f = -65.97 // mm - principle axis Y cordinate
z_f = 41.93 //mm - principle axis z cordinate
stress_f = - M_z*y_f/I_max + M_y*z_f/I_min //MPa - Maximum compressive stress
-//location of nuetral axis To show these stresses are max and minimum
+//location of nuetral axis To show these stresses are max and minimum
//tanB = MzI_z + MzI_yz/MyI_y +M_YI_yz
I_z = 22.64 *(10**6) //mm4 moment of inertia in Z direction
I_y = 3.84 *(10**6) //mm4 moment of inertia in Y direction
-I_yz =5.14 *(10**6) //mm4 moment of inertia in YZ direction
-M_y = M //KN.m bending moment in Y dorection
-M_z = M //KN.m bending moment in Y dorection
+I_yz =5.14 *(10**6) //mm4 moment of inertia in YZ direction
+M_y = M //KN.m bending moment in Y dorection
+M_z = M //KN.m bending moment in Y dorection
B = atan(( M_z*I_yz)/(M_z*I_y )) //(%pi/180)* location on neutral axis
-beta = (180/%pi)*(B)
-printf("\n By sketching the line with angle %0.1f degrees The farthest point associated with B and F",beta)
+beta1 = (180/%pi)*(B)
+printf("\n By sketching the line with angle %0.1f degrees The farthest point associated with B and F",beta1)
diff --git a/3776/CH6/EX6.3/Ex6_3.sce b/3776/CH6/EX6.3/Ex6_3.sce
index 857811d33..19291d887 100644
--- a/3776/CH6/EX6.3/Ex6_3.sce
+++ b/3776/CH6/EX6.3/Ex6_3.sce
@@ -1,18 +1,18 @@
clear
-//Given
-//Entire area - hallow area
+//Given
+//Entire area - hollow area
l_e = 60.0 //mm - length of the entire area
b_e = 40 //mm - width of the entire area
-l_h = 30 //mm - length of the hallow area
-b_h = 20 //mm - width of the hallow area
-A_e = l_e*b_e //mm2 - The entire area
-A_h = -l_h*b_h //mm2 - The hallow area '-' because its hallow
-A_re = A_e + A_h //mm2 resultant area
-y_e = l_e/2 // mm com from bottom
-y_h = 20+l_h/2 //mm com from bottom
-y_com = (A_e*y_e + A_h*y_h)/A_re
+l_h = 30 //mm - length of the hollow area
+b_h = 20 //mm - width of the hollow area
+A_e = l_e*b_e //sq.mm - The entire area
+A_h = -l_h*b_h //sq.mm - The hollow area
+A_re = A_e + A_h //sq.mm resultant area
+y_e = l_e/2 // mm com from bottom
+y_h = 20+l_h/2 //mm com from bottom
+y_com = (A_e*y_e + A_h*y_h)/A_re
//moment of inertia caliculatins - bh3/12 +ad2
-I_e = b_e*(l_e**3)/12 + A_e*((y_e-y_com)**2) //Parallel axis theorm
-I_h = b_h*(l_h**3)/12 - A_h*((y_h-y_com)**2) //Parallel axis theorm
+I_e = b_e*(l_e**3)/12 + A_e*((y_e-y_com)**2) //Parallel axis theorem
+I_h = b_h*(l_h**3)/12 - A_h*((y_h-y_com)**2) //Parallel axis theorem
I_total = I_e - I_h
printf("\n The moment of inertia of total system is %e mm^4",I_total)
diff --git a/3776/CH6/EX6.4/Ex6_4.sce b/3776/CH6/EX6.4/Ex6_4.sce
index 99f0edaa9..98157a320 100644
--- a/3776/CH6/EX6.4/Ex6_4.sce
+++ b/3776/CH6/EX6.4/Ex6_4.sce
@@ -5,7 +5,7 @@ b = 300 //mm - breath
F = 20 //KN _ the force applied on the beam
F_d = 0.75 //KN-m - The force distribution
d = 2 //mt - the point of interest from the free end
-//caliculations
+//calculations
//From moment diagram
M = F*d - F_d*d*1
I = b*(l**3)/12 //mm4 - Bending moment diagram
diff --git a/3776/CH6/EX6.5/Ex6_5.sce b/3776/CH6/EX6.5/Ex6_5.sce
index 551491f53..6e8121ffb 100644
--- a/3776/CH6/EX6.5/Ex6_5.sce
+++ b/3776/CH6/EX6.5/Ex6_5.sce
@@ -7,17 +7,17 @@ l_1 = 1 //in
l_2 = 3 //in
b_1 = 4 //in
b_2 = 1 //in
-A_1 = l_1* b_1 //in2 - area of part_1
+A_1 = l_1* b_1 //sq.in - area of part_1
y_1 = 0.5 //in com distance from ab
-A_2 =l_2*b_2 //in2 - area of part_1
+A_2 =l_2*b_2 //sq.in - area of part_1
y_2 = 2.5 //in com distance from ab
-A_3 = l_2*b_2 //in2 - area of part_1
+A_3 = l_2*b_2 //sq.in - area of part_1
y_3 = 2.5 //in com distance from ab
y_net = (A_1*y_1 +A_2*y_2 + A_3*y_3)/(A_1+A_2+A_3) //in - The com of the whole system
c_max = (4-y_net) //in - The maximum distace from com to end
c_min = y_net //in - the minimum distance from com to end
-I_1 = b_1*(l_1**3)/12 + A_1*((y_1-y_net)**2) //Parallel axis theorm
+I_1 = b_1*(l_1**3)/12 + A_1*((y_1-y_net)**2) //Parallel axis theorem
I_2 = b_2*(l_2**3)/12 + A_2*((y_2-y_net)**2)
I_3 = b_2*(l_2**3)/12 + A_2*((y_2-y_net)**2)
I_net = I_1 + I_2 + I_3 //in^4 - the total moment of inertia
diff --git a/3776/CH6/EX6.8/Ex6_8.sce b/3776/CH6/EX6.8/Ex6_8.sce
index 244deb69e..51d04bb08 100644
--- a/3776/CH6/EX6.8/Ex6_8.sce
+++ b/3776/CH6/EX6.8/Ex6_8.sce
@@ -2,20 +2,20 @@ clear
//Given
//Given
//We will divide this into two parts
-E_w = 10.0 //Gpa - Youngs modulus of wood
-E_s = 200.0 //Gpa - Youngs modulus of steel
+E_w = 10.0 //GPa - Youngs modulus of wood
+E_s = 200.0 //GPa - Youngs modulus of steel
M = 30.0 //K.N-m _ applied bending moment
n = E_s/E_w
l_1 = 250 //mm
l_2 = 10 //mm
b_1 = 150.0 //mm
b_2 = 150.0*n //mm
-A_1 = l_1* b_1 //mm2 - area of part_1
+A_1 = l_1* b_1 //sq.mm - area of part_1
y_1 = 125.0 //mm com distance from top
-A_2 =l_2*b_2 //mm2 - area of part_1
+A_2 =l_2*b_2 //sq.mm - area of part_1
y_2 = 255.0 //mm com distance from top
y_net = (A_1*y_1 +A_2*y_2)/(A_1+A_2) //mm - The com of the whole system from top
-I_1 = b_1*(l_1**3)/12.0 + A_1*((y_1-y_net)**2) //Parallel axis theorm
+I_1 = b_1*(l_1**3)/12.0 + A_1*((y_1-y_net)**2) //Parallel axis theorem
I_2 = b_2*(l_2**3)/12.0 + A_2*((y_2-y_net)**2)
I_net = I_1 + I_2 //mm4 - the total moment of inertia
c_s= y_net // The maximum distance in steel
diff --git a/3776/CH6/EX6.9/Ex6_9.sce b/3776/CH6/EX6.9/Ex6_9.sce
index 74d9c8acf..1c99a03a6 100644
--- a/3776/CH6/EX6.9/Ex6_9.sce
+++ b/3776/CH6/EX6.9/Ex6_9.sce
@@ -1,12 +1,12 @@
clear
-//Given
+//Given
M = 50000 //ft-lb , positive bending moment applied
-N = 9 // number of steel bars
-n = 15 // The ratio of steel to concrete
-A_s = 30 //in2 area of steel in concrete
+N = 9 // number of steel bars
+n = 15 // The ratio of steel to concrete
+A_s = 30 //sq.in area of steel in concrete
//(10*y)*(y/2) = 30*(20-y)
//y**2 + 6*y -120
-//solving quadractic equation
+//solving quadractic equation
//
a = 1
@@ -21,16 +21,16 @@ sol2 = (-b+sqrt(d))/(2*a)
y = sol2 // Nuetral axis is found
l_1 = y //in- the concrete below nuetral axis is not considered
b_1 = 10 //in - width
-A_1 = l_1* b_1 //in2 - area of concrete
-y_1 = y/2 //in com of the concrete
-y_2 = 20-y //in com of the transformed steel
-I_1 = b_1*(l_1**3)/12.0 + A_1*((y_1-y)**2) //in^4 parallel axis theorm
+A_1 = l_1* b_1 //sq.in - area of concrete
+y_1 = y/2 //in com of the concrete
+y_2 = 20-y //in com of the transformed steel
+I_1 = b_1*(l_1**3)/12.0 + A_1*((y_1-y)**2) //in^4 parallel axis theorem
I_2 = A_s*((y_2)**2) //in^4 first part is neglected
I_net = I_1 + I_2 //in^4 - the total moment of inertia
-c_c= y //in The maximum distance in concrete
-stress_concrete = M*12*c_c/I_net //psi - The maximum stress in concrete
-c_s= 20- y
-stress_steel =n*M*12*c_s/I_net //psi - The maximum stress in concrete
+c_c= y //in The maximum distance in concrete
+stress_concrete = M*12*c_c/I_net //psi - The maximum stress in concrete
+c_s= 20- y
+stress_steel =n*M*12*c_s/I_net //psi - The maximum stress in concrete
printf("\n The maximum stress in concrete %0.2f psi",stress_concrete) //
printf("\n The stress in steel %0.2f psi",stress_steel)
-printf("\n answer varies due to rounding off errors") \ No newline at end of file
+// answer varies due to rounding off errors
diff --git a/3776/CH7/EX7.1/Ex7_1.sce b/3776/CH7/EX7.1/Ex7_1.sce
index 22b3a758c..4e1d1ef6f 100644
--- a/3776/CH7/EX7.1/Ex7_1.sce
+++ b/3776/CH7/EX7.1/Ex7_1.sce
@@ -7,14 +7,14 @@ l_1 = 50.0 //mm
l_2 = 200.0 //mm
b_1 = 200.0 //mm
b_2 = 50.0 //mm
-A_1 = l_1* b_1 //mm2 - area of part_1
+A_1 = l_1* b_1 //sq.mm - area of part_1
y_1 = 25.0 //mm com distance
-A_2 =l_2*b_2 //mm2 - area of part_1
+A_2 =l_2*b_2 //sq.mm - area of part_1
y_2 = 150.0 //in com distance
y_net = (A_1*y_1 +A_2*y_2)/(A_1+A_2) //mm - The com of the whole system
c_max = (4-y_net) //mm - The maximum distace from com to end
c_min = y_net //mm - the minimum distance from com to end
-I_1 = b_1*(l_1**3)/12 + A_1*((y_1-y_net)**2) //Parallel axis theorm
+I_1 = b_1*(l_1**3)/12 + A_1*((y_1-y_net)**2) //Parallel axis theorem
I_2 = b_2*(l_2**3)/12 + A_2*((y_2-y_net)**2)
I_net = I_1 + I_2 //mm4 - the total moment of inertia
Q = A_1*(-y_1+y_net) //mm3
diff --git a/3776/CH7/EX7.2/Ex7_2.sce b/3776/CH7/EX7.2/Ex7_2.sce
index 71c8e8755..9f6d25ae4 100644
--- a/3776/CH7/EX7.2/Ex7_2.sce
+++ b/3776/CH7/EX7.2/Ex7_2.sce
@@ -6,15 +6,15 @@ R_a = l*p/2 //KN -The reaction at a, Since the system is symmetry
R_b = l*p/2 //KN -The reaction at b
l_s = 10 //mm - The length of the screw
shear_al = 2 //KN - The maximum load the screw can take
-I = 2.36*(10**9) //mm2 The moment of inertia of the whole system
+I = 2.36*(10**9) //sq.mm The moment of inertia of the whole system
//We will divide this into two parts
l_1 = 50.0 //mm
l_2 = 50.0 //mm
b_1 = 100.0 //mm
b_2 = 200.0 //mm
-A_1 = l_1* b_1 //in2 - area of part_1
+A_1 = l_1* b_1 //sq.in - area of part_1
y_1 = 200.0 //mm com distance
-A_2 =l_2*b_2 //mm2 - area of part_1
+A_2 =l_2*b_2 //sq.mm - area of part_1
y_2 = 225.0 //in com distance
Q = 2*A_1*y_1 + A_2*y_2 // mm**3 For the whole system
q = R_a*Q*(10**3)/I //N/mm The shear flow
diff --git a/3776/CH7/EX7.6/Ex7_6.sce b/3776/CH7/EX7.6/Ex7_6.sce
index 89fca203f..7253fc27d 100644
--- a/3776/CH7/EX7.6/Ex7_6.sce
+++ b/3776/CH7/EX7.6/Ex7_6.sce
@@ -4,7 +4,7 @@ clear
l = 10.0 // in - The height
t = 0.1 // in - The width
b = 5.0 //mm- The width of the above part
-A = t* b //in2 - area of part
+A = t* b //sq.in - area of part
y_net = l/2 // The com of the system
y_1 = l // The position of teh com of part_2
I_1 = t*(l**3)/12 //in^4 The moment of inertia of part 1
diff --git a/3776/CH7/EX7.8/Ex7_8.sce b/3776/CH7/EX7.8/Ex7_8.sce
index 67646ba58..f39579fa7 100644
--- a/3776/CH7/EX7.8/Ex7_8.sce
+++ b/3776/CH7/EX7.8/Ex7_8.sce
@@ -2,7 +2,7 @@ clear
//Given
dia = 10.0 //mm - The diameter of the cylinder
c = dia/2 //mm - the radius of the cylinder
-A = 3.14*(c**2) //mm2 The area of the crossection
+A = 3.14*(c**2) //sq.mm The area of the crossection
y = 4*c/(3*3.14) //mm The com of cylinder
I = 3.14*(c**4)/4 //mm4 - The moment of inertia of the cylinder
j = 3.14*(dia**4)/32 //mm4
diff --git a/3776/CH7/EX7.9/Ex7_9.sce b/3776/CH7/EX7.9/Ex7_9.sce
index 4822c44e0..2f8b342e6 100644
--- a/3776/CH7/EX7.9/Ex7_9.sce
+++ b/3776/CH7/EX7.9/Ex7_9.sce
@@ -2,8 +2,8 @@ clear
//Given
dia = 15 //mm - The diameter of the rod
h = 0.5 //mt - The freely falling height
-A = 3.14*(dia**2)/4 //mm2 The area of the crossection
-E = 200 //Gpa -Youngs modulus
+A = 3.14*(dia**2)/4 //sq.mm The area of the crossection
+E = 200 //GPa -Youngs modulus
L = 750 //mm - The total length of the rod
G = 80 //gpa - Shear modulus
N = 10 //number of live coils
diff --git a/3776/CH8/EX8.1/Ex8_1.sce b/3776/CH8/EX8.1/Ex8_1.sce
index 2510958ab..2fd755047 100644
--- a/3776/CH8/EX8.1/Ex8_1.sce
+++ b/3776/CH8/EX8.1/Ex8_1.sce
@@ -3,9 +3,9 @@ clear
//
//
o = 22.5 //degrees , The angle of infetisimal wedge
-A = 1 //mm2 The area of the element
-A_ab = 1*(cos((%pi/180)*(o))) //mm2 - The area corresponds to AB
-A_bc = 1*(sin((%pi/180)*(o))) //mm2 - The area corresponds to BC
+A = 1 //sq.mm The area of the element
+A_ab = 1*(cos((%pi/180)*(o))) //sq.mm - The area corresponds to AB
+A_bc = 1*(sin((%pi/180)*(o))) //sq.mm - The area corresponds to BC
S_1 = 3 //MN The stresses applying on the element
S_2 = 2 //MN
S_3 = 2 //MN
diff --git a/3776/CH8/EX8.3/Ex8_3.sce b/3776/CH8/EX8.3/Ex8_3.sce
index 6172f655f..9bda8dc65 100644
--- a/3776/CH8/EX8.3/Ex8_3.sce
+++ b/3776/CH8/EX8.3/Ex8_3.sce
@@ -1,16 +1,15 @@
clear
-//Given
+//Given
//
//
S_x = -2 //MPa _ the noraml stress in x direction
S_y = 4 //MPa _ the noraml stress in Y direction
-c = (S_x + S_y)/2 //MPa - The centre of the mohr circle
-point_x = -2 //The x coordinate of a point on mohr circle
+c = (S_x + S_y)/2 //MPa - The centre of the mohr circle
+point_x = 3 //The x coordinate of a point on mohr circle
point_y = 4 //The y coordinate of a point on mohr circle
-Radius = ((point_x-c)**2 + point_y**2**0.5) // The radius of the mohr circle
+Radius = ((point_x)**2 + point_y**2)**0.5 // The radius of the mohr circle
S_1 = Radius +1//MPa The principle stress
S_2 = -Radius +1 //MPa The principle stress
S_xy_max = Radius //MPa The maximum shear stress
-printf("\n The principle stresses are %0.3f MPa %0.3f MPa",S_1,S_2)
+printf("\n The principle stresses are %0.3f MPa, %0.3f MPa",S_1,S_2)
printf("\n The maximum shear stress %0.3f MPa",S_xy_max)
-printf("\n The maximum tensile stress which is the result of all stresses must act as shown in the figure")
diff --git a/3776/CH8/EX8.4/Ex8_4.sce b/3776/CH8/EX8.4/Ex8_4.sce
index 75a4498ff..fb3b4c6ff 100644
--- a/3776/CH8/EX8.4/Ex8_4.sce
+++ b/3776/CH8/EX8.4/Ex8_4.sce
@@ -3,18 +3,17 @@ clear
//
S_x = 3.0 //MPa _ the noraml stress in x direction
S_y = 1.0 //MPa _ the noraml stress in Y direction
-c = (S_x + S_y)/2 //MPa - The centre of the mohr circle
+c = (S_x + S_y)/2 //MPa - The centre of the mohr circle
point_x = 1 //The x coordinate of a point on mohr circle
point_y = 3 //The y coordinate of a point on mohr circle
-//Caliculations
+//calculations
-Radius = ((point_x-c)**2 + point_y**2**0.5) // The radius of the mohr circle
-//22.5 degrees line is drawn
-o = 22.5 //degrees
-a = 71.5 - 2*o //Degrees, from diagram
-stress_n = c + Radius*sin((180/%pi)*(o)) //MPa The normal stress on the plane
-stress_t = Radius*cos((180/%pi)*(o)) //MPa The tangential stress on the plane
+Radius = ((point_x)**2 + point_y**2)**0.5 // The radius of the mohr circle
+//22.5 degrees line is drawn
+o = 22.5 //degrees
+a = 71.57 - 2*o //Degrees, from diagram
+stress_n = c + Radius*sin((180/%pi)*(o)) //MPa The normal stress on the plane
+ang = sind((-a))
+stress_t = Radius*ang //MPa The tangential stress on the plane
printf("\n The normal stress on the 22 1/2 plane %0.2f MPa",stress_n)
printf("\n The tangential stress on the 22 1/2 plane %0.2f MPa",stress_t)
-printf("\n answer varies due to rounding off errors")
-
diff --git a/3776/CH8/EX8.7/Ex8_7.sce b/3776/CH8/EX8.7/Ex8_7.sce
index a497ec56a..8013fda4e 100644
--- a/3776/CH8/EX8.7/Ex8_7.sce
+++ b/3776/CH8/EX8.7/Ex8_7.sce
@@ -3,7 +3,7 @@ clear
e_x = -500 //10-6 m/m The contraction in X direction
e_y = 300 //10-6 m/m The contraction in Y direction
e_xy = -600 //10-6 m/m discorted angle
-centre = (e_x + e_y)/2 //10-6 m/m
+centre = (e_x + e_y)/2 //10-6 m/m
point_x = -500 //The x coordinate of a point on mohr circle
point_y = 300 //The y coordinate of a point on mohr circle
Radius = 500 //10-6 m/m - from mohr circle
@@ -11,5 +11,5 @@ e_1 = Radius +centre //MPa The principal strain
e_2 = -Radius +centre //MPa The principal strain
k = atan(300.0/900) // from geometry
k_1 = (180/%pi)*(k)
-printf("\n The principal strains are %0.3f um/m %0.3f um/m",e_1,e_2)
+printf("\n The principal strains are %0.3f micro m/m %0.3f micro m/m",e_1,e_2)
printf("\n The angle of principal plane %0.2f degrees",k_1)
diff --git a/3776/CH8/EX8.8/Ex8_8.sce b/3776/CH8/EX8.8/Ex8_8.sce
index 0c8fd0488..57bd71918 100644
--- a/3776/CH8/EX8.8/Ex8_8.sce
+++ b/3776/CH8/EX8.8/Ex8_8.sce
@@ -1,24 +1,25 @@
clear
//Given
-e_0 = -500 //10-6 m/m
-e_45 = 200 //10-6 m/m
+e_0 = -500 //10-6 m/m
+e_45 = 200 //10-6 m/m
e_90 = 300 //10-6 m/m
-E = 200 //Gpa - youngs modulus of steel
-v = 0.3 // poissions ratio
-//Caliculations
+E = 200 //GPa - youngs modulus of steel
+v = 0.3 // Poissons ratio
+//calculations
e_xy = 2*e_45 - (e_0 +e_90 ) //10-6 m/m from equation 8-40 in text
// from example 8.7
e_x = -500 //10-6 m/m The contraction in X direction
e_y = 300 //10-6 m/m The contraction in Y direction
e_xy = -600 //10-6 m/m discorted angle
-centre = (e_x + e_y)/2 //10-6 m/m
+centre = (e_x + e_y)/2 //10-6 m/m
point_x = -500 //The x coordinate of a point on mohr circle
point_y = 300 //The y coordinate of a point on mohr circle
Radius = 500 //10-6 m/m - from mohr circle
e_1 = Radius +centre //MPa The principle strain
e_2 = -Radius +centre //MPa The principle strain
-stress_1 = E*(10**-3)*(e_1+v*e_2)/(1-v**2) //MPa the stress in this direction
-stress_2 = E*(10**-3)*(e_2+v*e_1)/(1-v**2) //MPa the stress in this direction
+stress_1 = E*(10**-3)*(e_1+v*e_2)/(1-v**2) //MPa the stress in this direction
+stress_2 = E*(10**-3)*(e_2+v*e_1)/(1-v**2) //MPa the stress in this direction
printf("\n The principle stresses are %0.2f MPa %0.2f MPa",stress_1,stress_2)
+// answer in textbook is wrong
diff --git a/3776/CH9/EX9.4/Ex9_4.sce b/3776/CH9/EX9.4/Ex9_4.sce
index f645233f8..1b4944c45 100644
--- a/3776/CH9/EX9.4/Ex9_4.sce
+++ b/3776/CH9/EX9.4/Ex9_4.sce
@@ -1,13 +1,13 @@
clear
-//Given
+//Given
//
b = 40.0 //mm - The width of the beam crossection
-h = 300.0 //mm - The length of the beam crossection
+h = 300.0 //mm - The length of the beam crossection
V = 40.0 //KN - The shear stress in teh crossection
-M = 10.0 //KN-m - The bending moment on K----K crossection
+M = 10.0 //KN-m - The bending moment on K----K crossection
c = h/2 //mm -The position at which maximum stress occurs on the crossection
-I = b*(h**3)/12 //mmm4 - the moment of inertia
-//Caliculations
+I = b*(h**3)/12 //mmm4 - the moment of inertia
+//calculations
stress_max_1 = M*c*(10**6)/I //The maximum stress occurs at the end
stress_max_2 = -M*c*(10**6)/I //The maximum stress occurs at the end
@@ -16,13 +16,13 @@ n = y/(c) // The ratio of the distances from nuetral axis t
stress_L_1 = n*stress_max_1 //The normal stress on elements L--L
stress_L_2 = -n*stress_max_1 //The normal stress on elements L--L
x = 10 //mm The length of the element
-A = b*x //mm3 The area of the element
+A = b*x //mm3 The area of the element
y_1 = y+x/2 // the com of element from com of whole system
-stress_xy = V*A*y_1*(10**3)/(I*b) //MPa - The shear stress on the element
-//stresses acting in plane 30 degrees
+stress_xy = V*A*y_1*(10**3)/(I*b) //MPa - The shear stress on the element
+//stresses acting in plane 30 degrees
o = 60 //degrees - the plane angle
stress_theta = stress_L_1/2 + stress_L_1*(cos((%pi/180)*(o)))/2 - stress_xy*(sin((%pi/180)*(o))) //MPa by direct application of equations
stress_shear = -stress_L_1*(sin((%pi/180)*(o)))/2 - stress_xy*(cos((%pi/180)*(o))) //MPa Shear stress
-
+
printf("\n a)The principle stresses are %0.2f MPa %0.2f MPa",stress_max_1,stress_max_2)
-printf("\n b)The stresses on inclines plane %0.2f MPa noraml, %0.2f MPa shear ",stress_theta,stress_shear)
+printf("\n b)The stresses on inclined plane %0.2f MPa normal, %0.2f MPa shear ",stress_theta,stress_shear)
diff --git a/3776/CH9/EX9.5/Ex9_5.sce b/3776/CH9/EX9.5/Ex9_5.sce
index ee3f65e4e..432d3df4b 100644
--- a/3776/CH9/EX9.5/Ex9_5.sce
+++ b/3776/CH9/EX9.5/Ex9_5.sce
@@ -1,23 +1,24 @@
clear
//Given
M = 10 //KN-m moment
-v = 8.0 //KN - shear Stress
+v = 8.0 //KN - shear Stress
stress_allow = 8 //MPa - The maximum allowable stress
shear_allow_per = 1.4 //MPa - The allowable stress perpendicular to grain
stress_allow_shear = 0.7 //MPa - The maximum allowable shear stress
-//Caliculations
+//calculations
-S = M*(10**6)/stress_allow //mm3
+S = M*(10**6)/stress_allow //mm3
//lets arbitarly assume h = 2b
//S = b*(h**2)/6
-h = (12*S**0.333) //The depth of the beam
+h = (1.25*(10**6)*12)**(1/3) //The depth of the beam
b = h/2 //mm The width of the beam
-A = h*b //mm2 The area of the crossection , assumption
-stress_shear = 3*v*(10**3)/(2*A) //MPa The strear stress
+A = 140*240 //sq.mm The area of the crossection , assumption
+stress_shear = 3*v*(10**3)/(2*A) //MPa The strear stress
if stress_shear<stress_allow_shear then
- printf("The stress developed %0.2f is in allowable ranges for %0.2f mm2 area",stress_shear,A)
+ printf("The stress developed %0.2f is in allowable ranges for %0.2f sq.mm area",stress_shear,A)
else
printf("The stress developed %0.3f is in non allowable ranges %0.3f area",stress_shear,A)
end
Area_allow = v*(10**3)/shear_allow_per //mm - the allowable area
-printf("\n The minimum area is %0.3f mm2",Area_allow )
+printf("\n The minimum area is %0.3f sq.mm",Area_allow )
+//answer varies due to rounding off errors
diff --git a/3776/CH9/EX9.6/Ex9_6.sce b/3776/CH9/EX9.6/Ex9_6.sce
index a8a78e3ed..20e5c1797 100644
--- a/3776/CH9/EX9.6/Ex9_6.sce
+++ b/3776/CH9/EX9.6/Ex9_6.sce
@@ -9,11 +9,11 @@ A = l*w
R_A = 6.4 //k - The reaction at A
R_B = 25.6 //k - the reaction at B
v_max = R_B-l*w //kips the maximum stress, from diagram
-//W8x24 is used from the appendix table 3 and 4
+//W8x24 is used from the appendix table 3 and 4
l =0.245 //in - W8x24 crossesction length
-//Caliculations
+//calculations
-stress_xy = v_max/A //ksi the approximate shear stress
+stress_xy = v_max/A //ksi the approximate shear stress
if stress_xy < stress_allow_shear then
printf("W8x24 gives the allowable ranges of shear stress")
else:
@@ -24,7 +24,7 @@ k = 7.0/8 //in the distance from the outer face of the flange to the webfillet
//a1t+2kt should not exceed 0.75 of yeild stress
Stress_yp = 36 //ksi - The yeild stress
t = 0.245 //in thickness of the web
-//support a
+//support a
a = R_A/(0.75*Stress_yp*t)-k //in lengths of the bearings
//support b
a_1 = R_B/(0.75*Stress_yp*t)-2*k //in lengths of the bearings
diff --git a/3776/CH9/EX9.8/Ex9_8.sce b/3776/CH9/EX9.8/Ex9_8.sce
index b986095ec..f7b27f51e 100644
--- a/3776/CH9/EX9.8/Ex9_8.sce
+++ b/3776/CH9/EX9.8/Ex9_8.sce
@@ -4,8 +4,8 @@ hp = 63000 //horse power
T = hp*20*(10**-3)/63 //k-in the torsion implies due to horse power
stress_allow_shear = 6 //ksi- The maximum allowable shear stress
M_ver = 6.72/2 //k-in the vertical component of the moment
-M_hor = 9.10 //k-in the horizantal component of the moment
-//Caliculations
+M_hor = 9.10 //k-in the horizontal component of the moment
+//calculations
M = (((M_ver**2)+(M_hor**2))**0.5) //K-in The resultant
d = ((16*(((M**2)+(T**2))**0.5)/(stress_allow_shear*3.14))**0.333) //in** The suggested diameter from derivation