diff options
Diffstat (limited to '3768/CH9')
-rw-r--r-- | 3768/CH9/EX9.1/Ex9_1.sce | 14 | ||||
-rw-r--r-- | 3768/CH9/EX9.10/Ex9_10.sce | 16 | ||||
-rw-r--r-- | 3768/CH9/EX9.11/Ex9_11.sce | 19 | ||||
-rw-r--r-- | 3768/CH9/EX9.12/Ex9_12.sce | 14 | ||||
-rw-r--r-- | 3768/CH9/EX9.13/Ex9_13.sce | 13 | ||||
-rw-r--r-- | 3768/CH9/EX9.14/Ex9_14.sce | 15 | ||||
-rw-r--r-- | 3768/CH9/EX9.15/Ex9_15.sce | 21 | ||||
-rw-r--r-- | 3768/CH9/EX9.2/Ex9_2.sce | 20 | ||||
-rw-r--r-- | 3768/CH9/EX9.3/Ex9_3.sce | 19 | ||||
-rw-r--r-- | 3768/CH9/EX9.4/Ex9_4.sce | 17 | ||||
-rw-r--r-- | 3768/CH9/EX9.5/Ex9_5.sce | 21 | ||||
-rw-r--r-- | 3768/CH9/EX9.6/Ex9_6.sce | 20 | ||||
-rw-r--r-- | 3768/CH9/EX9.7/Ex9_7.sce | 14 | ||||
-rw-r--r-- | 3768/CH9/EX9.8/Ex9_8.sce | 21 | ||||
-rw-r--r-- | 3768/CH9/EX9.9/Ex9_9.sce | 19 |
15 files changed, 263 insertions, 0 deletions
diff --git a/3768/CH9/EX9.1/Ex9_1.sce b/3768/CH9/EX9.1/Ex9_1.sce new file mode 100644 index 000000000..05d195472 --- /dev/null +++ b/3768/CH9/EX9.1/Ex9_1.sce @@ -0,0 +1,14 @@ +//Example number 9.1, Page number 202 + +clc;clear; +close; + +//Variable declaration +e=1.6*10**-19; //charge(c) +ni=2.4*10**19; //particle density(per m**3) +mew_e=0.39; //electron mobility(m**2/Vs) +mew_h=0.19; //hole mobility(m**2/Vs) +//Calculation +rho=1/(ni*e*(mew_e+mew_h)); //resistivity(ohm m) +//Result +printf("resistivity is %.5f ohm-m",rho) diff --git a/3768/CH9/EX9.10/Ex9_10.sce b/3768/CH9/EX9.10/Ex9_10.sce new file mode 100644 index 000000000..3787b3e1d --- /dev/null +++ b/3768/CH9/EX9.10/Ex9_10.sce @@ -0,0 +1,16 @@ +//Example number 9.10, Page number 207 + +clc;clear; +close; + +//Variable declaration +Eg=1.9224*10**-19; //energy gap of semiconductor(J) +T1=600; //temperature(K) +T2=300; //temperature(K) +x=-1.666*10**-3; +KB=1.38*10**-23; //boltzmann constant +//Calculation +T=(1/T1)-(1/T2); +r=exp(x*(-Eg/(2*KB))); //ratio between conductivity +//Result +printf("ratio between conductivity is %.3e",r) diff --git a/3768/CH9/EX9.11/Ex9_11.sce b/3768/CH9/EX9.11/Ex9_11.sce new file mode 100644 index 000000000..729e4a60a --- /dev/null +++ b/3768/CH9/EX9.11/Ex9_11.sce @@ -0,0 +1,19 @@ +//Example number 9.11, Page number 207 + +clc;clear; +close; + +//Variable declaration +ni=2.5*10**19; //charge carriers(per m**3) +r=10**-6; //ratio +e=1.6*10**-19; //charge(c) +mew_e=0.36; //electron mobility(m**2/Vs) +mew_h=0.18; //hole mobility(m**2/Vs) +N=4.2*10**28; //number of atoms(per m**3) +//Calculation +Ne=r*N; //number of impurity atoms(per m**3) +Nh=ni**2/Ne; +sigma=(Ne*e*mew_e)+(Nh*e*mew_h); //conductivity(ohm m) +rho=1/sigma; //resistivity of material(per ohm m) +//Result +printf("resistivity of material is %.4e ohm-m",rho) diff --git a/3768/CH9/EX9.12/Ex9_12.sce b/3768/CH9/EX9.12/Ex9_12.sce new file mode 100644 index 000000000..20ea090b9 --- /dev/null +++ b/3768/CH9/EX9.12/Ex9_12.sce @@ -0,0 +1,14 @@ +//Example number 9.12, Page number 208 + +clc;clear; +close; + +//Variable declaration +n=5*10**17; //concentration(m**3) +vd=350; //drift velocity(m/s) +E=1000; //electric field(V/m) +e=1.6*10**-19; //charge(c) +//Calculation +sigma=n*e*vd/E; //conductivity(per ohm m) +//Result +printf("conductivity is %.3f per ohm-m",sigma) diff --git a/3768/CH9/EX9.13/Ex9_13.sce b/3768/CH9/EX9.13/Ex9_13.sce new file mode 100644 index 000000000..b9e7bc8ae --- /dev/null +++ b/3768/CH9/EX9.13/Ex9_13.sce @@ -0,0 +1,13 @@ +//Example number 9.13, Page number 208 + +clc;clear; +close; + +//Variable declaration +sigmae=2.2*10**-4; //conductivity(ohm/m) +mew_e=125*10**-3; //electron mobility(m**2/Vs) +e=1.602*10**-19; //charge(c) +//Calculation +ne=sigmae/(e*mew_e); //concentration(per m**3) +//Result +printf("concentration is %.1e per m^3",ne) diff --git a/3768/CH9/EX9.14/Ex9_14.sce b/3768/CH9/EX9.14/Ex9_14.sce new file mode 100644 index 000000000..550aeaa0e --- /dev/null +++ b/3768/CH9/EX9.14/Ex9_14.sce @@ -0,0 +1,15 @@ +//Example number 9.14, Page number 209 + +clc;clear; +close; + +//Variable declaration +RH=3.66*10**-4; //hall coefficient(m*3/c) +rho_i=8.93*10**-3; //resistivity(ohm m) +e=1.602*10**-19; //charge(c) +//Calculation +nh=1/(RH*e); //density of charge carriers(per m**3) +mewh=1/(rho_i*nh*e); //mobility of charge carriers(m**2/Vs) +//Result +printf("density of charge carriers is %.4e per m^3",nh) +printf("\n mobility of charge carriers is %.3f m^2/Vs",mewh) diff --git a/3768/CH9/EX9.15/Ex9_15.sce b/3768/CH9/EX9.15/Ex9_15.sce new file mode 100644 index 000000000..eaa113d5f --- /dev/null +++ b/3768/CH9/EX9.15/Ex9_15.sce @@ -0,0 +1,21 @@ +//Example number 9.15, Page number 209 + +clc;clear; +close; + +//Variable declaration +I=3*10**-3; //current(A) +RH=3.66*10**-4; //hall coefficient(m**3/C) +e=1.6*10**-19; //charge(c) +d=2*10**-2; +z=1*10**-3; +B=1; //magnetic field(wb/m**2) +//Calculation +w=d*z; //width(m**2) +A=w; //area(m**2) +EH=RH*I*B/A; +VH=EH*d*10**3; //hall voltage(mV) +n=1/(RH*e); //charge carrier concentration(per m**3) +//Result +printf("hall voltage is %.1f mH",VH) +printf("\n charge carrier concentration is %.2e per m^3",n) diff --git a/3768/CH9/EX9.2/Ex9_2.sce b/3768/CH9/EX9.2/Ex9_2.sce new file mode 100644 index 000000000..988b2a60d --- /dev/null +++ b/3768/CH9/EX9.2/Ex9_2.sce @@ -0,0 +1,20 @@ +//Example number 9.2, Page number 203 + +clc;clear; +close; + +//Variable declaration +e=1.6*10**-19; //charge(c) +ni=1.5*10**16; //particle density(per m**3) +mew_e=0.13; //electron mobility(m**2/Vs) +mew_h=0.048; //hole mobility(m**2/Vs) +ND=10**23; //density(per m**3) +//Calculation +sigma_i=ni*e*(mew_e+mew_h); //conductivity(s) +sigma=ND*mew_e*e; //conductivity(s) +P=ni**2/ND; //equilibrium hole concentration(per m**3) +//Result +printf("conductivity is %.2e s",sigma_i) +printf("\n conductivity is %.3e s",sigma) +printf("\n equilibrium hole concentration is %.2e per m^3",P) +//answer in the book varies due to rounding off errors diff --git a/3768/CH9/EX9.3/Ex9_3.sce b/3768/CH9/EX9.3/Ex9_3.sce new file mode 100644 index 000000000..c2d7c7c90 --- /dev/null +++ b/3768/CH9/EX9.3/Ex9_3.sce @@ -0,0 +1,19 @@ +//Example number 9.3, Page number 203 + +clc;clear; +close; + +//Variable declaration +e=1.6*10**-19; //charge(c) +ni=1.5*10**16; //particle density(per m**3) +mew_e=0.13; //electron mobility(m**2/Vs) +mew_h=0.05; //hole mobility(m**2/Vs) +ND=5*10**20; //density(per m**3) +//Calculation +sigma=ni*e*(mew_e+mew_h); //intrinsic conductivity(s) +sigma_d=ND*e*mew_e; //conductivity during donor impurity(ohm-1 m-1) +sigma_a=ND*e*mew_h; //conductivity during acceptor impurity(ohm-1 m-1) +//Result +printf("intrinsic conductivity is %.3e (ohm-m)^-1",sigma) +printf("\n conductivity during donor impurity is %.1f (ohm-m)^-1",sigma_d) +printf("\n conductivity during donor impurity is %.f (ohm-m)^-1",sigma_a) diff --git a/3768/CH9/EX9.4/Ex9_4.sce b/3768/CH9/EX9.4/Ex9_4.sce new file mode 100644 index 000000000..c97979d2f --- /dev/null +++ b/3768/CH9/EX9.4/Ex9_4.sce @@ -0,0 +1,17 @@ +//Example number 9.4, Page number 204 + +clc;clear; +close; + +//Variable declaration +RH=3.66*10**-4; //hall coefficient(m**3/c) +rho=8.93*10**-3; //resistivity(m) +e=1.6*10**-19; //charge(c) +//Calculation +mew=RH/rho; //mobility(m**2/Vs) +n=1/(RH*e); //density of atoms(per m**3) +//Result +printf("mobility is %.5f m^2/Vs",mew) +printf("\n density of atoms is %.1e per m^3",n) + +//answer in the book varies due to rounding off errors diff --git a/3768/CH9/EX9.5/Ex9_5.sce b/3768/CH9/EX9.5/Ex9_5.sce new file mode 100644 index 000000000..ed97e4289 --- /dev/null +++ b/3768/CH9/EX9.5/Ex9_5.sce @@ -0,0 +1,21 @@ +//Example number 9.5, Page number 204 + +clc;clear; +close; + +//Variable declaration +w=72.6; //atomic weight +e=1.6*10**-19; //charge(c) +mew_e=0.4; //electron mobility(m**2/Vs) +mew_h=0.2; //hole mobility(m**2/Vs) +T=300; //temperature(K) +x=4.83*10**21; +Eg=0.7; //band gap(eV) +y=0.052; +//Calculation +ni=x*(T**(3/2))*exp(-Eg/y); //carrier density(per m**3) +sigma=ni*e*(mew_e+mew_h); //conductivity(ohm-1 m-1) +//Result +printf("carrier density is %.2e per m^3",ni) +printf("\n conductivity is %.2f (ohm-m)^-1",sigma) +//answer in the book varies due to rounding off errors diff --git a/3768/CH9/EX9.6/Ex9_6.sce b/3768/CH9/EX9.6/Ex9_6.sce new file mode 100644 index 000000000..cec8ed4bf --- /dev/null +++ b/3768/CH9/EX9.6/Ex9_6.sce @@ -0,0 +1,20 @@ +//Example number 9.6, Page number 205 + +clc;clear; +close; + +//Variable declaration +T1=293; //temperature(K) +T2=305; //temperature(K) +e=1.6*10**-19; //charge(c) +sigma1=2; +sigma2=4.5; +KB=1.38*10**-23; //boltzmann constant +//Calculation +x=((1/T1)-(1/T2)); +y=log(sigma2/sigma1); +z=3*log(T2/T1)/2; +Eg=2*KB*(y+z)/(e*x); //energy band gap(eV) +//Result +printf("energy band gap is %.2f eV",Eg) +//answer in the book is wrong diff --git a/3768/CH9/EX9.7/Ex9_7.sce b/3768/CH9/EX9.7/Ex9_7.sce new file mode 100644 index 000000000..be5511d10 --- /dev/null +++ b/3768/CH9/EX9.7/Ex9_7.sce @@ -0,0 +1,14 @@ +//Example number 9.7, Page number 205 + +clc;clear; +close; + +//Variable declaration +e=1.6*10**-19; //charge(c) +mew_e=0.19; //electron mobility(m**2/Vs) +T=300; //temperature(K) +KB=1.38*10**-23; //boltzmann constant +//Calculation +Dn=mew_e*KB*T/e; //diffusion coefficient(m**2/sec) +//Result +printf("diffusion coefficient is %.1e m^2/s",Dn) diff --git a/3768/CH9/EX9.8/Ex9_8.sce b/3768/CH9/EX9.8/Ex9_8.sce new file mode 100644 index 000000000..d31a0ee86 --- /dev/null +++ b/3768/CH9/EX9.8/Ex9_8.sce @@ -0,0 +1,21 @@ +//Example number 9.8, Page number 206 + +clc;clear; +close; + +//Variable declaration +sigma=2.12; //conductivity(ohm-1 m-1) +T=300; //temperature(K) +e=1.6*10**-19; //charge(c) +mew_e=0.36; //electron mobility(m**2/Vs) +mew_h=0.7; //hole mobility(m**2/Vs) +C=4.83*10**21; +KB=1.38*10**-23; //boltzmann constant +//Calculation +ni=sigma/(e*(mew_e+mew_h)); //carrier density(per m**3) +x=C*T**(3/2)/ni; +Eg=2*KB*T*log(x)/e; //energy gap(eV) +//Result +printf("carrier density is %.2e per m^3",ni) +printf("\n energy gap is %.2f eV",Eg) +//answer in the book is wrong diff --git a/3768/CH9/EX9.9/Ex9_9.sce b/3768/CH9/EX9.9/Ex9_9.sce new file mode 100644 index 000000000..e6d61e131 --- /dev/null +++ b/3768/CH9/EX9.9/Ex9_9.sce @@ -0,0 +1,19 @@ +//Example number 9.9, Page number 206 + +clc;clear; +close; + +//Variable declaration +Eg=6.408*10**-20; //energy gap of semiconductor(J) +T1=273; //temperature(K) +T2=323; //temperature(K) +T3=373; //temperature(K) +KB=1.38*10**-23; //boltzmann constant +//Calculation +FE1=1/(1+exp(Eg/(2*KB*T1))); //probability of occupation at 0C(eV) +FE2=1/(1+exp(Eg/(2*KB*T2))); //probability of occupation at 50C(eV) +FE3=1/(1+exp(Eg/(2*KB*T3))); //probability of occupation at 100C(eV) +//Result +printf("probability of occupation at 0C is %.3e eV",FE1) +printf("\n probability of occupation at 50C is %.2e eV",FE2) +printf("\n probability of occupation at 100C is %.2e eV",FE3) |