summaryrefslogtreecommitdiff
path: root/3768/CH9
diff options
context:
space:
mode:
Diffstat (limited to '3768/CH9')
-rw-r--r--3768/CH9/EX9.1/Ex9_1.sce14
-rw-r--r--3768/CH9/EX9.10/Ex9_10.sce16
-rw-r--r--3768/CH9/EX9.11/Ex9_11.sce19
-rw-r--r--3768/CH9/EX9.12/Ex9_12.sce14
-rw-r--r--3768/CH9/EX9.13/Ex9_13.sce13
-rw-r--r--3768/CH9/EX9.14/Ex9_14.sce15
-rw-r--r--3768/CH9/EX9.15/Ex9_15.sce21
-rw-r--r--3768/CH9/EX9.2/Ex9_2.sce20
-rw-r--r--3768/CH9/EX9.3/Ex9_3.sce19
-rw-r--r--3768/CH9/EX9.4/Ex9_4.sce17
-rw-r--r--3768/CH9/EX9.5/Ex9_5.sce21
-rw-r--r--3768/CH9/EX9.6/Ex9_6.sce20
-rw-r--r--3768/CH9/EX9.7/Ex9_7.sce14
-rw-r--r--3768/CH9/EX9.8/Ex9_8.sce21
-rw-r--r--3768/CH9/EX9.9/Ex9_9.sce19
15 files changed, 263 insertions, 0 deletions
diff --git a/3768/CH9/EX9.1/Ex9_1.sce b/3768/CH9/EX9.1/Ex9_1.sce
new file mode 100644
index 000000000..05d195472
--- /dev/null
+++ b/3768/CH9/EX9.1/Ex9_1.sce
@@ -0,0 +1,14 @@
+//Example number 9.1, Page number 202
+
+clc;clear;
+close;
+
+//Variable declaration
+e=1.6*10**-19; //charge(c)
+ni=2.4*10**19; //particle density(per m**3)
+mew_e=0.39; //electron mobility(m**2/Vs)
+mew_h=0.19; //hole mobility(m**2/Vs)
+//Calculation
+rho=1/(ni*e*(mew_e+mew_h)); //resistivity(ohm m)
+//Result
+printf("resistivity is %.5f ohm-m",rho)
diff --git a/3768/CH9/EX9.10/Ex9_10.sce b/3768/CH9/EX9.10/Ex9_10.sce
new file mode 100644
index 000000000..3787b3e1d
--- /dev/null
+++ b/3768/CH9/EX9.10/Ex9_10.sce
@@ -0,0 +1,16 @@
+//Example number 9.10, Page number 207
+
+clc;clear;
+close;
+
+//Variable declaration
+Eg=1.9224*10**-19; //energy gap of semiconductor(J)
+T1=600; //temperature(K)
+T2=300; //temperature(K)
+x=-1.666*10**-3;
+KB=1.38*10**-23; //boltzmann constant
+//Calculation
+T=(1/T1)-(1/T2);
+r=exp(x*(-Eg/(2*KB))); //ratio between conductivity
+//Result
+printf("ratio between conductivity is %.3e",r)
diff --git a/3768/CH9/EX9.11/Ex9_11.sce b/3768/CH9/EX9.11/Ex9_11.sce
new file mode 100644
index 000000000..729e4a60a
--- /dev/null
+++ b/3768/CH9/EX9.11/Ex9_11.sce
@@ -0,0 +1,19 @@
+//Example number 9.11, Page number 207
+
+clc;clear;
+close;
+
+//Variable declaration
+ni=2.5*10**19; //charge carriers(per m**3)
+r=10**-6; //ratio
+e=1.6*10**-19; //charge(c)
+mew_e=0.36; //electron mobility(m**2/Vs)
+mew_h=0.18; //hole mobility(m**2/Vs)
+N=4.2*10**28; //number of atoms(per m**3)
+//Calculation
+Ne=r*N; //number of impurity atoms(per m**3)
+Nh=ni**2/Ne;
+sigma=(Ne*e*mew_e)+(Nh*e*mew_h); //conductivity(ohm m)
+rho=1/sigma; //resistivity of material(per ohm m)
+//Result
+printf("resistivity of material is %.4e ohm-m",rho)
diff --git a/3768/CH9/EX9.12/Ex9_12.sce b/3768/CH9/EX9.12/Ex9_12.sce
new file mode 100644
index 000000000..20ea090b9
--- /dev/null
+++ b/3768/CH9/EX9.12/Ex9_12.sce
@@ -0,0 +1,14 @@
+//Example number 9.12, Page number 208
+
+clc;clear;
+close;
+
+//Variable declaration
+n=5*10**17; //concentration(m**3)
+vd=350; //drift velocity(m/s)
+E=1000; //electric field(V/m)
+e=1.6*10**-19; //charge(c)
+//Calculation
+sigma=n*e*vd/E; //conductivity(per ohm m)
+//Result
+printf("conductivity is %.3f per ohm-m",sigma)
diff --git a/3768/CH9/EX9.13/Ex9_13.sce b/3768/CH9/EX9.13/Ex9_13.sce
new file mode 100644
index 000000000..b9e7bc8ae
--- /dev/null
+++ b/3768/CH9/EX9.13/Ex9_13.sce
@@ -0,0 +1,13 @@
+//Example number 9.13, Page number 208
+
+clc;clear;
+close;
+
+//Variable declaration
+sigmae=2.2*10**-4; //conductivity(ohm/m)
+mew_e=125*10**-3; //electron mobility(m**2/Vs)
+e=1.602*10**-19; //charge(c)
+//Calculation
+ne=sigmae/(e*mew_e); //concentration(per m**3)
+//Result
+printf("concentration is %.1e per m^3",ne)
diff --git a/3768/CH9/EX9.14/Ex9_14.sce b/3768/CH9/EX9.14/Ex9_14.sce
new file mode 100644
index 000000000..550aeaa0e
--- /dev/null
+++ b/3768/CH9/EX9.14/Ex9_14.sce
@@ -0,0 +1,15 @@
+//Example number 9.14, Page number 209
+
+clc;clear;
+close;
+
+//Variable declaration
+RH=3.66*10**-4; //hall coefficient(m*3/c)
+rho_i=8.93*10**-3; //resistivity(ohm m)
+e=1.602*10**-19; //charge(c)
+//Calculation
+nh=1/(RH*e); //density of charge carriers(per m**3)
+mewh=1/(rho_i*nh*e); //mobility of charge carriers(m**2/Vs)
+//Result
+printf("density of charge carriers is %.4e per m^3",nh)
+printf("\n mobility of charge carriers is %.3f m^2/Vs",mewh)
diff --git a/3768/CH9/EX9.15/Ex9_15.sce b/3768/CH9/EX9.15/Ex9_15.sce
new file mode 100644
index 000000000..eaa113d5f
--- /dev/null
+++ b/3768/CH9/EX9.15/Ex9_15.sce
@@ -0,0 +1,21 @@
+//Example number 9.15, Page number 209
+
+clc;clear;
+close;
+
+//Variable declaration
+I=3*10**-3; //current(A)
+RH=3.66*10**-4; //hall coefficient(m**3/C)
+e=1.6*10**-19; //charge(c)
+d=2*10**-2;
+z=1*10**-3;
+B=1; //magnetic field(wb/m**2)
+//Calculation
+w=d*z; //width(m**2)
+A=w; //area(m**2)
+EH=RH*I*B/A;
+VH=EH*d*10**3; //hall voltage(mV)
+n=1/(RH*e); //charge carrier concentration(per m**3)
+//Result
+printf("hall voltage is %.1f mH",VH)
+printf("\n charge carrier concentration is %.2e per m^3",n)
diff --git a/3768/CH9/EX9.2/Ex9_2.sce b/3768/CH9/EX9.2/Ex9_2.sce
new file mode 100644
index 000000000..988b2a60d
--- /dev/null
+++ b/3768/CH9/EX9.2/Ex9_2.sce
@@ -0,0 +1,20 @@
+//Example number 9.2, Page number 203
+
+clc;clear;
+close;
+
+//Variable declaration
+e=1.6*10**-19; //charge(c)
+ni=1.5*10**16; //particle density(per m**3)
+mew_e=0.13; //electron mobility(m**2/Vs)
+mew_h=0.048; //hole mobility(m**2/Vs)
+ND=10**23; //density(per m**3)
+//Calculation
+sigma_i=ni*e*(mew_e+mew_h); //conductivity(s)
+sigma=ND*mew_e*e; //conductivity(s)
+P=ni**2/ND; //equilibrium hole concentration(per m**3)
+//Result
+printf("conductivity is %.2e s",sigma_i)
+printf("\n conductivity is %.3e s",sigma)
+printf("\n equilibrium hole concentration is %.2e per m^3",P)
+//answer in the book varies due to rounding off errors
diff --git a/3768/CH9/EX9.3/Ex9_3.sce b/3768/CH9/EX9.3/Ex9_3.sce
new file mode 100644
index 000000000..c2d7c7c90
--- /dev/null
+++ b/3768/CH9/EX9.3/Ex9_3.sce
@@ -0,0 +1,19 @@
+//Example number 9.3, Page number 203
+
+clc;clear;
+close;
+
+//Variable declaration
+e=1.6*10**-19; //charge(c)
+ni=1.5*10**16; //particle density(per m**3)
+mew_e=0.13; //electron mobility(m**2/Vs)
+mew_h=0.05; //hole mobility(m**2/Vs)
+ND=5*10**20; //density(per m**3)
+//Calculation
+sigma=ni*e*(mew_e+mew_h); //intrinsic conductivity(s)
+sigma_d=ND*e*mew_e; //conductivity during donor impurity(ohm-1 m-1)
+sigma_a=ND*e*mew_h; //conductivity during acceptor impurity(ohm-1 m-1)
+//Result
+printf("intrinsic conductivity is %.3e (ohm-m)^-1",sigma)
+printf("\n conductivity during donor impurity is %.1f (ohm-m)^-1",sigma_d)
+printf("\n conductivity during donor impurity is %.f (ohm-m)^-1",sigma_a)
diff --git a/3768/CH9/EX9.4/Ex9_4.sce b/3768/CH9/EX9.4/Ex9_4.sce
new file mode 100644
index 000000000..c97979d2f
--- /dev/null
+++ b/3768/CH9/EX9.4/Ex9_4.sce
@@ -0,0 +1,17 @@
+//Example number 9.4, Page number 204
+
+clc;clear;
+close;
+
+//Variable declaration
+RH=3.66*10**-4; //hall coefficient(m**3/c)
+rho=8.93*10**-3; //resistivity(m)
+e=1.6*10**-19; //charge(c)
+//Calculation
+mew=RH/rho; //mobility(m**2/Vs)
+n=1/(RH*e); //density of atoms(per m**3)
+//Result
+printf("mobility is %.5f m^2/Vs",mew)
+printf("\n density of atoms is %.1e per m^3",n)
+
+//answer in the book varies due to rounding off errors
diff --git a/3768/CH9/EX9.5/Ex9_5.sce b/3768/CH9/EX9.5/Ex9_5.sce
new file mode 100644
index 000000000..ed97e4289
--- /dev/null
+++ b/3768/CH9/EX9.5/Ex9_5.sce
@@ -0,0 +1,21 @@
+//Example number 9.5, Page number 204
+
+clc;clear;
+close;
+
+//Variable declaration
+w=72.6; //atomic weight
+e=1.6*10**-19; //charge(c)
+mew_e=0.4; //electron mobility(m**2/Vs)
+mew_h=0.2; //hole mobility(m**2/Vs)
+T=300; //temperature(K)
+x=4.83*10**21;
+Eg=0.7; //band gap(eV)
+y=0.052;
+//Calculation
+ni=x*(T**(3/2))*exp(-Eg/y); //carrier density(per m**3)
+sigma=ni*e*(mew_e+mew_h); //conductivity(ohm-1 m-1)
+//Result
+printf("carrier density is %.2e per m^3",ni)
+printf("\n conductivity is %.2f (ohm-m)^-1",sigma)
+//answer in the book varies due to rounding off errors
diff --git a/3768/CH9/EX9.6/Ex9_6.sce b/3768/CH9/EX9.6/Ex9_6.sce
new file mode 100644
index 000000000..cec8ed4bf
--- /dev/null
+++ b/3768/CH9/EX9.6/Ex9_6.sce
@@ -0,0 +1,20 @@
+//Example number 9.6, Page number 205
+
+clc;clear;
+close;
+
+//Variable declaration
+T1=293; //temperature(K)
+T2=305; //temperature(K)
+e=1.6*10**-19; //charge(c)
+sigma1=2;
+sigma2=4.5;
+KB=1.38*10**-23; //boltzmann constant
+//Calculation
+x=((1/T1)-(1/T2));
+y=log(sigma2/sigma1);
+z=3*log(T2/T1)/2;
+Eg=2*KB*(y+z)/(e*x); //energy band gap(eV)
+//Result
+printf("energy band gap is %.2f eV",Eg)
+//answer in the book is wrong
diff --git a/3768/CH9/EX9.7/Ex9_7.sce b/3768/CH9/EX9.7/Ex9_7.sce
new file mode 100644
index 000000000..be5511d10
--- /dev/null
+++ b/3768/CH9/EX9.7/Ex9_7.sce
@@ -0,0 +1,14 @@
+//Example number 9.7, Page number 205
+
+clc;clear;
+close;
+
+//Variable declaration
+e=1.6*10**-19; //charge(c)
+mew_e=0.19; //electron mobility(m**2/Vs)
+T=300; //temperature(K)
+KB=1.38*10**-23; //boltzmann constant
+//Calculation
+Dn=mew_e*KB*T/e; //diffusion coefficient(m**2/sec)
+//Result
+printf("diffusion coefficient is %.1e m^2/s",Dn)
diff --git a/3768/CH9/EX9.8/Ex9_8.sce b/3768/CH9/EX9.8/Ex9_8.sce
new file mode 100644
index 000000000..d31a0ee86
--- /dev/null
+++ b/3768/CH9/EX9.8/Ex9_8.sce
@@ -0,0 +1,21 @@
+//Example number 9.8, Page number 206
+
+clc;clear;
+close;
+
+//Variable declaration
+sigma=2.12; //conductivity(ohm-1 m-1)
+T=300; //temperature(K)
+e=1.6*10**-19; //charge(c)
+mew_e=0.36; //electron mobility(m**2/Vs)
+mew_h=0.7; //hole mobility(m**2/Vs)
+C=4.83*10**21;
+KB=1.38*10**-23; //boltzmann constant
+//Calculation
+ni=sigma/(e*(mew_e+mew_h)); //carrier density(per m**3)
+x=C*T**(3/2)/ni;
+Eg=2*KB*T*log(x)/e; //energy gap(eV)
+//Result
+printf("carrier density is %.2e per m^3",ni)
+printf("\n energy gap is %.2f eV",Eg)
+//answer in the book is wrong
diff --git a/3768/CH9/EX9.9/Ex9_9.sce b/3768/CH9/EX9.9/Ex9_9.sce
new file mode 100644
index 000000000..e6d61e131
--- /dev/null
+++ b/3768/CH9/EX9.9/Ex9_9.sce
@@ -0,0 +1,19 @@
+//Example number 9.9, Page number 206
+
+clc;clear;
+close;
+
+//Variable declaration
+Eg=6.408*10**-20; //energy gap of semiconductor(J)
+T1=273; //temperature(K)
+T2=323; //temperature(K)
+T3=373; //temperature(K)
+KB=1.38*10**-23; //boltzmann constant
+//Calculation
+FE1=1/(1+exp(Eg/(2*KB*T1))); //probability of occupation at 0C(eV)
+FE2=1/(1+exp(Eg/(2*KB*T2))); //probability of occupation at 50C(eV)
+FE3=1/(1+exp(Eg/(2*KB*T3))); //probability of occupation at 100C(eV)
+//Result
+printf("probability of occupation at 0C is %.3e eV",FE1)
+printf("\n probability of occupation at 50C is %.2e eV",FE2)
+printf("\n probability of occupation at 100C is %.2e eV",FE3)