diff options
Diffstat (limited to '1445/CH2')
51 files changed, 1810 insertions, 0 deletions
diff --git a/1445/CH2/EX2.1/ch2_ex_1.sce b/1445/CH2/EX2.1/ch2_ex_1.sce new file mode 100644 index 000000000..2dbc6b6a2 --- /dev/null +++ b/1445/CH2/EX2.1/ch2_ex_1.sce @@ -0,0 +1,21 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 1 + +disp("CHAPTER 2"); +disp("EXAMPLE 1"); + +//SOLUTION + +//average value +v_av=(integrate('sin(x)','x',0,%pi))/(2*%pi); + +//rms value +v_rms=(integrate('sin(x)^2','x',0,%pi))/(2*%pi); +v_rms=sqrt(v_rms); + +ff=v_rms/v_av; +disp(sprintf("The form factor is %f",ff)); + +//END + + diff --git a/1445/CH2/EX2.10/ch2_ex_10.sce b/1445/CH2/EX2.10/ch2_ex_10.sce new file mode 100644 index 000000000..3d34c9759 --- /dev/null +++ b/1445/CH2/EX2.10/ch2_ex_10.sce @@ -0,0 +1,27 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 10 + +disp("CHAPTER 2"); +disp("EXAMPLE 10"); + +//VARIABLE INITIALIZATION +v=230; //in Volts +z1=3+(%i*4); //impedance in rectangular form in Ohms +z2=6+(%i*8); //impedance in rectangular form in Ohms + +//SOLUTION +function [z,angle]=rect2pol(x,y); +z=sqrt((x^2)+(y^2)); //z is impedance & the resultant of x and y +angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees +endfunction; + +[z1,angle1]=rect2pol(3,4); +[z2,angle2]=rect2pol(6,8); + +z=(z1*z2)/(z1+z2); +I=v/z; +angle=-angle1; //as angle1=angle2 +p=v*I*cos(angle*%pi/180); //to convert the angle from degrees to radians +disp(sprintf("The power drawn from the source is %f kW",p/1000)); + +//END diff --git a/1445/CH2/EX2.11/ch2_ex_11.sce b/1445/CH2/EX2.11/ch2_ex_11.sce new file mode 100644 index 000000000..fc8e0b84c --- /dev/null +++ b/1445/CH2/EX2.11/ch2_ex_11.sce @@ -0,0 +1,26 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 11 + +disp("CHAPTER 2"); +disp("EXAMPLE 11"); + +//VARIABLE INITIALIZATION +vdc=100; //DC voltage in Volts +vac=100; //AC voltage in Volts +f=50; //in Hertz +I1=10; //in Amperes +I2=5; //in Amperes + +//SOLUTION +r=vdc/I1; +z=vac/I2; +xl=sqrt((z^2)-(r^2)); +L=xl/(2*%pi*f); +pf=r/z; +disp(sprintf("The inductance of the coil is %f H",L)); +disp(sprintf("The power factor of the coil is %f (lagging)",pf)); + +//END + + + diff --git a/1445/CH2/EX2.13/ch2_ex_13.sce b/1445/CH2/EX2.13/ch2_ex_13.sce new file mode 100644 index 000000000..cf3c2766c --- /dev/null +++ b/1445/CH2/EX2.13/ch2_ex_13.sce @@ -0,0 +1,37 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 13 + +disp("CHAPTER 2"); +disp("EXAMPLE 13"); + +//VARIABLE INITIALIZATION +z1=1+(%i*1); //impedance in rectangular form in Ohms +v=20*sqrt(2); //amplitude of rms value of voltage in Volts + +//SOLUTION +function [z,angle]=rect2pol(x,y); +z=sqrt((x^2)+(y^2)); //z is impedance & the resultant of x and y +angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees +endfunction; + +//solution (i) +[z,angle]=rect2pol(1,1); +v=v/sqrt(2); +angle_v=100; //v=(20/sqrt(2))*sin(ωt+100) +I=v/z; //RMS value of current +angle_I=angle_v-angle; +Im=I*sqrt(2); +disp(sprintf("(i) The current in load is i = %d sin(ωt+%d) A",Im,angle_I)); + +//solution (ii) +pr=(v/sqrt(2))*(I*sqrt(2))*cos(angle*(%pi/180)); +disp(sprintf("(ii) The real power is %f W",pr)); + +//solution (iii) +pa=(v/sqrt(2))*(I*sqrt(2)); +disp(sprintf("(ii) The apparent power is %f VAR",pa)); + +//END + + + diff --git a/1445/CH2/EX2.14/ch2_ex_14.sce b/1445/CH2/EX2.14/ch2_ex_14.sce new file mode 100644 index 000000000..2d3da2eff --- /dev/null +++ b/1445/CH2/EX2.14/ch2_ex_14.sce @@ -0,0 +1,38 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 14 + +disp("CHAPTER 2"); +disp("EXAMPLE 14"); + +//VARIABLE INITIALIZATION +v=100; //amplitude of rms value of voltage in Volts +I=20; //amplitude of rms value of current in Amperes + +//SOLUTION + +//solution(i) +w=314; //angular frequency in radian/sec +f=w/(2*%pi); //as w=2*(%pi)*f +f=ceil(f); +disp(sprintf("(i) The frequency is %d Hz",f)); + +//solution (ii) +E=v/sqrt(2); +angle_E=-45; //in degrees +I=I/sqrt(2); +angle_I=-90; //in degrees +z=E/I; +angle=angle_E-angle_I; +disp(sprintf("(ii) The impedance is %d Ω, %d degrees",z,angle)); + +function [x,y]=pol2rect(mag,angle1); +x=mag*cos(angle1*(%pi/180)); //to convert the angle from degrees to radian +y=mag*sin(angle1*(%pi/180)); +endfunction; +[r,x]=pol2rect(z,angle); +L=x/(2*%pi*f); +disp(sprintf(" The inductance is %f H",L)); + +//END + + diff --git a/1445/CH2/EX2.15/ch2_ex_15.sce b/1445/CH2/EX2.15/ch2_ex_15.sce new file mode 100644 index 000000000..09182c5ed --- /dev/null +++ b/1445/CH2/EX2.15/ch2_ex_15.sce @@ -0,0 +1,39 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 15 + +disp("CHAPTER 2"); +disp("EXAMPLE 15"); + +//VARIABLE INITIALIZATION +I=2; //in Amperes +angle_I=60; //in degrees +v1=200; //in Volts +f=50; //in Hertz + +//SOLUTION +z1=v1/I; +disp(sprintf("The impedance is %d Ω, %d degrees",z1,angle_I)); +//function to convert from polar form to rectangular form +function [x,y]=pol2rect(mag,angle); +x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians +y=mag*sin(angle*(%pi/180)); +endfunction; +[r,x1]=pol2rect(z1,angle_I); +disp(sprintf("The resistance is %d Ω",r)); +L=x1/(2*%pi*f); +disp(sprintf("The inductance is %f H",L)); + +v2=100; +f2=25; +x2=2*%pi*f2*L; +z2=sqrt((r^2)+(x2^2)); +angle=atan(x2/r); +I1=v2/z2; +p=v2*I1*cos(-angle); +disp(sprintf("The power consumed is %f W",p)); + +//Answer may be slightly different due to precision of floating point numbers + +//END + + diff --git a/1445/CH2/EX2.16/ch2_ex_16.sce b/1445/CH2/EX2.16/ch2_ex_16.sce new file mode 100644 index 000000000..c0acf18c5 --- /dev/null +++ b/1445/CH2/EX2.16/ch2_ex_16.sce @@ -0,0 +1,80 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 16 + +disp("CHAPTER 2"); +disp("EXAMPLE 16"); + +//VARIABLE INITIALIZATION +r1=5; //in Ohms +r2=10; //in Ohms +L1=0.04; //in Henry +L2=0.05; //in Henry +v=200; //in Volts +f=50; //in Hertz + +//SOLUTION + +//solution (i) +xl1=L1*(2*%pi*f); +xl2=L2*(2*%pi*f); +z1=r1+(%i*xl1); +z2=r2+(%i*xl2); +//function to convert from rectangular form to polar form +function [z,angle]=rect2pol(x,y); +z=sqrt((x^2)+(y^2)); //z is impedance & the resultant of x and y +angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees +endfunction; +[z1,angle1]=rect2pol(r1,xl1); +[z2,angle2]=rect2pol(r2,xl2); +Y1=1/z1; //admittance +Y2=1/z2; +//function to convert from polar form to rectangular form +function [x,y]=pol2rect(mag,angle); +x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians +y=mag*sin(angle*(%pi/180)); +endfunction; +[G1,B1]=pol2rect(Y1,angle1); +[G2,B2]=pol2rect(Y2,angle2); +disp("......................................"); +disp("SOLUTION (i)"); +disp(sprintf("Conductance of 1st coil is %f S",G1)); +disp(sprintf("Conductance of 2nd coil is %f S",G2)); +disp(" "); +disp(sprintf("Susceptance of 1st coil is %f S",B1)); +disp(sprintf("Susceptance of 2nd coil is %f S",B2)); +disp(" "); +disp(sprintf("Admittance of 1st coil is %f S",Y1)); +disp(sprintf("Admittance of 2nd coil is %f S",Y2)); +disp("......................................"); + +//solution (ii) +G=G1+G2; +B=B1+B2; +[Y,angle]=rect2pol(G,B); +I=v*Y; +pf=cos((angle)*(%pi/180)); +disp("SOLUTION (ii)"); +disp(sprintf("Total current drawn by the circuit is %f A, %f degrees",I,-angle)); +disp(sprintf("Power factor of the circuit is %f (lagging)",pf)); +disp("......................................"); + +//solution (iii) +p=v*I*pf; +disp("SOLUTION (iii)"); +disp(sprintf("Power absorbed by the circuit is %f kW",p/1000)); +disp("......................................"); + +//solution (iv) +z=v/I; +function [x,y]=pol2rect(mag,angle); +x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians +y=mag*sin(angle*(%pi/180)); +endfunction; +[r,x]=pol2rect(z,angle); +L=x/(2*%pi*f); +disp("SOLUTION (iv)"); +disp(sprintf("Resitance of single coil is %f Ω",r)); +disp(sprintf("Inductance of single coil is %f H",L)); +disp("......................................"); + +//END diff --git a/1445/CH2/EX2.17/ch2_ex_17.sce b/1445/CH2/EX2.17/ch2_ex_17.sce new file mode 100644 index 000000000..ba82080a2 --- /dev/null +++ b/1445/CH2/EX2.17/ch2_ex_17.sce @@ -0,0 +1,51 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 17 + +disp("CHAPTER 2"); +disp("EXAMPLE 17"); + +//VARIABLE INITIALIZATION +e=141.4; //in Volts +E=141.4/sqrt(2); //in Volts +angle_E=0; //in degrees +//i(t)=(14.14<0)+(7.07<120) +i1=14.14; //in Amperes +angle_i1=0; //in degrees +i2=7.07; //in Amperes +angle_i2=120; //in degrees + +//SOLUTION +//function to convert from polar form to rectangular form +function [x,y]=pol2rect(mag,angle); +x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians +y=mag*sin(angle*(%pi/180)); +endfunction; +[i1_x,i1_y]=pol2rect(i1,angle_i1); +[i2_x,i2_y]=pol2rect(i2,angle_i2); +i=(i1_x+i2_x)+(%i*(i1_y+i2_y)); +//function to convert from rectangular form to polar form +function [mag,angle]=rect2pol(x,y); +mag=sqrt((x^2)+(y^2)); +angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees +endfunction; +[I,angle_I]=rect2pol((i1_x+i2_x),(i1_y+i2_y)); +I=I/sqrt(2); + +//solution (i) +z=E/I; +angle_z=angle_E-angle_I; +[r,xc]=pol2rect(z,angle_z); +f=50; +c=1/(2*%pi*f*(-xc)); +disp(sprintf("(i) The value of resistance is %f Ω",r)); +disp(sprintf(" The value of capacitance is %f μF",c*10^6)); + +//solution (ii) +pf=cos(angle_z*(%pi/180)); +disp(sprintf("(ii) The power factor is %f ",pf)); + +//solution (iii) +p=E*I*pf; +disp(sprintf("(iii) The power absorbed by the source is %f W",p)); + +//END diff --git a/1445/CH2/EX2.18/ch2_ex_18.sce b/1445/CH2/EX2.18/ch2_ex_18.sce new file mode 100644 index 000000000..1ccb56cde --- /dev/null +++ b/1445/CH2/EX2.18/ch2_ex_18.sce @@ -0,0 +1,36 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 18 + +disp("CHAPTER 2"); +disp("EXAMPLE 18"); + +//VARIABLE INITIALIZATION +r=10; //in Ohms +v=200; //in Volts +f=50; //in Hertz +I=10; //in Amperes +rc=2; //resistance of coil in Ohms + +//SOLUTION + +//solution (i) +z=v/I; +xl=sqrt((z^2)-((r+rc)^2)); +L=xl/(2*%pi*f); +disp(sprintf("(i) The inductance of the coil is %f H",L)); + +//solution (ii) +pf=(r+rc)/z; +disp(sprintf("(ii) The power factor is %f",pf)); + +//solution (iii) +vl=I*(rc+(%i*xl)); +//function to convert from rectangular form to polar form +function [mag,angle]=rect2pol(x,y); +mag=sqrt((x^2)+(y^2)); +angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees +endfunction; +[vl,angle_vl]=rect2pol(real(vl),imag(vl)); +disp(sprintf("(iii) The voltage across the coil is %f V, %f degrees",vl,angle_vl)); + +//END diff --git a/1445/CH2/EX2.19/ch2_ex_19.sce b/1445/CH2/EX2.19/ch2_ex_19.sce new file mode 100644 index 000000000..dbac96db8 --- /dev/null +++ b/1445/CH2/EX2.19/ch2_ex_19.sce @@ -0,0 +1,50 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 19 + +disp("CHAPTER 2"); +disp("EXAMPLE 19"); + +//VARIABLE INITIALIZATION +z1=4+(%i*3); //impedance in rectangular form in Ohms +z2=6-(%i*8); //impedance in rectangular form in Ohms +z3=1.6+(%i*7.2); //impedance in rectangular form in Ohms +v=100 //in volts +//SOLUTION + +//solution (i) +//Admittance of each parallel branch Y1 and Y2 +Y1=1/z1; +Y2=1/z2; +disp("SOLUTION (i)"); +disp(sprintf("Admittance parallel branch 1 is %3f %3fj S", real(Y1), imag(Y1))); +disp(sprintf("Admittance parallel branch 2 is %3f+%3fj S", real(Y2), imag(Y2))); +disp(" "); + +//solution (ii) +//Total circuit impedance Z=(Z1||Z2)+Z3 +z=z3+(z2*z1)/(z1+z2) +disp("SOLUTION (ii)"); +disp(sprintf("Total circuit impedance is %3f %3fj S", real(z), imag(z))); +//solution in the book is wrong as there is a total mistake in imaginery part 7.2+0.798=11.598 +// +//solution (iii) +//Supply current I=V/Z +i=v/z; +function [z,angle]=rect2pol(x,y); +z0=sqrt((x^2)+(y^2)); //z is impedance & the resultant of x and y +angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees +endfunction; +[z, angle]=rect2pol(real(i), imag(i)); +//disp(sprintf("%f, %f",z,angle)); +//disp(sprintf("%f, %f",real(i), imag(i))); +pf=cos(angle*%pi/180); + +disp("SOLUTION (iii)"); +disp(sprintf("The power factor is %f",pf)); +//solution (iv) +//Power supplied by source = VI cosΦ or I^2 . R +P=v*real(i)*pf; + +disp("SOLUTION (iv)"); +disp(sprintf("The power supplied by source is %f watt",P)); +//END diff --git a/1445/CH2/EX2.20/ch2_ex_20.sce b/1445/CH2/EX2.20/ch2_ex_20.sce new file mode 100644 index 000000000..79c18d219 --- /dev/null +++ b/1445/CH2/EX2.20/ch2_ex_20.sce @@ -0,0 +1,39 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 20 // read it as example 19 in the book on page 2.72 + +disp("CHAPTER 2"); +disp("EXAMPLE 20"); + +//VARIABLE INITIALIZATION +L=0.5 //in Henry +C=5 //in mf, multiply by 10^-6 to convert to f +R=25 //in ohms +//SOLUTION + +//solution (i) +//Resonance frequency f = (1/2π)sqrt((1/LC)-R^2/L^2) +fr=(1/(2*%pi))*sqrt((1/(L*C*10^-6))-(R^2)/(L^2)); +disp("SOLUTION (i)"); +disp(sprintf("For parallel circuit,Resonant frquency is %3f Hz", fr)); +disp(" "); + +//solution (ii) +//Total circuit impedance at resonance is Z=L/RC +z=L/(R*C*10^-6); +disp("SOLUTION (ii)"); +disp(sprintf("Total impedence at resonance is %3f kΩ", z/1000)); +// +//solution (iii) +//Bandwidth (f2-f1)=R/(2.π.L) +bw=R/(2*%pi*L); +disp("SOLUTION (iii)"); +disp(sprintf("Bandwidth is %3f Hz", bw)); +// +//solution (iv) +//Quality factor Q=1/R.sqrt(L/C) +Q=(1/R)*sqrt(L/(C*10^-6)); +disp("SOLUTION (iv)"); +disp(sprintf("Quality Factor is %3f", Q)); +//solution in the book is wrong as there is a total mistake in imaginery part 7.2+0.798=11.598 +// +//END diff --git a/1445/CH2/EX2.22/ch2_ex_22.sce b/1445/CH2/EX2.22/ch2_ex_22.sce new file mode 100644 index 000000000..de0004d85 --- /dev/null +++ b/1445/CH2/EX2.22/ch2_ex_22.sce @@ -0,0 +1,36 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 22 // read it as example 21 in the book on page 2.75 + +disp("CHAPTER 2"); +disp("EXAMPLE 22"); + +//VARIABLE INITIALIZATION +L=0.1 //in Henry +C=8 //in mf, multiply by 10^-6 to convert to f +R=10 //in ohms +//SOLUTION + +//solution (i) +//Resonance frequency for a series RLC circuitf = 1/2.π.sqrt(LC) +fr=1/(2*%pi*sqrt(L*C*10^-6)); +disp("SOLUTION (i)"); +disp(sprintf("For series circuit,Resonant frquency is %3f Hz", fr)); +disp(" "); + +//solution (ii) +//Q-factor is Q=w.L/R= 2.π,fr.L/R +w=2*%pi*fr; +Q=w*L/R; +disp("SOLUTION (ii)"); +disp(sprintf("The Q-factor at resonance is %3f kΩ", Q)); +// +//solution (iii) +//Bandwidth (f2-f1)=R/(2.π.L), f1,f2 half power frequencies +bw=R/(2*%pi*L); +f1=fr+bw/2; +disp("SOLUTION (iii)"); +disp(sprintf("half frequency 1 is %3f Hz", f1)); +disp(sprintf("half frequency 2 is %3f Hz", fr)); +// +//END + diff --git a/1445/CH2/EX2.23/ch2_ex_23.sce b/1445/CH2/EX2.23/ch2_ex_23.sce new file mode 100644 index 000000000..e84c47176 --- /dev/null +++ b/1445/CH2/EX2.23/ch2_ex_23.sce @@ -0,0 +1,34 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 22 // read it as example 22 in the book on page 2.76 + +disp("CHAPTER 2"); +disp("EXAMPLE 23"); + +//VARIABLE INITIALIZATION +A=100 //Amplitude in Amps +f=50 //frquency in Hz +t1=1/600 //sec after wave becomes zero again +a1=86.6 //amplitude at some time t after start +//SOLUTION + +//solution (a) +//RAmplitude at 1/600 second after it becomes zero +w=f*2*%pi; //angular speed +hp=1/(2*f); //half period, the point where sine beomes zero again after origin +t=hp+t1; +a2=A*sin(w*t); +disp("SOLUTION (a)"); +disp(sprintf("Amplitude after 1/600 sec is %3f A", a2)); +disp(" "); +//solution (b) +//since A=A0.sinwt, t=asin(A/A0)/w +t2=(asin(a1/A))/w; +disp("SOLUTION (b)"); +disp(sprintf("The time at which amp would be %fis %3f sec", a1,t2)); +// +//solution (iii) +//Bandwidth (f2-f1)=R/(2.π.L), f1,f2 half power frequencies +// +//END + + diff --git a/1445/CH2/EX2.24/ch2_ex_24.sce b/1445/CH2/EX2.24/ch2_ex_24.sce new file mode 100644 index 000000000..3d18a4021 --- /dev/null +++ b/1445/CH2/EX2.24/ch2_ex_24.sce @@ -0,0 +1,27 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 22 // read it as example 23 in the book on page 2.77 + +disp("CHAPTER 2"); +disp("EXAMPLE 24"); + +//VARIABLE INITIALIZATION +V=200 //Amplitude in Volts +w=314 //angular spped +R=20 //in ohms +//SOLUTION + +//solution +//comparing with standard equation +Im=V/R; // in Amps +rms=Im/2; +Iav=Im/%pi; //average current +ff=rms/Iav; +disp("SOLUTION"); +disp(sprintf("RMS value of current is %3f A", rms)); +disp(sprintf("Average value of current is %3f A", Iav)); +disp(sprintf("Form Factor of current is %3f A", ff)); +disp(" "); +// +//END + + diff --git a/1445/CH2/EX2.25/ch2_ex_25.sce b/1445/CH2/EX2.25/ch2_ex_25.sce new file mode 100644 index 000000000..0562848e1 --- /dev/null +++ b/1445/CH2/EX2.25/ch2_ex_25.sce @@ -0,0 +1,30 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 25 // read it as example 24 in the book on page 2.78 + +disp("CHAPTER 2"); +disp("EXAMPLE 25"); + +//VARIABLE INITIALIZATION +V=350 //Amplitude in Volts +f=50 //frquency in Hz +t1=0.005 //sec after wave becomes zero again +t2=0.008 //sec after waves passes tgrough 0 in -ve direction +//SOLUTION +//e=Esinwt +//solution (a) +//RAmplitude at 1/600 second after it becomes zero +w=f*2*%pi; //angular speed +v1=V*sin(w*t1); +disp("SOLUTION (a)"); +disp(sprintf("Voltage after %f sec is %3f A", t1,v1)); +disp(" "); +//solution (b) +//since wave will pass in -ve direction after half period +hp=1/(2*f); //half period, the point where sine beomes zero again after origin +t=hp+t2; +v2=V*sin(w*t); +disp("SOLUTION (b)"); +disp(sprintf("The voltage would be %f V %3f sec", v2,t)); +// +//END + diff --git a/1445/CH2/EX2.26/ch2_ex_26.sce b/1445/CH2/EX2.26/ch2_ex_26.sce new file mode 100644 index 000000000..2bc21dc90 --- /dev/null +++ b/1445/CH2/EX2.26/ch2_ex_26.sce @@ -0,0 +1,31 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 26 // read it as example 25 in the book on page 2.79 + +disp("CHAPTER 2"); +disp("EXAMPLE 26"); + +//VARIABLE INITIALIZATION +A=100 //Amplitude in Amps +f=25 //frquency in Hz +a1=20 //svalue in Amps to be achieved in certain time +a2=100 //in Amps + +//SOLUTION +//i=Isinwt +//solution (a) +//RAmplitude at 1/600 second after it becomes zero +w=f*2*%pi; //angular speed +t1=(asin(a1/A))/w; +disp("SOLUTION (a)"); +disp(sprintf("The time to reach value %f A is %3f sec", a1,t1)); +disp(" "); +//solution (b) +//since wave will pass in -ve direction after half period +t2=(asin(a2/A))/w; +disp("SOLUTION (a)"); +disp(sprintf("The time to reach value %f A is %3f sec", a2,t2)); +disp(" "); +// +//END + + diff --git a/1445/CH2/EX2.27/ch2_ex_27.sce b/1445/CH2/EX2.27/ch2_ex_27.sce new file mode 100644 index 000000000..dda7dbc6c --- /dev/null +++ b/1445/CH2/EX2.27/ch2_ex_27.sce @@ -0,0 +1,48 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 27 // read it as example 26 in the book on page 2.79 + +disp("CHAPTER 2"); +disp("EXAMPLE 27"); + +//VARIABLE INITIALIZATION +V=250; //Amplitude in Volts +w=314; //angular spped +pv=-10; //phase angle in degrees +I=10; //Amplitude in Amps +pi=50 //phase angle in degrees + +//SOLUTION +//v=Vsin(wt+pv) +//i=Isin(wt+pi) +//solution +//representing V in polar format as V=V0/sqrt(2) <θ, we get +v1=V/sqrt(2); +i1=I/sqrt(2); +//converting polar to rect +function [x,y]=pol2rect(mag,angle); +x=mag*cos(angle*%pi/180); // angle convert in radians +y=mag*sin(angle*%pi/180); +endfunction; +[x,y]=pol2rect(v1,pv); +V=x+y*%i; +[x,y]=pol2rect(i1,pi); +I=x+y*%i; +Z=V/I; +//convert back into angles in deg +function [mag,angle]=rect2pol(x,y); +mag=sqrt((x^2)+(y^2)); //z is impedance & the resultant of x and y +angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees +endfunction; +[mag,angle]=rect2pol(real(Z),imag(Z)); +disp("SOLUTION (a)"); +disp(sprintf("The impedance is %f < %3f Deg", mag,angle)); +//disp(" "); +//power factor=cos(angle) +pf=cos(-1*angle*%pi/180); //convert to radians and change sign +disp(sprintf("The power factor is %f", pf)); +//Z=R-jXc by comparing real and imag paarts we get +disp(sprintf("The resistance is %fΩ and Reactance is %3fΩ", real(Z), imag(Z))); +disp(" "); +// +//END + diff --git a/1445/CH2/EX2.28/ch2_ex_28.sce b/1445/CH2/EX2.28/ch2_ex_28.sce new file mode 100644 index 000000000..1b48dddce --- /dev/null +++ b/1445/CH2/EX2.28/ch2_ex_28.sce @@ -0,0 +1,57 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 28 // read it as example 27 in the book on page 2.80 + +disp("CHAPTER 2"); +disp("EXAMPLE 28"); + +//VARIABLE INITIALIZATION +z1=2+(%i*3); //impedance in rectangular form in Ohms +z2=1-(%i*5); //impedance in rectangular form in Ohms +z3=4+(%i*2); //impedance in rectangular form in Ohms +v=10; //in volts +//SOLUTION + +//solution (a) +//Total impedance +//Total circuit impedance Z=(Z1||Z2)+Z3 +z=z1+(z2*z3)/(z2+z3); +disp("SOLUTION (i)"); +disp(sprintf("Total circuit impedance is %3f %3fj S", real(z), imag(z))); +//Total supply current I=V/Z +//solution (b) +i=v/z; +function [mag,angle]=rect2pol(x,y); +mag=sqrt((x^2)+(y^2)); //z is impedance & the resultant of x and y +angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees +endfunction; +[mag, angle]=rect2pol(real(i), imag(i)); +disp("SOLUTION (b)"); +disp(sprintf("Total current is %f<%f Amp",mag,angle)); +//solution (c) +//Vbc=I.Zbc where Zbc=(z2*z3)/(z2+z3) +Vbc=i*((z2*z3)/(z2+z3)); +[mag1, angle1]=rect2pol(real(Vbc), imag(Vbc)); +disp("SOLUTION (c)"); +disp(sprintf("The voltage across the || circuit is %f<%f",mag1, angle1)); +disp(sprintf("The voltage Vbc lags circuit by %f Deg",angle-angle1)); +//solution (d) +//i2=Vbc/z2, i3=Vbc/z3 +i2=Vbc/z2; +i3=Vbc/z3; +[mag2, angle2]=rect2pol(real(i2), imag(i2)); +[mag3, angle3]=rect2pol(real(i3), imag(i3)); +disp(sprintf("The current across fist branch of || circuit is %f<%f",mag2, angle2)); +disp(sprintf("The current across second branch of || circuit is %f<%f",mag3, angle3)); +//solution (e) +pf=cos(-1*angle*%pi/180); +disp("SOLUTION (e)"); +disp(sprintf("The power factor is %f",pf)); +//solution (iv) +//Apparent power s=VI, True Power, tp I^2R, Reactive Power, rp=I^2X or VISSin(angle) +s=v*mag; +tp=mag*mag*real(z); +rp=v*mag*sin(-1*angle*%pi/180); +disp("SOLUTION (f)"); +disp(sprintf("The Apparent power is %f VA, True power is %f W , Reactive power is %f vars",s,tp,rp)); +disp(" "); +//END diff --git a/1445/CH2/EX2.29/ch2_ex_29.sce b/1445/CH2/EX2.29/ch2_ex_29.sce new file mode 100644 index 000000000..6af15f135 --- /dev/null +++ b/1445/CH2/EX2.29/ch2_ex_29.sce @@ -0,0 +1,27 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 29 // read it as example 28 in the book on page 2.83 + +disp("CHAPTER 2"); +disp("EXAMPLE 29"); + +//VARIABLE INITIALIZATION +I=120; //Amplitude in Amps +f=60; //Hz +t1=1/360; //in sec time to find amplitude +i2=96; //in Amps ,2 to find time taken to reach this +//SOLUTION +//i=Isin(wt) +//solution (a) +w=2*%pi*f; +i=I*sin(w*t1); +disp("SOLUTION (a)"); +disp(sprintf("The amplitude at time %f sec is %f Amp", t1,i)); +//solution (b) +t2=(asin(i2/I))/w; +disp("SOLUTION (b)"); +disp(sprintf("The time taken to reach %f Amp is %f Sec", i2,t2)); +disp(" "); +// +//END + + diff --git a/1445/CH2/EX2.3/ch2_ex_3.sce b/1445/CH2/EX2.3/ch2_ex_3.sce new file mode 100644 index 000000000..21882fc33 --- /dev/null +++ b/1445/CH2/EX2.3/ch2_ex_3.sce @@ -0,0 +1,17 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 3 + +disp("CHAPTER 2"); +disp("EXAMPLE 3"); + +//VARIABLE INITIALIZATION +v_m=5; //peak value of voltage in Volts + +//SOLUTION +v_av=(integrate('v_m*sin(x)','x',0,%pi))/(%pi); +v_rms=(integrate('(v_m*sin(x))^2','x',0,%pi))/(%pi); +v_rms=sqrt(v_rms); +disp(sprintf("Average value of full wave rectifier sine wave is %f V",v_av)); +disp(sprintf("Effective value of full wave rectifier sine wave is %f V",v_rms)); + +//END diff --git a/1445/CH2/EX2.30/ch2_ex_30.sce b/1445/CH2/EX2.30/ch2_ex_30.sce new file mode 100644 index 000000000..a9edd798c --- /dev/null +++ b/1445/CH2/EX2.30/ch2_ex_30.sce @@ -0,0 +1,37 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 30 // read it as example 29 in the book on page 2.83 + +disp("CHAPTER 2"); +disp("EXAMPLE 30"); + +//VARIABLE INITIALIZATION +f=50; //Hz +rms=20; //in Amp +t1=0.0025; //in sec time to find amplitude +t2=0.0125; //in sec, to find amp after passing through +ve maximum +i3=14.14; //in Amps, to find time when will it occur after passing through +ve maxima +//SOLUTION +//i=Isin(wt) +//solution (a) +w=2*%pi*f; +Im=rms*sqrt(2); +disp(sprintf("The equation would be i=%f. sin(%f.t)", Im,w)); +t0=(asin(1)/w); //time to reach maxima in +ve direction +i=Im*sin(w*t1); +disp("SOLUTION (a)"); +disp(sprintf("The amplitude at time %f sec is %f Amp", t1,i)); +//solution (b) +tx=t0+t2; +i2=Im*sin(w*tx); +disp("SOLUTION (b)"); +disp(sprintf("The amplitude at time %f sec is %f Amp", t2,i2)); +//solution (c) +ty=(asin(i3/Im))/w; +t3=t0-ty; //since ty is the time starting from 0, the origin needs to be shifted to maxima +disp("SOLUTION (c)"); +disp(sprintf("The amplitude of %f Amp would be reached in %f Sec", i3,t3)); +disp(" "); +// +//END + + diff --git a/1445/CH2/EX2.31/ch2_ex_31.sce b/1445/CH2/EX2.31/ch2_ex_31.sce new file mode 100644 index 000000000..cafecf9d3 --- /dev/null +++ b/1445/CH2/EX2.31/ch2_ex_31.sce @@ -0,0 +1,21 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 31 // read it as example 30 in the book on page 2.84 + +disp("CHAPTER 2"); +disp("EXAMPLE 31"); + +//VARIABLE INITIALIZATION +//function of the waveform is deduced to be y=10+10.t/T +//SOLUTION +//Yav=(1/T).Integral(ydt) from 0 to T +//say +T=1; // 1 sec +Yav=(1/T)*integrate('(10+10*t/T)', 't', 0, 1); +disp(sprintf("The average value of waveform is %f", Yav)); +//RMS value Yrms=(1/T).Integral(y^2.dt) from 0 to T +Yms=(1/T)*integrate('(10+10*t/T)^2', 't', 0, 1); +disp(sprintf("The RMS value of waveform is %f", sqrt(Yms))); +disp(" "); +// +//END + diff --git a/1445/CH2/EX2.32/ch2_ex_32.sce b/1445/CH2/EX2.32/ch2_ex_32.sce new file mode 100644 index 000000000..326b61017 --- /dev/null +++ b/1445/CH2/EX2.32/ch2_ex_32.sce @@ -0,0 +1,23 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 32 // read it as example 31 in the book on page 2.85 + +disp("CHAPTER 2"); +disp("EXAMPLE 32"); + +//VARIABLE INITIALIZATION +//function of the waveform is deduced to be i=Im.sinΘ +//SOLUTION +//Iav=(1/2.π).Integral(ydΘ) from 0 to π, and π to 2.π is zero, interval is 2.π +// +//say +Im=1; // in Amp +Iav=(1/(2*%pi))*integrate('(Im*sin(th))', 'th', 0, %pi); +//disp(sprintf("The average value of waveform is %f", Iav)); +//RMS mean square value (1/π).Integral(y^2.dΘ) from 0 to π +Ims=(1/(2*%pi))*integrate('(Im*sin(th))^2', 'th', 0, %pi); +//disp(sprintf("The RMS value of waveform is %f", sqrt(Ims))); +ff=sqrt(Ims)/Iav; +disp(sprintf("The form factor of waveform is %f",ff)); +disp(" "); +// +//END diff --git a/1445/CH2/EX2.33/ch2_ex_33.sce b/1445/CH2/EX2.33/ch2_ex_33.sce new file mode 100644 index 000000000..502902d56 --- /dev/null +++ b/1445/CH2/EX2.33/ch2_ex_33.sce @@ -0,0 +1,33 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 33 // read it as example 32 in the book on page 2.86 + +disp("CHAPTER 2"); +disp("EXAMPLE 33"); + +//VARIABLE INITIALIZATION +r1=20; //in Ω +r2=30; // +r3=40; // +l1=0.5; //in Henry +l2=0.3; // +l3=0.2; // +V=230; // volts +f=50; //Hz +//coils connected in series +// +//SOLUTION +R=r1+r2+r3; +L=l1+l2+l3; +XL=2*%pi*f*L; +//impedence Z=sqrt(R*2 +XL^2) +Z=sqrt(R^2 +XL^2); +I=V/Z; +pf=R/Z; +pc=V*I*pf; +disp(sprintf("The total current is %f Amp", I)); +disp(sprintf("The Power Factor is %f lagging", pf)); +disp(sprintf("The Power consumed in the circuit is %f W", pc)); +disp(" "); +// +//END + diff --git a/1445/CH2/EX2.34/ch2_ex_34.sce b/1445/CH2/EX2.34/ch2_ex_34.sce new file mode 100644 index 000000000..263cf0ce7 --- /dev/null +++ b/1445/CH2/EX2.34/ch2_ex_34.sce @@ -0,0 +1,25 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 34 // read it as example 33 in the book on page 2.87 + +disp("CHAPTER 2"); +disp("EXAMPLE 34"); + +//VARIABLE INITIALIZATION +r=100; //in Ω +c=40*10^(-6); // +V=400; // volts +f=50; //Hz +// +//SOLUTION +XC=1/(2*%pi*f*c); +//impedence Z=sqrt(R^2 +XL^2) +Z=sqrt(r^2 +XC^2); +I=V/Z; +pf=r/Z; +pc=V*I*pf; +disp(sprintf("The total current is %f Amp", I)); +disp(sprintf("The Power Factor is %f leading", pf)); +disp(sprintf("The Power consumed in the circuit is %f W",pc)); +disp(" "); +// +//END diff --git a/1445/CH2/EX2.35/ch2_ex_35.sce b/1445/CH2/EX2.35/ch2_ex_35.sce new file mode 100644 index 000000000..dcc78f2b4 --- /dev/null +++ b/1445/CH2/EX2.35/ch2_ex_35.sce @@ -0,0 +1,45 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 35 // read it as example 34 in the book on page 2.88 + +disp("CHAPTER 2"); +disp("EXAMPLE 35"); + +//VARIABLE INITIALIZATION +R=100; //in Ω +L=0.2; //in Henry +C=20*10^(-6); //farads +V=240; // volts +f=50; //Hz +// +//SOLUTION +//Solution (a) +XL=2*%pi*f*L; +XC=1/(2*%pi*f*C); +//impedence Z=sqrt(R^2 +XL^2) +X=XL-XC; +Z=sqrt(R^2 +X^2); +disp("SOLUTION (a)"); +disp(sprintf("The total impedence is %f Ω", Z)); +I=V/Z; +disp("SOLUTION (b)"); +disp(sprintf("The total current is %f Amp", I)); +Vr=I*R; +Vi=I*XL; +Vc=I*XC; +disp("SOLUTION (c)"); +disp(sprintf("The voltage across resistance is %f V",Vr)); +disp(sprintf("The voltage across inductance is %f V",Vi)); +disp(sprintf("The voltage across capacitance is %f V",Vc)); +pf=R/Z; +pc=V*I*pf; +disp("SOLUTION (d)"); +disp(sprintf("The Power Factor is %f leading", pf)); +disp("SOLUTION (e)"); +disp(sprintf("The Power consumed in the circuit is %f W",pc)); +//XL=XC +f0=1/(2*%pi*sqrt(L*C)); +disp("SOLUTION (f)"); +disp(sprintf("Resonance will occur at %f Hz",f0)); +disp(" "); +// +//END diff --git a/1445/CH2/EX2.36/ch2_ex_36.sce b/1445/CH2/EX2.36/ch2_ex_36.sce new file mode 100644 index 000000000..46766b0e4 --- /dev/null +++ b/1445/CH2/EX2.36/ch2_ex_36.sce @@ -0,0 +1,37 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 36 // read it as example 35 in the book on page 2.90 + +disp("CHAPTER 2"); +disp("EXAMPLE 36"); + +//VARIABLE INITIALIZATION +R1=10; //in Ω +XL=15; //in +R2=12; // +C=20; //capacitative reactance in Ω +V=230; // volts +f=50; //Hz +// +//SOLUTION +//Solution (a) +//conductance g, susceptance b +Z12=(R1^2 +XL^2); //squared impedance Z^2 for branch 1 +Z22=(R1^2 +C^2); //squared impedance Z^2 for branch 2 +g1=R1/Z12; +g2=R2/Z22; +b1=-XL/Z12; +b2=C/Z22; +g=g1+g2; +b=b1+b2; +Y=sqrt(g^2+b^2); +I=V*Y; +disp("SOLUTION (a)"); +disp(sprintf("The total current is %f Amp", I)); +pf=g/Y; + +disp("SOLUTION (b)"); +disp(sprintf("The power factor is %f", pf)); +disp(" "); +// +//END + diff --git a/1445/CH2/EX2.37/ch2_ex_37.sce b/1445/CH2/EX2.37/ch2_ex_37.sce new file mode 100644 index 000000000..d93ee733a --- /dev/null +++ b/1445/CH2/EX2.37/ch2_ex_37.sce @@ -0,0 +1,41 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 37 // read it as example 36 in the book on page 2.93 + +disp("CHAPTER 2"); +disp("EXAMPLE 37"); + +//VARIABLE INITIALIZATION +R1=20; // +XL=15; // in ohms +R2=0; //assumed +C=50; //in ohms capacitative reactance +V=200; +f=60; //Hz +// +//SOLUTION +//Solution (a) +//conductance g, susceptance b +Z1=sqrt(R1^2 +XL^2); //squared impedance Z^2 for branch 1 +Z2=sqrt(R2^2 +C^2); //squared impedance Z^2 for branch 2 +i1=V/Z1; +i2=V/Z2; +disp("SOLUTION (a)"); +disp(sprintf("The current in Branch 1 is %f Amp", i1)); +disp(sprintf("The current in Branch 2 is %f Amp", i2)); +phi1=atan(XL/R1); +phi2=%pi/2; //atan(C/R2); //R2=0, output is infinity +Icos=i1*cos(phi1)+i2*cos(phi2); // phi in radians +Isin=-i1*sin(phi1)+i2*sin(phi2); // phi in radians +I=sqrt(Icos^2+Isin^2); +// +disp("SOLUTION (b)"); +disp(sprintf("The total current is %f Amp", I)); +// +pf=Icos/I; +disp("SOLUTION (c)"); +disp(sprintf("The power factor is %f ", pf)); +disp(" "); +// +//END + + diff --git a/1445/CH2/EX2.38/ch2_ex_38.sce b/1445/CH2/EX2.38/ch2_ex_38.sce new file mode 100644 index 000000000..6d66e8d49 --- /dev/null +++ b/1445/CH2/EX2.38/ch2_ex_38.sce @@ -0,0 +1,25 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 38 // read it as example 37 in the book on page 2.93 + +disp("CHAPTER 2"); +disp("EXAMPLE 38"); + +//VARIABLE INITIALIZATION +z1=10+15*%i; +z2=12-20*%i; +V=230; +//invZ=1/z1+1/z2; +Z=z1*z2/(z1+z2); +magZ=sqrt(real(Z)^2+imag(Z)^2); +I=V/magZ; +pf=real(Z)/magZ; +disp("SOLUTION (a)"); +disp(sprintf("The current is %f Amp", I)); +// +disp("SOLUTION (b)"); +disp(sprintf("The Power factor is %f", pf)); +disp(" "); +// +//END + + diff --git a/1445/CH2/EX2.39/ch2_ex_39.sce b/1445/CH2/EX2.39/ch2_ex_39.sce new file mode 100644 index 000000000..e16ecd91c --- /dev/null +++ b/1445/CH2/EX2.39/ch2_ex_39.sce @@ -0,0 +1,58 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 39 // read it as example 38 in the book on page 2.94 + +disp("CHAPTER 2"); +disp("EXAMPLE 39"); + +//VARIABLE INITIALIZATION +z1=2.5+1.5*%i; +z2=4+3*%i; +z3=3-4*%i; +V=200; +f=50; +E=V+0*%i; // representing as a vector +//invZ=1/z1+1/z2; +Z23=z2*z3/(z2+z3); +Z=z1+Z23; +I=E/Z; +magI=sqrt(real(I)^2+imag(I)^2); //total current +phi=atan(-imag(I)/real(I)); //total phase +// +//Voltages across the branches +e12=I*z1; //voltage across series branch +mage12=sqrt(real(e12)^2+imag(e12)^2); +phi12=atan(imag(e12)/real(e12)); +// +e23=E-e12; //voltage across parallel branch +mage23=sqrt(real(e23)^2+imag(e23)^2); +phi23=atan(-imag(e23)/real(e23)); +// +//current in branch 1 upper +i1=e23/z2; +magi1=sqrt(real(i1)^2+imag(i1)^2); +phii1=atan(-imag(i1)/real(i1)); +// +//current in branch 2 lower +i2=e23/z3; +magi2=sqrt(real(i2)^2+imag(i2)^2); +phii2=atan(imag(i2)/real(i2)); +disp("SOLUTION (b)"); +disp(sprintf("The current in Upper branch is %f Amp",magi1)); +disp(sprintf("The current in Lower branch is %f Amp",magi2)); +disp(sprintf("The Total current is %f Amp",magI)); +// +pf=cos(phi); // +disp("SOLUTION (c)"); +disp(sprintf("The Power factor is %f", pf)); +// +disp("SOLUTION (d)"); +disp(sprintf("The voltage across series branch is %f V", mage12)); +disp(sprintf("The voltage across parallel branch is %f V", mage23)); +// +tp=V*magI*pf; +disp("SOLUTION (e)"); +disp(sprintf("The total power absorbed in circuit is %f W", tp)); +disp(" "); +// +//END + diff --git a/1445/CH2/EX2.4/ch2_ex_4.sce b/1445/CH2/EX2.4/ch2_ex_4.sce new file mode 100644 index 000000000..0a61e3642 --- /dev/null +++ b/1445/CH2/EX2.4/ch2_ex_4.sce @@ -0,0 +1,18 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 4 + +disp("CHAPTER 2"); +disp("EXAMPLE 4"); + +//VARIABLE INITIALIZATION +v_m=10; //peak value of voltage in Volts +angle=60*(%pi/180); //delay angle in radians + +//SOLUTION +v_av=(integrate('v_m*sin(x)','x',angle,%pi))/(%pi); +v_rms=(integrate('(v_m*sin(x))^2','x',angle,%pi))/(%pi); +v_rms=sqrt(v_rms); +disp(sprintf("Average value of full wave rectifier sine wave is %f V",v_av)); +disp(sprintf("Effective value of full wave rectifier sine wave is %f V",v_rms)); + +//END diff --git a/1445/CH2/EX2.40/ch2_ex_40.sce b/1445/CH2/EX2.40/ch2_ex_40.sce new file mode 100644 index 000000000..d9879f458 --- /dev/null +++ b/1445/CH2/EX2.40/ch2_ex_40.sce @@ -0,0 +1,24 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 40 // read it as example 39 in the book on page 2.98 + +disp("CHAPTER 2"); +disp("EXAMPLE 40"); + +//VARIABLE INITIALIZATION +V=100; // max amplitude of wave +w=314; //angular speed +phiV=5; //phase angle in degrees +I=5; //max current amplitude +phiI=-40; //phase angle in current in deg + +// +//SOLUTION +phi=phiI-phiV; +pf=cos(phi*%pi/180); //convert to radians +p=(V/sqrt(2))*(I/sqrt(2))*pf; +// +disp(sprintf("The Power factor is %f lagging", pf)); +disp(sprintf("The Power delivered is %f W", p)); +disp(" "); +// +//END diff --git a/1445/CH2/EX2.41/ch2_ex_41.sce b/1445/CH2/EX2.41/ch2_ex_41.sce new file mode 100644 index 000000000..5a2bb77e8 --- /dev/null +++ b/1445/CH2/EX2.41/ch2_ex_41.sce @@ -0,0 +1,34 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 41 // read it as example 40 in the book on page 2.99 + +disp("CHAPTER 2"); +disp("EXAMPLE 41"); + +//VARIABLE INITIALIZATION +lampV=100; //Volts +lampW=60; //watts +V=250; +f=50; +// +//SOLUTION +lampI=lampW/lampV; +lampR=lampW/lampI^2; //W=I^2.R +// +disp("SOLUTION (a)"); +disp(sprintf("The resistance of the lamp is t is %f Ohms", lampR)); +// +//in purely resistive / non inductive circuit,V=IR applies, and R=lampR+R +R=V/lampI-lampR; +disp(sprintf("The value value of resistor to be placed in series with the lamp is %f Ohms", R)); +// +//in case of inductance +//XL=2*%pi*f*L; +//V=Z.I where Z^2=R^2+XL^2 +//L=sqrt((V^2/I^2-R^2)/2*%pi*f) +L=sqrt((V/lampI)^2-lampR^2)/(2*%pi*f); +disp(sprintf("The inductive resistance to be placed is %f H",L)); +disp(" "); +// +//END + + diff --git a/1445/CH2/EX2.42/ch2_ex_42.sce b/1445/CH2/EX2.42/ch2_ex_42.sce new file mode 100644 index 000000000..20eabe132 --- /dev/null +++ b/1445/CH2/EX2.42/ch2_ex_42.sce @@ -0,0 +1,44 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 42 // read it as example 41 in the book on page 2.100 + +disp("CHAPTER 2"); +disp("EXAMPLE 42"); + +//VARIABLE INITIALIZATION +I=10; // max amplitude of wave in Amp +rms1=5; +rms2=7.5; +rms3=10; +phi1=30; +phi2=-60; +phi3=45; +f=50; //Hz +w=2*%pi*f; +// +//SOLUTION +av1=rms1/1.11; +av2=rms2/1.11; +av3=rms3/1.11; +disp("SOLUTION (i)"); +disp(sprintf("The average value of 1st current is %f Amp", av1)); +disp(sprintf("The average value of 2nd current is %f Amp", av2)); +disp(sprintf("The average value of 3rd current is %f Amp", av3)); +// +disp("SOLUTION (ii)"); +disp(sprintf("The instantaneous value of 1st current is %f sin(%f*t+%f) Amp", rms1*sqrt(2), w,phi1)); +disp(sprintf("The instantaneous value of 2nd current is %f sin(%f*t%f) Amp", rms2*sqrt(2), w,phi2)); +disp(sprintf("The instantaneous value of 3rd current is %f sin(%f*t+%f) Amp", rms3*sqrt(2), w,phi3)); +// +//instantaneous values of current at t=100msec=0.1 sec +t=0.1; +i1=(rms1*sqrt(2))*(sin(w*t+phi1*%pi/180)); +i2=(rms2*sqrt(2))*(sin(w*t+phi2*%pi/180)); +i3=(rms3*sqrt(2))*(sin(w*t+phi3*%pi/180)); +disp("SOLUTION (iv)"); +disp(sprintf("The instantaneous value of 1st current is %f Amp at %f Sec", i1, t)); +disp(sprintf("The instantaneous value of 2nd current is %f Amp at %f Sec", i2, t)); +disp(sprintf("The instantaneous value of 3rd current is %f Amp at %f Sec", i3, t)); +disp(" "); +// +//END + diff --git a/1445/CH2/EX2.43/ch2_ex_43.sce b/1445/CH2/EX2.43/ch2_ex_43.sce new file mode 100644 index 000000000..42fe8c0cc --- /dev/null +++ b/1445/CH2/EX2.43/ch2_ex_43.sce @@ -0,0 +1,21 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 43 // read it as example 42 in the book on page 2.102 + +disp("CHAPTER 2"); +disp("EXAMPLE 43"); + +//VARIABLE INITIALIZATION +I=5; // max amplitude of wave in Amp +f=50; //Hz +//wave for is to be obtained by adding the two waves +//i=5+5.sin(wt)=5+5.sin(theta) +// +//SOLUTION +Iav=(1/(2*%pi))*integrate('5+5*sin(th)', 'th',0,2*%pi); +Ims=(1/(2*%pi))*integrate('(5+5*sin(th))^2', 'th',0,2*%pi); +// +disp(sprintf("The average value of resultant current is %f Amp", Iav)); +disp(sprintf("The RMS value of resultant current is %f Amp", sqrt(Ims))); +disp(" "); +// +//END diff --git a/1445/CH2/EX2.44/ch2_ex_44.sce b/1445/CH2/EX2.44/ch2_ex_44.sce new file mode 100644 index 000000000..6de089188 --- /dev/null +++ b/1445/CH2/EX2.44/ch2_ex_44.sce @@ -0,0 +1,19 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 44 + +disp("CHAPTER 2"); +disp("EXAMPLE 44"); + +//VARIABLE INITIALIZATION +r=20; //in Ohms + +//SOLUTION +p0=(4^2)*r; +p1=((5/sqrt(2))^2)*r; +p2=((3/sqrt(2))^2)*r; +p=p0+p1+p2; +I=sqrt(p/r); +disp(sprintf("The power consumed by the resistor is %d W",p)); +disp(sprintf("The effective value of current is %f A",I)); + +//END diff --git a/1445/CH2/EX2.45/ch2_ex_45.sce b/1445/CH2/EX2.45/ch2_ex_45.sce new file mode 100644 index 000000000..524c2f5a7 --- /dev/null +++ b/1445/CH2/EX2.45/ch2_ex_45.sce @@ -0,0 +1,35 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 45 + +disp("CHAPTER 2"); +disp("EXAMPLE 45"); + +//VARIABLE INITIALIZATION +L=1.405; //in Henry +r=40; //in Ohms +c=20/(10^6); //in Farad +v=100; //in Volts + +//SOLUTION +f0=1/(2*%pi*sqrt(L*c)); +disp(sprintf("The frequency at which the circuit resonates is %d Hz",f0)); + +I0=v/r; +disp(sprintf("The current drawn from the supply is %f A",I0)); + +xl0=2*%pi*f0*L; +z0=sqrt((r^2)+(xl0^2)); +vl0=I0*z0; +disp(sprintf("The voltage across the coil is %f V",vl0)); + +xc0=1/(2*%pi*f0*c); +disp(sprintf("The capcitative reactance is %f Ω",xc0)); + +Q0=(2*%pi*f0*L)/r; +disp(sprintf("The quality factor is %f", Q0)); + +bw=r/L; +disp(sprintf("The bandwidth is %f Hz",bw)); + +//END + diff --git a/1445/CH2/EX2.46/ch2_ex_46.sce b/1445/CH2/EX2.46/ch2_ex_46.sce new file mode 100644 index 000000000..a895c7d2f --- /dev/null +++ b/1445/CH2/EX2.46/ch2_ex_46.sce @@ -0,0 +1,43 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 46 + +disp("CHAPTER 2"); +disp("EXAMPLE 46"); + +//VARIABLE INITIALIZATION +I=120-(%i*(50)); //in Amperes +v=8+(%i*(2)); //in Volts + +//SOLUTION + +//function to convert from rectangular form to polar form +function [mag,angle]=rect2pol(x,y); +mag=sqrt((x^2)+(y^2)); +angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees +endfunction; +[v,angle_v]=rect2pol(real(v),imag(v)); +[I,angle_I]=rect2pol(real(I),imag(I)); + +//solution (i) +z=v/I; +angle_z=angle_v-angle_I; +disp(sprintf("(i) The impedance is %f Ω, %f degrees",z,angle_z)); + +//solution (ii) +phi=angle_z; +pf=cos(phi*(%pi/180)); +disp(sprintf("(ii) The power factor is %f (lagging)",pf)); + +//solution (iii) +s=v*I; +angle_s=angle_v-angle_I; +//function to convert from polar form to rectangular form +function [x,y]=pol2rect(mag,angle); +x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians +y=mag*sin(angle*(%pi/180)); +endfunction; +[p,q]=pol2rect(s,angle_s); +disp(sprintf("(iii) The power consumed is %f W",p)); +disp(sprintf(" The reactive power is %f VAR",q)); + +//END diff --git a/1445/CH2/EX2.47/ch2_ex_47.sce b/1445/CH2/EX2.47/ch2_ex_47.sce new file mode 100644 index 000000000..807493965 --- /dev/null +++ b/1445/CH2/EX2.47/ch2_ex_47.sce @@ -0,0 +1,44 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 47 + +disp("CHAPTER 2"); +disp("EXAMPLE 47"); + +//VARIABLE INITIALIZATION +r=10; //in Ohms +xl=8.66; //in Ohms +I=5-(%i*10); //in Amperes + +//SOLUTION +z=r+(%i*(xl)); +//function to convert from rectangular form to polar form +function [mag,angle]=rect2pol(x,y); +mag=sqrt((x^2)+(y^2)); +angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees +endfunction; +[z,angle_z]=rect2pol(real(z),imag(z)); +[I,angle_I]=rect2pol(real(I),imag(I)); + +//solution(i) +v=I*z; +angle_v=angle_I+angle_z; +disp(sprintf("(i) The applied voltage is %f V, %f degrees",v,angle_v)); + +//solution (ii) +phi=angle_I-angle_v; +pf=cos(phi*(%pi/180)); +disp(sprintf("(ii) The power factor is %f (lagging)",pf)); + +//solution(iii) +s=v*I; +angle_s=angle_v-angle_I; +//function to convert from polar form to rectangular form +function [x,y]=pol2rect(mag,angle); +x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians +y=mag*sin(angle*(%pi/180)); +endfunction; +[p,q]=pol2rect(s,angle_s); +disp(sprintf("(iii) The active power is %f W",p)); +disp(sprintf(" The reactive power is %f VAR",q)); + +//END diff --git a/1445/CH2/EX2.48/ch2_ex_48.sce b/1445/CH2/EX2.48/ch2_ex_48.sce new file mode 100644 index 000000000..4e437781f --- /dev/null +++ b/1445/CH2/EX2.48/ch2_ex_48.sce @@ -0,0 +1,36 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 48 + +disp("CHAPTER 2"); +disp("EXAMPLE 48"); + +//VARIABLE INITIALIZATION +pf1=0.8; //power factor of 1st circuit +pf2=0.6; //power factor of 2nd circuit +z=1; //this is an assumption + +//SOLUTION +angle1=acos(pf1)*(180/%pi); //in degrees +angle2=acos(pf2)*(180/%pi); //in degrees +//function to convert from polar form to rectangular form +function [x,y]=pol2rect(mag,angle); +x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians +y=mag*sin(angle*(%pi/180)); +endfunction; +[z1_x,z1_y]=pol2rect(z,angle1); +[z2_x,z2_y]=pol2rect(z,angle2); +nr=angle1+angle2; //numerator +z_x=z1_x+z2_x; +z_y=z1_y+z2_y; + +//function to convert from rectangular form to polar form +function [z,angle]=rect2pol(x,y); +I=sqrt((x^2)+(y^2)); +angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees +endfunction; +[z,angle]=rect2pol(z_x,z_y); +angle_z=nr-angle; +pf=cos(angle_z*(%pi/180)); +disp(sprintf("The power factor of the combination is %f",pf)); + +//END diff --git a/1445/CH2/EX2.49/ch2_ex_49.sce b/1445/CH2/EX2.49/ch2_ex_49.sce new file mode 100644 index 000000000..6b42d9858 --- /dev/null +++ b/1445/CH2/EX2.49/ch2_ex_49.sce @@ -0,0 +1,57 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 49 + +disp("CHAPTER 2"); +disp("EXAMPLE 49"); + +//VARIABLE INITIALIZATION +v=200; //in Volts +angle_v=30; //in degrees +I1=20; //in Amperes +angle_I1=60; //in degrees +I2=40; //in Amperes +angle_I2=-30; //in degrees + +//SOLUTION +//function to convert from polar form to rectangular form +function [x,y]=pol2rect(mag,angle); +x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians +y=mag*sin(angle*(%pi/180)); +endfunction; +[v_x,v_y]=pol2rect(v,angle_v); +[I1_x,I1_y]=pol2rect(I1,angle_I1); +[I2_x,I2_y]=pol2rect(I2,angle_I2); +s1=v*I1; +angle_s1=-angle_v+angle_I1; +disp(sprintf("The apparent power in 1st branch is %d kVA",s1/1000)); +[s1_x,s1_y]=pol2rect(s1,angle_s1); +disp(sprintf("The true power in 1st branch is %f kW",s1_x/1000)); + +disp(" "); + +s2=v*I2; +angle_s2=angle_v-angle_I2; +disp(sprintf("The apparent power in 2nd branch is %d kVA",s2/1000)); +[s2_x,s2_y]=pol2rect(s2,angle_s2); +disp(sprintf("The true power in 2nd branch is %d kW",s2_x/1000)); +I=(I1_x+I2_x)+(%i*(I1_y+I2_y)); disp(I); + +//function to convert from rectangular form to polar form +function [I,angle]=rect2pol(x,y); +I=sqrt((x^2)+(y^2)); +angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees +endfunction; +[I,angle]=rect2pol(real(I),imag(I)); +disp(I); +s=v*I; +angle_s=angle_v-angle; +disp(sprintf("The apparent power in the main circuit is %f kVA",s/1000)); +[p,q]=pol2rect(s,angle_s); +disp(sprintf("The true power in the main circuit is %f kW",p/1000)); + +//END + + + + + diff --git a/1445/CH2/EX2.5/ch2_ex_5.sce b/1445/CH2/EX2.5/ch2_ex_5.sce new file mode 100644 index 000000000..ea3f932de --- /dev/null +++ b/1445/CH2/EX2.5/ch2_ex_5.sce @@ -0,0 +1,36 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 5 + +disp("CHAPTER 2"); +disp("EXAMPLE 5"); + +//VARIABLE INITIALIZATION +I1=0.75; //in Amperes +v=240; //in Volts +f=50; //in Hertz +p=80; //in Watts + +//SOLUTION +res=p/v; +pf1=res/I1; //1st power factor = cos(Φ1) +phi1=acos(pf1); +res1=tan(phi1); //result1 = tan(Φ1) +w=2*%pi*f; + +//solution (a) +res2=0; //result2 = tan(Φ2) +Ic1=res*(res1-res2); +c1=Ic1/(v*w); +disp(sprintf("(a) When power factor is unity, the value of capacitance is %f μF",c1*(10^6))); + +//solution (b) +pf2=0.95; //given +phi2=acos(pf2); +res2=tan(phi2); +Ic2=res*(res1-res2); +c2=Ic2/(v*w); +disp(sprintf("(b) When power factor is 0.95(lagging), the value of capacitance is %f μF",c2*(10^6))); + +//END + + diff --git a/1445/CH2/EX2.50/ch2_ex_50.sce b/1445/CH2/EX2.50/ch2_ex_50.sce new file mode 100644 index 000000000..44a577b0f --- /dev/null +++ b/1445/CH2/EX2.50/ch2_ex_50.sce @@ -0,0 +1,40 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 50 + +disp("CHAPTER 2"); +disp("EXAMPLE 50"); + +//VARIABLE INITIALIZATION +z1=6+(%i*5); //impedance in Ohms +z2=8-(%i*6); //impedance in Ohms +z3=8+(%i*10); //impedance in Ohms +I=20; //in Amperes + +//SOLUTION +Y1=1/z1; +Y2=1/z2; +Y3=1/z3; +Y=Y1+Y2+Y3; +//function to convert from rectangular form to polar form +function [Y,angle]=rect2pol(x,y); +Y=sqrt((x^2)+(y^2)); +angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees +endfunction; +[Y_tot,angle]=rect2pol(real(Y),imag(Y)); +v=I/Y_tot; +angle_v=-angle; +[z1,angle1]=rect2pol(real(z1),imag(z1)); +[z2,angle2]=rect2pol(real(z2),imag(z2)); +[z3,angle3]=rect2pol(real(z3),imag(z3)); +I1=v/z1; +angle_I1=angle_v-angle1; +I2=v/z2; +angle_I2=angle_v-angle2; +I3=v/z3; +angle_I3=angle_v-angle3; +disp("The current in each branch in polar form is-"); +disp(sprintf(" %f A, %f degrees",I1,angle_I1)); +disp(sprintf(" %f A, %f degrees",I2,angle_I2)); +disp(sprintf(" %f A, %f degrees",I3,angle_I3)); + +//END diff --git a/1445/CH2/EX2.51/ch2_ex_51.sce b/1445/CH2/EX2.51/ch2_ex_51.sce new file mode 100644 index 000000000..665dbfdc2 --- /dev/null +++ b/1445/CH2/EX2.51/ch2_ex_51.sce @@ -0,0 +1,24 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 51 + +disp("CHAPTER 2"); +disp("EXAMPLE 51"); + +//VARIABLE INITIALIZATION +Y1=0.4+(%i*0.6); //admittance of 1st branch in Siemens +Y2=0.1+(%i*0.4); //admittance of 2nd branch in Siemens +Y3=0.06+(%i*0.23); //admittance of 3rd branch in Siemens + +//SOLUTION +Y=Y1+Y2+Y3; +//function to convert from rectangular form to polar form +function [Y,angle]=rect2pol(x,y); +Y=sqrt((x^2)+(y^2)); +angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees +endfunction; +[Y1,angle]=rect2pol(real(Y),imag(Y)); +disp(sprintf("The total admittance of the circuit is %f S, %f degrees",Y1,angle)); +z=1/Y1; +disp(sprintf("The impedance of the circuit is %f Ω, %f degrees",z,-angle)); + +//END diff --git a/1445/CH2/EX2.52/ch2_ex_52.sce b/1445/CH2/EX2.52/ch2_ex_52.sce new file mode 100644 index 000000000..f8b6c5c80 --- /dev/null +++ b/1445/CH2/EX2.52/ch2_ex_52.sce @@ -0,0 +1,77 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 52 + +disp("CHAPTER 2"); +disp("EXAMPLE 52"); + +//VARIABLE INITIALIZATION +r1=7; //in Ohms +L1=0.015; //in Henry +r2=12; //in Ohms +c2=180*(10^(-6)); //in Farad +r3=5; //in Ohms +L3=0.01; //in Henry +v=230; //in Volts +f=50; //in Hertz + +//SOLUTION + +//solition (a) +xl1=2*%pi*f*L1; +xc2=1/(2*%pi*f*c2); +xl3=2*%pi*f*L3; +Z1=r1+xl1*%i; //complex representations +Z2=r2-xc2*%i; +Z3=r3+xl3*%i; +//function to convert from rectangular form to polar form +function [z,angle]=rect2pol(r,x); +z=sqrt((r^2)+(x^2)); +angle=atan(x/r)*(180/%pi); //to convert the angle from radians to degrees +endfunction; +[z1,angle1]=rect2pol(r1,xl1); +[z2,angle2]=rect2pol(r2,xc2); +[z3,angle3]=rect2pol(r3,xl3); +//to obtain rectangular form of (Z1+Z2) +req1=r1+r2; +xeq1=xl1-xc2; +//to obtain polar form of (Z1+Z2) +[zeq1,angle_eq1]=rect2pol(req1,-xeq1); +zp=(z1*z2)/(zeq1); +angle_p=(angle1-angle2)+angle_eq1; +//function to convert from polar form to rectangular form +function [r,x]=pol2rect(z,angle); +r=z*cos(angle*(%pi/180)); //to convert the angle from degrees to radians +x=z*sin(angle*(%pi/180)); +endfunction; +[rp,xp]=pol2rect(zp,angle_p); +[req,xeq]=pol2rect(z3,angle3); +r_tot=req+rp; +x_tot=xeq+xp; +[z_tot,angle_tot]=rect2pol(r_tot,x_tot); +Z=r_tot+x_tot*%i; //complex representation +disp(sprintf("(a) The total impedance is %f Ω, %f degrees",z_tot,angle_tot)); + +//solution (b) +I=v/Z; //complex division +angle_I=-angle_tot; +[I_x,I_y]=pol2rect(I,angle_I); +disp(sprintf("(b) The total currrent is (%f-j%f) A",real(I),imag(I))); + +//solution (c) +//Voltage drop across Z3 +Vab=I*Z3; +disp(sprintf(" The Voltage between AB is (%f-j%f) A",real(Vab),imag(Vab))); +//since we know that V=Vab+Vbc +Vbc=v-Vab; +disp(sprintf(" The Voltage between BC is (%f-j%f) A",real(Vbc),imag(Vbc))); +I1=Vbc/Z1; //Branch 1 current +I2=Vbc/Z2; //branch 2 current +//I3=I, main branch current +[mag1,angle1]=rect2pol(real(I1),imag(I1)); +[mag2,angle2]=rect2pol(real(I2),imag(I2)); +disp(sprintf("(c) Current in branch 1 is %f A, %f degrees",mag1,angle1)); +disp(sprintf(" The currrent in branch 1 is (%f-j%f) A",real(I1),imag(I1))); +disp(sprintf(" The current in branch 2 is %f A, %f degrees",mag2,angle2)); +disp(sprintf(" The currrent in branch 2 is (%f-j%f) A",real(I2),imag(I2))); +//END + diff --git a/1445/CH2/EX2.53/ch2_ex_53.sce b/1445/CH2/EX2.53/ch2_ex_53.sce new file mode 100644 index 000000000..66f4e4908 --- /dev/null +++ b/1445/CH2/EX2.53/ch2_ex_53.sce @@ -0,0 +1,43 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 53 Read Example 52 of the Text Book + +disp("CHAPTER 2"); +disp("EXAMPLE 53"); + +//VARIABLE INITIALIZATION +v=230; //in Volts +angle_v=30; //in degrees +I1=20; //in Amperes +angle_I1=60; //in degrees +I2=40; //in Amperes +angle_I2=-30; //in degrees + +//SOLUTION +//function to convert from polar form to rectangular form +function [x,y]=pol2rect(mag,angle); +x=mag*cos(angle*(%pi/180)); //to convert the angle from degrees to radians +y=mag*sin(angle*(%pi/180)); +endfunction; +[x1,y1]=pol2rect(I1,angle_I1); +[x2,y2]=pol2rect(I2,angle_I2); +X=x1+x2; +Y=y1+y2; + +//function to convert from rectangular form to polar form +function [I,angle]=rect2pol(x,y); +I=sqrt((x^2)+(y^2)); +angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees +endfunction; +[I,angle]=rect2pol(X,Y); + +//solution (i) +z=v/I; +angle_z=angle_v-angle; +disp(sprintf("(i) The total impedance of the circuit is %f Ω, %f degrees",z,angle_z)); + +//solution (ii) +//disp(sprintf("The value of I is %f and angle is %f",I, angle_z)); +pf=cos(angle_z*(%pi/180)); +p=v*I*pf; +disp(sprintf("(ii) The power taken is %f W",p)); +//END diff --git a/1445/CH2/EX2.54/ch2_ex_54.sce b/1445/CH2/EX2.54/ch2_ex_54.sce new file mode 100644 index 000000000..2c975c627 --- /dev/null +++ b/1445/CH2/EX2.54/ch2_ex_54.sce @@ -0,0 +1,27 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 54 Read example 53 of the Book + +disp("CHAPTER 2"); +disp("EXAMPLE 54"); + +//VARIABLE INITIALIZATION +C=2.5/(10^6); //capcaitance in Farads +R=15; //in Ohms +L=260/1000; //in Henry + +//SOLUTION + +//solution (i) +f_r=(1/(2*%pi))*sqrt((1/(L*C)-(R^2/L^2))); +f_r=round(f_r); //to round off the value +disp(sprintf("(i) The resonant frequency is %d Hz",f_r)); + +//solution (ii) +q_factor=(2*%pi*f_r*L)/R; +disp(sprintf("(ii) The Q-factor of the circuit is %f",q_factor)); + +//solution (iii) +Z_r=L/(C*R); +disp(sprintf("(iii) The dynamic impedance of the circuit is %f Ω",Z_r)); + +//END diff --git a/1445/CH2/EX2.6/ch2_ex_6.sce b/1445/CH2/EX2.6/ch2_ex_6.sce new file mode 100644 index 000000000..078b110aa --- /dev/null +++ b/1445/CH2/EX2.6/ch2_ex_6.sce @@ -0,0 +1,28 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 6 + +disp("CHAPTER 2"); +disp("EXAMPLE 6"); + +//VARIABLE INITIALIZATION +f=50; //in Hertz +I1=20; //in Amperes +pf1=0.75; //power factor +v=230; //in Volts +pf2=0.9; //power factor(lagging) + +//SOLUTION +phi1=acos(pf1); +res1=tan(phi1); //result1 = tan(Φ1) +phi2=acos(pf2); +res2=tan(phi2); //result2 = tan(Φ2) +Ic=I1*pf1*(res1-res2); +w=2*%pi*f; +c=Ic/(v*w); +disp(sprintf("The value of capacitance is %f μF",c*(10^6))); +Qc=v*Ic; +disp(sprintf("The reactive power is %f kVAR",Qc/(10^3))); +I2=I1*(pf1/pf2); +disp(sprintf("The new supply current is %f A",I2)); + +//END diff --git a/1445/CH2/EX2.7/ch2_ex_7.sce b/1445/CH2/EX2.7/ch2_ex_7.sce new file mode 100644 index 000000000..7437159b7 --- /dev/null +++ b/1445/CH2/EX2.7/ch2_ex_7.sce @@ -0,0 +1,24 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 7 + +disp("CHAPTER 2"); +disp("EXAMPLE 7"); + +//VARIABLE INITIALIZATION +s1=300; //apparent power in kVA +pf1=0.65; //power factor(lagging) +pf2=0.85; //power factor(lagging) + +//SOLUTION + +//solution (a) +p=s1*pf1; //active power +q1=sqrt((s1^2)-(p^2)); +disp(sprintf("(a) To bring the power factor to unity, the capacitor bank should have a capacity of %f kVAR",q1)); + +//solution (b) +s2=p/pf2; +q2=sqrt((s2^2)-(p^2)); +disp(sprintf("(b) To bring the power factor to 85%% lagging, the capacitor bank should have a capacity of %f kVAR",q2)); + +//END diff --git a/1445/CH2/EX2.8/ch2_ex_8.sce b/1445/CH2/EX2.8/ch2_ex_8.sce new file mode 100644 index 000000000..042588a04 --- /dev/null +++ b/1445/CH2/EX2.8/ch2_ex_8.sce @@ -0,0 +1,21 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 8 + +disp("CHAPTER 2"); +disp("EXAMPLE 8"); + +//VARIABLE INITIALIZATION +v=300/sqrt(2); //in Volts +angle_v=110; //in degrees +I=15/sqrt(2); //in Amperes +angle_I=80; //in degrees + +//SOLUTION +Z=v/I; +angle_Z=angle_v-angle_I; +disp(sprintf("The circuit impedance is %d Ω",Z)); +disp(sprintf("The phase angle is %d degrees",angle_Z)); +p_av=v*I*cos(angle_Z*(%pi/180)); //to convert angle_z from degrees to radians +disp(sprintf("The average power drawn is %f W",p_av)); + +//END diff --git a/1445/CH2/EX2.9/ch2_ex_9.sce b/1445/CH2/EX2.9/ch2_ex_9.sce new file mode 100644 index 000000000..8e68bc680 --- /dev/null +++ b/1445/CH2/EX2.9/ch2_ex_9.sce @@ -0,0 +1,19 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 9 + +disp("CHAPTER 2"); +disp("EXAMPLE 9"); + +//VARIABLE INITIALIZATION +v1=120; //voltage of lamp in Volts +p=100; //in Watts +v2=220; //supply voltage in Volts +f=50; //in Hertz + +//SOLUTION +vl=sqrt((v2^2)-(v1^2)); +xl=(v1*vl)/p; +L=xl/(2*%pi*f); +disp(sprintf("The pure inductance should have a value of %f H",L)); + +//END |