blob: d93ee733a6ac40e79f43ecf885032f06cb819c4d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT
//Example 37 // read it as example 36 in the book on page 2.93
disp("CHAPTER 2");
disp("EXAMPLE 37");
//VARIABLE INITIALIZATION
R1=20; //
XL=15; // in ohms
R2=0; //assumed
C=50; //in ohms capacitative reactance
V=200;
f=60; //Hz
//
//SOLUTION
//Solution (a)
//conductance g, susceptance b
Z1=sqrt(R1^2 +XL^2); //squared impedance Z^2 for branch 1
Z2=sqrt(R2^2 +C^2); //squared impedance Z^2 for branch 2
i1=V/Z1;
i2=V/Z2;
disp("SOLUTION (a)");
disp(sprintf("The current in Branch 1 is %f Amp", i1));
disp(sprintf("The current in Branch 2 is %f Amp", i2));
phi1=atan(XL/R1);
phi2=%pi/2; //atan(C/R2); //R2=0, output is infinity
Icos=i1*cos(phi1)+i2*cos(phi2); // phi in radians
Isin=-i1*sin(phi1)+i2*sin(phi2); // phi in radians
I=sqrt(Icos^2+Isin^2);
//
disp("SOLUTION (b)");
disp(sprintf("The total current is %f Amp", I));
//
pf=Icos/I;
disp("SOLUTION (c)");
disp(sprintf("The power factor is %f ", pf));
disp(" ");
//
//END
|