diff options
Diffstat (limited to '1445/CH2/EX2.13/ch2_ex_13.sce')
-rw-r--r-- | 1445/CH2/EX2.13/ch2_ex_13.sce | 37 |
1 files changed, 37 insertions, 0 deletions
diff --git a/1445/CH2/EX2.13/ch2_ex_13.sce b/1445/CH2/EX2.13/ch2_ex_13.sce new file mode 100644 index 000000000..cf3c2766c --- /dev/null +++ b/1445/CH2/EX2.13/ch2_ex_13.sce @@ -0,0 +1,37 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 13 + +disp("CHAPTER 2"); +disp("EXAMPLE 13"); + +//VARIABLE INITIALIZATION +z1=1+(%i*1); //impedance in rectangular form in Ohms +v=20*sqrt(2); //amplitude of rms value of voltage in Volts + +//SOLUTION +function [z,angle]=rect2pol(x,y); +z=sqrt((x^2)+(y^2)); //z is impedance & the resultant of x and y +angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees +endfunction; + +//solution (i) +[z,angle]=rect2pol(1,1); +v=v/sqrt(2); +angle_v=100; //v=(20/sqrt(2))*sin(ωt+100) +I=v/z; //RMS value of current +angle_I=angle_v-angle; +Im=I*sqrt(2); +disp(sprintf("(i) The current in load is i = %d sin(ωt+%d) A",Im,angle_I)); + +//solution (ii) +pr=(v/sqrt(2))*(I*sqrt(2))*cos(angle*(%pi/180)); +disp(sprintf("(ii) The real power is %f W",pr)); + +//solution (iii) +pa=(v/sqrt(2))*(I*sqrt(2)); +disp(sprintf("(ii) The apparent power is %f VAR",pa)); + +//END + + + |