diff options
Diffstat (limited to '1445/CH2/EX2.52/ch2_ex_52.sce')
-rw-r--r-- | 1445/CH2/EX2.52/ch2_ex_52.sce | 77 |
1 files changed, 77 insertions, 0 deletions
diff --git a/1445/CH2/EX2.52/ch2_ex_52.sce b/1445/CH2/EX2.52/ch2_ex_52.sce new file mode 100644 index 000000000..f8b6c5c80 --- /dev/null +++ b/1445/CH2/EX2.52/ch2_ex_52.sce @@ -0,0 +1,77 @@ +//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A.C. CIRCUIT +//Example 52 + +disp("CHAPTER 2"); +disp("EXAMPLE 52"); + +//VARIABLE INITIALIZATION +r1=7; //in Ohms +L1=0.015; //in Henry +r2=12; //in Ohms +c2=180*(10^(-6)); //in Farad +r3=5; //in Ohms +L3=0.01; //in Henry +v=230; //in Volts +f=50; //in Hertz + +//SOLUTION + +//solition (a) +xl1=2*%pi*f*L1; +xc2=1/(2*%pi*f*c2); +xl3=2*%pi*f*L3; +Z1=r1+xl1*%i; //complex representations +Z2=r2-xc2*%i; +Z3=r3+xl3*%i; +//function to convert from rectangular form to polar form +function [z,angle]=rect2pol(r,x); +z=sqrt((r^2)+(x^2)); +angle=atan(x/r)*(180/%pi); //to convert the angle from radians to degrees +endfunction; +[z1,angle1]=rect2pol(r1,xl1); +[z2,angle2]=rect2pol(r2,xc2); +[z3,angle3]=rect2pol(r3,xl3); +//to obtain rectangular form of (Z1+Z2) +req1=r1+r2; +xeq1=xl1-xc2; +//to obtain polar form of (Z1+Z2) +[zeq1,angle_eq1]=rect2pol(req1,-xeq1); +zp=(z1*z2)/(zeq1); +angle_p=(angle1-angle2)+angle_eq1; +//function to convert from polar form to rectangular form +function [r,x]=pol2rect(z,angle); +r=z*cos(angle*(%pi/180)); //to convert the angle from degrees to radians +x=z*sin(angle*(%pi/180)); +endfunction; +[rp,xp]=pol2rect(zp,angle_p); +[req,xeq]=pol2rect(z3,angle3); +r_tot=req+rp; +x_tot=xeq+xp; +[z_tot,angle_tot]=rect2pol(r_tot,x_tot); +Z=r_tot+x_tot*%i; //complex representation +disp(sprintf("(a) The total impedance is %f Ω, %f degrees",z_tot,angle_tot)); + +//solution (b) +I=v/Z; //complex division +angle_I=-angle_tot; +[I_x,I_y]=pol2rect(I,angle_I); +disp(sprintf("(b) The total currrent is (%f-j%f) A",real(I),imag(I))); + +//solution (c) +//Voltage drop across Z3 +Vab=I*Z3; +disp(sprintf(" The Voltage between AB is (%f-j%f) A",real(Vab),imag(Vab))); +//since we know that V=Vab+Vbc +Vbc=v-Vab; +disp(sprintf(" The Voltage between BC is (%f-j%f) A",real(Vbc),imag(Vbc))); +I1=Vbc/Z1; //Branch 1 current +I2=Vbc/Z2; //branch 2 current +//I3=I, main branch current +[mag1,angle1]=rect2pol(real(I1),imag(I1)); +[mag2,angle2]=rect2pol(real(I2),imag(I2)); +disp(sprintf("(c) Current in branch 1 is %f A, %f degrees",mag1,angle1)); +disp(sprintf(" The currrent in branch 1 is (%f-j%f) A",real(I1),imag(I1))); +disp(sprintf(" The current in branch 2 is %f A, %f degrees",mag2,angle2)); +disp(sprintf(" The currrent in branch 2 is (%f-j%f) A",real(I2),imag(I2))); +//END + |