summaryrefslogtreecommitdiff
path: root/534/CH11
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /534/CH11
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '534/CH11')
-rw-r--r--534/CH11/EX11.1/11_1_Counterflow_tube_HeatX.sce51
-rw-r--r--534/CH11/EX11.2/11_2_Counterflow_plate_HeatX.sce71
-rw-r--r--534/CH11/EX11.3/11_3_Crossflow_finned_tube_HeatX.sce34
-rw-r--r--534/CH11/EX11.4/11_4_Crossflow_finned_HeatX2.sce36
-rw-r--r--534/CH11/EX11.5/11_5_Shell_n_Tube_HeatX.sce39
-rw-r--r--534/CH11/EX11.6/11_6_Finned_Compact_HeatX.sce59
6 files changed, 290 insertions, 0 deletions
diff --git a/534/CH11/EX11.1/11_1_Counterflow_tube_HeatX.sce b/534/CH11/EX11.1/11_1_Counterflow_tube_HeatX.sce
new file mode 100644
index 000000000..15c8fd824
--- /dev/null
+++ b/534/CH11/EX11.1/11_1_Counterflow_tube_HeatX.sce
@@ -0,0 +1,51 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 11.1 Page 680 \n'); //Example 11.1
+// Tube Length to achieve a desired hot fluid temperature
+
+//Operating Conditions
+Tho = 60+273 ;//[K] Hot Fluid outlet Temperature
+Thi = 100+273 ; //[K] Hot Fluid intlet Temperature
+Tci = 30+273 ;//[K] Cold Fluid intlet Temperature
+mh = .1 ;//[kg/s] Hot Fluid flow rate
+mc = .2 ;//[kg/s] Cold Fluid flow rate
+Do = .045 ;//[m] Outer annulus
+Di = .025 ;//[m] Inner tube
+
+//Table A.5 Engine Oil Properties T = 353 K
+cph = 2131 ;//[J/kg.K] Specific Heat
+kh = .138 ; //[W/m.K] Conductivity
+uh = 3.25*10^-2 ; //[N.s/m^2] Viscosity
+//Table A.6 Saturated water Liquid Properties Tc = 308 K
+cpc = 4178 ;//[J/kg.K] Specific Heat
+kc = 0.625 ; //[W/m.K] Conductivity
+uc = 725*10^-6 ; //[N.s/m^2] Viscosity
+Pr = 4.85 ;//Prandtl Number
+
+q = mh*cph*(Thi-Tho);
+
+Tco = q/(mc*cpc)+Tci;
+
+T1 = Thi-Tco;
+T2 = Tho-Tci;
+Tlm = (T1-T2)/(2.30*log10(T1/T2));
+
+//Through Tube
+Ret = 4*mc/(%pi*Di*uc);
+printf("\n Flow through Tube has Reynolds Number as %i. Thus the flow is Turbulent", Ret);
+//Equation 8.60
+Nut = .023*Ret^.8*Pr^.4;
+hi = Nut*kc/Di;
+
+//Through Shell
+Reo = 4*mh*(Do-Di)/(%pi*uh*(Do^2-Di^2));
+printf("\n Flow through Tube has Reynolds Number as %i. Thus the flow is Laminar", Reo);
+//Table 8.2
+Nuo = 5.63;
+ho = Nuo*kh/(Do-Di);
+
+U = 1/[1/hi+1/ho];
+L = q/(U*%pi*Di*Tlm);
+
+printf("\n Tube Length to achieve a desired hot fluid temperature is %.1f m",L);
+//END \ No newline at end of file
diff --git a/534/CH11/EX11.2/11_2_Counterflow_plate_HeatX.sce b/534/CH11/EX11.2/11_2_Counterflow_plate_HeatX.sce
new file mode 100644
index 000000000..79317e1c3
--- /dev/null
+++ b/534/CH11/EX11.2/11_2_Counterflow_plate_HeatX.sce
@@ -0,0 +1,71 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 11.2 Page 683 \n'); //Example 11.2
+// Exterior Dimensions of heat Exchanger
+// Pressure drops within the plate-type Heat exchanger with N=60 gaps
+
+//Operating Conditions
+Tho = 60+273 ;//[K] Hot Fluid outlet Temperature
+Thi = 100+273 ;//[K] Hot Fluid intlet Temperature
+Tci = 30+273 ;//[K] Cold Fluid intlet Temperature
+mh = .1 ;//[kg/s] Hot Fluid flow rate
+mc = .2 ;//[kg/s] Cold Fluid flow rate
+Do = .045 ;//[m] Outer annulus
+Di = .025 ;//[m] Inner tube
+
+//Table A.5 Engine Oil Properties T = 353 K
+cph = 2131 ;//[J/kg.K] Specific Heat
+kh = .138 ;//[W/m.K] Conductivity
+uh = 3.25*10^-2 ; //[N.s/m^2] Viscosity
+rhoh = 852.1 ;//[kg/m^3] Density
+//Table A.6 Saturated water Liquid Properties Tc = 308 K
+cpc = 4178 ;//[J/kg.K] Specific Heat
+kc = 0.625 ;//[W/m.K] Conductivity
+uc = 725*10^-6 ;//[N.s/m^2] Viscosity
+Pr = 4.85 ;//Prandtl Number
+rhoc = 994 ;//[kg/m^3] Density
+
+q = mh*cph*(Thi-Tho);
+
+Tco = q/(mc*cpc)+Tci;
+
+T1 = Thi-Tco;
+T2 = Tho-Tci;
+Tlm = (T1-T2)/(2.30*log10(T1/T2));
+
+N = linspace(20,80,100);
+L = q/Tlm*[1/(7.54*kc/2)+1/(7.54*kh/2)]*(N^2-N)^-1;
+clf();
+plot(N,L);
+xtitle("Size of Heat Xchanger vs Number of gaps", "Number of Gaps (N)", "L (m)");
+
+N2 = 60;
+L = q/((N2-1)*N2*Tlm)*[1/(7.54*kc/2)+1/(7.54*kh/2)];
+a = L/N2;
+Dh = 2*a ;//Hydraulic Diameter [m]
+//For water filled gaps
+umc = mc/(rhoc*L^2/2);
+Rec = rhoc*umc*Dh/uc;
+//For oil filled gaps
+umh = mh/(rhoh*L^2/2);
+Reh = rhoh*umh*Dh/uh;
+printf("\n Flow of the fluids has Reynolds Number as %.2f & %i. Thus the flow is Laminar for both", Reh,Rec);
+
+//Equations 8.19 and 8.22a
+delpc = 64/Rec*rhoc/2*umc^2/Dh*L ;//For water
+delph = 64/Reh*rhoh/2*umh^2/Dh*L ;//For oil
+
+//For example 11.1
+L1 = 65.9;
+Dh1c = .025;
+Dh1h = .02;
+Ret = 4*mc/(%pi*Di*uc);
+f = (.790*2.30*log10(Ret)-1.64)^-2 ;//friction factor through tube Eqn 8.21
+umc1 = 4*mc/(rhoc*%pi*Di^2);
+delpc1 = f*rhoc/2*umc1^2/Dh1c*L1;
+Reo = 4*mh*(Do-Di)/(%pi*uh*(Do^2-Di^2));
+umh1 = 4*mh/(rhoh*%pi*(Do^2-Di^2));
+delph1 = 64/Reo*rhoh/2*umh1^2/Dh1h*L1;
+
+printf("\n Exterior Dimensions of heat Exchanger L = %.3f m \n Pressure drops within the plate-type Heat exchanger with N=60 gaps\n For water = %.2f N/m^2 For oil = %.2f N/m^2\n Pressure drops tube Heat exchanger of example 11.1\n For water = %.1f kN/m^2 For oil = %.1f kN/m^2",L,delpc,delph,delpc1/1000,delph1/1000);
+//END \ No newline at end of file
diff --git a/534/CH11/EX11.3/11_3_Crossflow_finned_tube_HeatX.sce b/534/CH11/EX11.3/11_3_Crossflow_finned_tube_HeatX.sce
new file mode 100644
index 000000000..ef5e9baa6
--- /dev/null
+++ b/534/CH11/EX11.3/11_3_Crossflow_finned_tube_HeatX.sce
@@ -0,0 +1,34 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 11.3 Page 692 \n'); //Example 11.3
+// Required gas side surface area
+
+//Operating Conditions
+Tho = 100+273 ;//[K] Hot Fluid outlet Temperature
+Thi = 300+273 ;//[K] Hot Fluid intlet Temperature
+Tci = 35+273 ;//[K] Cold Fluid intlet Temperature
+Tco = 125+273 ; //[K] Cold Fluid outlet Temperature
+mc = 1 ;//[kg/s] Cold Fluid flow rate
+Uh = 100 ;//[W/m^2.K] Coefficient of heat transfer
+//Table A.5 Water Properties T = 353 K
+cph = 1000 ; //[J/kg.K] Specific Heat
+//Table A.6 Saturated water Liquid Properties Tc = 308 K
+cpc = 4197 ; //[J/kg.K] Specific Heat
+
+Cc = mc*cpc;
+//Equation 11.6b and 11.7b
+Ch = Cc*(Tco-Tci)/(Thi-Tho);
+// Equation 11.18
+qmax = Ch*(Thi-Tci);
+//Equation 11.7b
+q = mc*cpc*(Tco-Tci);
+
+e = q/qmax;
+ratio = Ch/Cc;
+
+printf("\n As effectiveness is %.2f with Ratio Cmin/Cmax = %.2f, It follows from figure 11.14 that NTU = 2.1",e,ratio);
+NTU = 2.1;
+A = 2.1*Ch/Uh;
+
+printf("\n Required gas side surface area = %.1f m^2",A);
+//END \ No newline at end of file
diff --git a/534/CH11/EX11.4/11_4_Crossflow_finned_HeatX2.sce b/534/CH11/EX11.4/11_4_Crossflow_finned_HeatX2.sce
new file mode 100644
index 000000000..b9730f03d
--- /dev/null
+++ b/534/CH11/EX11.4/11_4_Crossflow_finned_HeatX2.sce
@@ -0,0 +1,36 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 11.4 Page 695 \n'); //Example 11.4
+// Heat Transfer Rate and Fluid Outlet Temperatures
+
+//Operating Conditions
+Thi = 250+273 ;//[K] Hot Fluid intlet Temperature
+Tci = 35+273 ;//[K] Cold Fluid intlet Temperature
+mc = 1 ;//[kg/s] Cold Fluid flow rate
+mh = 1.5 ; //[kg/s] Hot Fluid flow rate
+Uh = 100 ;//[W/m^2.K] Coefficient of heat transfer
+Ah = 40 ; //[m^2] Area
+//Table A.5 Water Properties T = 353 K
+cph = 1000 ; //[J/kg.K] Specific Heat
+//Table A.6 Saturated water Liquid Properties Tc = 308 K
+cpc = 4197 ; //[J/kg.K] Specific Heat
+
+Cc = mc*cpc;
+Ch = mh*cph;
+Cmin = Ch;
+Cmax = Cc;
+
+NTU = Uh*Ah/Cmin;
+ratio = Cmin/Cmax;
+
+printf("\n As Ratio Cmin/Cmax = %.2f and Number of transfer units NTU = %.2f, It follows from figure 11.14 that e = .82",ratio,NTU);
+e = 0.82;
+qmax = Cmin*(Thi-Tci);
+q = e*qmax;
+
+//Equation 11.6b
+Tco = q/(mc*cpc) + Tci;
+//Equation 11.7b
+Tho = -q/(mh*cph) + Thi;
+printf("\n Heat Transfer Rate = %.2e W \n Fluid Outlet Temperatures Hot Fluid (Tho) = %.1f degC Cold Fluid (Tco) = %.1f degC",q,Tho-273,Tco-273);
+//END \ No newline at end of file
diff --git a/534/CH11/EX11.5/11_5_Shell_n_Tube_HeatX.sce b/534/CH11/EX11.5/11_5_Shell_n_Tube_HeatX.sce
new file mode 100644
index 000000000..3faf9cf71
--- /dev/null
+++ b/534/CH11/EX11.5/11_5_Shell_n_Tube_HeatX.sce
@@ -0,0 +1,39 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 11.5 Page 696 \n'); //Example 11.5
+// Outlet Temperature of cooling Water
+// Tube length per pass to achieve required heat transfer
+
+//Operating Conditions
+q = 2*10^9 ;//[W] Heat transfer Rate
+ho = 11000 ;//[W/m^2.K] Coefficient of heat transfer for outer surface
+Thi = 50+273 ;//[K] Hot Fluid Condensing Temperature
+Tho = Thi ;//[K] Hot Fluid Condensing Temperature
+Tci = 20+273 ;//[K] Cold Fluid intlet Temperature
+mc = 3*10^4 ; //[kg/s] Cold Fluid flow rate
+m = 1 ;//[kg/s] Cold Fluid flow rate per tube
+D = .025 ;//[m] diameter of tube
+//Table A.6 Saturated water Liquid Properties Tf = 300 K
+rho = 997 ; //[kg/m^3] Density
+cp = 4179 ; //[J/kg.K] Specific Heat
+k = 0.613 ; //[W/m.K] Conductivity
+u = 855*10^-6 ; //[N.s/m^2] Viscosity
+Pr = 5.83 ; // Prandtl number
+
+//Equation 11.6b
+Tco = q/(mc*cp) + Tci;
+
+Re = 4*m/(%pi*D*u);
+printf("\n As the Reynolds number of tube fluid is %i. Hence the flow is turbulent. Hence using Diettus-Boetllor Equation 8.60", Re);
+Nu = .023*Re^.8*Pr^.4;
+hi = Nu*k/D;
+U = 1/[1/ho + 1/hi];
+N = 30000 ;//No of tubes
+T1 = Thi-Tco;
+T2 = Tho-Tci;
+Tlm = (T1-T2)/(2.30*log10(T1/T2));
+L2 = q/(U*N*2*%pi*D*Tlm);
+
+
+printf("\n Outlet Temperature of cooling Water = %.1f degC\n Tube length per pass to achieve required heat transfer = %.2f m",Tco-273,L2);
+//END \ No newline at end of file
diff --git a/534/CH11/EX11.6/11_6_Finned_Compact_HeatX.sce b/534/CH11/EX11.6/11_6_Finned_Compact_HeatX.sce
new file mode 100644
index 000000000..d6c7ba472
--- /dev/null
+++ b/534/CH11/EX11.6/11_6_Finned_Compact_HeatX.sce
@@ -0,0 +1,59 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 11.6 Page 702 \n'); //Example 11.6
+// Gas-side overall heat transfer coefficient. Heat exchanger Volume
+
+//Operating Conditions
+hc = 1500 ;//[W/m^2.K] Coefficient of heat transfer for outer surface
+hi = hc;
+Th = 825 ;//[K] Hot Fluid Temperature
+Tci = 290 ;//[K] Cold Fluid intlet Temperature
+Tco = 370 ;//[K] Cold Fluid outlet Temperature
+mc = 1 ;//[kg/s] Cold Fluid flow rate
+mh = 1.25 ;//[kg/s] Hot Fluid flow rate
+Ah = .20 ;//[m^2] Area of tubes
+Di = .0138 ;//[m] diameter of tube
+Do = .0164 ;//[m] Diameter
+//Table A.6 Saturated water Liquid Properties Tf = 330 K
+cpw = 4184 ; //[J/kg.K] Specific Heat
+//Table A.1 Aluminium Properties T = 300 K
+k = 237 ; //[W/m.K] Conductivity
+//Table A.4 Air Properties Tf = 700 K
+cpa = 1075 ; //[J/kg.K] Specific Heat
+u = 33.88*10^-6 ; //[N.s/m^2] Viscosity
+Pr = .695 ; // Prandtl number
+
+//Geometric Considerations
+si = .449;
+Dh = 6.68*10^-3 ;//[m] hydraulic diameter
+G = mh/si/Ah;
+Re = G*Dh/u;
+//From Figure 11.16
+jh = .01;
+hh = jh*G*cpa/Pr^.66667;
+
+AR = Di*2.303*log10(Do/Di)/(2*k*(.143));
+//Figure 11.16
+AcAh = Di/Do*(1-.830);
+//From figure 3.19
+nf = .89;
+noh = 1-(1-.89)*.83;
+
+U = [1/(hc*AcAh) + AR + 1/(noh*hh)]^-1;
+
+Cc = mc*cpw;
+q = Cc*(Tco-Tci);
+Ch = mh*cpa;
+qmax = Ch*(Th-Tci);
+e = q/qmax;
+ratio = Ch/Cc;
+
+printf("\n As effectiveness is %.2f with Ratio Cmin/Cmax = %.2f, It follows from figure 11.14 that NTU = .65",e,ratio);
+NTU = .65;
+A = NTU*Ch/U;
+//From Fig 11.16
+al = 269; //[m^-1] gas side area per unit heat wxchanger volume
+V = A/al;
+
+printf("\n Gas-side overall heat transfer coefficient.r = %i W/m^2.K\n Heat exchanger Volume = %.3f m^3",U,V);
+//END; \ No newline at end of file