diff options
Diffstat (limited to '534/CH11/EX11.2/11_2_Counterflow_plate_HeatX.sce')
-rw-r--r-- | 534/CH11/EX11.2/11_2_Counterflow_plate_HeatX.sce | 71 |
1 files changed, 71 insertions, 0 deletions
diff --git a/534/CH11/EX11.2/11_2_Counterflow_plate_HeatX.sce b/534/CH11/EX11.2/11_2_Counterflow_plate_HeatX.sce new file mode 100644 index 000000000..79317e1c3 --- /dev/null +++ b/534/CH11/EX11.2/11_2_Counterflow_plate_HeatX.sce @@ -0,0 +1,71 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 11.2 Page 683 \n'); //Example 11.2
+// Exterior Dimensions of heat Exchanger
+// Pressure drops within the plate-type Heat exchanger with N=60 gaps
+
+//Operating Conditions
+Tho = 60+273 ;//[K] Hot Fluid outlet Temperature
+Thi = 100+273 ;//[K] Hot Fluid intlet Temperature
+Tci = 30+273 ;//[K] Cold Fluid intlet Temperature
+mh = .1 ;//[kg/s] Hot Fluid flow rate
+mc = .2 ;//[kg/s] Cold Fluid flow rate
+Do = .045 ;//[m] Outer annulus
+Di = .025 ;//[m] Inner tube
+
+//Table A.5 Engine Oil Properties T = 353 K
+cph = 2131 ;//[J/kg.K] Specific Heat
+kh = .138 ;//[W/m.K] Conductivity
+uh = 3.25*10^-2 ; //[N.s/m^2] Viscosity
+rhoh = 852.1 ;//[kg/m^3] Density
+//Table A.6 Saturated water Liquid Properties Tc = 308 K
+cpc = 4178 ;//[J/kg.K] Specific Heat
+kc = 0.625 ;//[W/m.K] Conductivity
+uc = 725*10^-6 ;//[N.s/m^2] Viscosity
+Pr = 4.85 ;//Prandtl Number
+rhoc = 994 ;//[kg/m^3] Density
+
+q = mh*cph*(Thi-Tho);
+
+Tco = q/(mc*cpc)+Tci;
+
+T1 = Thi-Tco;
+T2 = Tho-Tci;
+Tlm = (T1-T2)/(2.30*log10(T1/T2));
+
+N = linspace(20,80,100);
+L = q/Tlm*[1/(7.54*kc/2)+1/(7.54*kh/2)]*(N^2-N)^-1;
+clf();
+plot(N,L);
+xtitle("Size of Heat Xchanger vs Number of gaps", "Number of Gaps (N)", "L (m)");
+
+N2 = 60;
+L = q/((N2-1)*N2*Tlm)*[1/(7.54*kc/2)+1/(7.54*kh/2)];
+a = L/N2;
+Dh = 2*a ;//Hydraulic Diameter [m]
+//For water filled gaps
+umc = mc/(rhoc*L^2/2);
+Rec = rhoc*umc*Dh/uc;
+//For oil filled gaps
+umh = mh/(rhoh*L^2/2);
+Reh = rhoh*umh*Dh/uh;
+printf("\n Flow of the fluids has Reynolds Number as %.2f & %i. Thus the flow is Laminar for both", Reh,Rec);
+
+//Equations 8.19 and 8.22a
+delpc = 64/Rec*rhoc/2*umc^2/Dh*L ;//For water
+delph = 64/Reh*rhoh/2*umh^2/Dh*L ;//For oil
+
+//For example 11.1
+L1 = 65.9;
+Dh1c = .025;
+Dh1h = .02;
+Ret = 4*mc/(%pi*Di*uc);
+f = (.790*2.30*log10(Ret)-1.64)^-2 ;//friction factor through tube Eqn 8.21
+umc1 = 4*mc/(rhoc*%pi*Di^2);
+delpc1 = f*rhoc/2*umc1^2/Dh1c*L1;
+Reo = 4*mh*(Do-Di)/(%pi*uh*(Do^2-Di^2));
+umh1 = 4*mh/(rhoh*%pi*(Do^2-Di^2));
+delph1 = 64/Reo*rhoh/2*umh1^2/Dh1h*L1;
+
+printf("\n Exterior Dimensions of heat Exchanger L = %.3f m \n Pressure drops within the plate-type Heat exchanger with N=60 gaps\n For water = %.2f N/m^2 For oil = %.2f N/m^2\n Pressure drops tube Heat exchanger of example 11.1\n For water = %.1f kN/m^2 For oil = %.1f kN/m^2",L,delpc,delph,delpc1/1000,delph1/1000);
+//END
\ No newline at end of file |