summaryrefslogtreecommitdiff
path: root/534/CH11/EX11.5/11_5_Shell_n_Tube_HeatX.sce
diff options
context:
space:
mode:
Diffstat (limited to '534/CH11/EX11.5/11_5_Shell_n_Tube_HeatX.sce')
-rw-r--r--534/CH11/EX11.5/11_5_Shell_n_Tube_HeatX.sce39
1 files changed, 39 insertions, 0 deletions
diff --git a/534/CH11/EX11.5/11_5_Shell_n_Tube_HeatX.sce b/534/CH11/EX11.5/11_5_Shell_n_Tube_HeatX.sce
new file mode 100644
index 000000000..3faf9cf71
--- /dev/null
+++ b/534/CH11/EX11.5/11_5_Shell_n_Tube_HeatX.sce
@@ -0,0 +1,39 @@
+clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 11.5 Page 696 \n'); //Example 11.5
+// Outlet Temperature of cooling Water
+// Tube length per pass to achieve required heat transfer
+
+//Operating Conditions
+q = 2*10^9 ;//[W] Heat transfer Rate
+ho = 11000 ;//[W/m^2.K] Coefficient of heat transfer for outer surface
+Thi = 50+273 ;//[K] Hot Fluid Condensing Temperature
+Tho = Thi ;//[K] Hot Fluid Condensing Temperature
+Tci = 20+273 ;//[K] Cold Fluid intlet Temperature
+mc = 3*10^4 ; //[kg/s] Cold Fluid flow rate
+m = 1 ;//[kg/s] Cold Fluid flow rate per tube
+D = .025 ;//[m] diameter of tube
+//Table A.6 Saturated water Liquid Properties Tf = 300 K
+rho = 997 ; //[kg/m^3] Density
+cp = 4179 ; //[J/kg.K] Specific Heat
+k = 0.613 ; //[W/m.K] Conductivity
+u = 855*10^-6 ; //[N.s/m^2] Viscosity
+Pr = 5.83 ; // Prandtl number
+
+//Equation 11.6b
+Tco = q/(mc*cp) + Tci;
+
+Re = 4*m/(%pi*D*u);
+printf("\n As the Reynolds number of tube fluid is %i. Hence the flow is turbulent. Hence using Diettus-Boetllor Equation 8.60", Re);
+Nu = .023*Re^.8*Pr^.4;
+hi = Nu*k/D;
+U = 1/[1/ho + 1/hi];
+N = 30000 ;//No of tubes
+T1 = Thi-Tco;
+T2 = Tho-Tci;
+Tlm = (T1-T2)/(2.30*log10(T1/T2));
+L2 = q/(U*N*2*%pi*D*Tlm);
+
+
+printf("\n Outlet Temperature of cooling Water = %.1f degC\n Tube length per pass to achieve required heat transfer = %.2f m",Tco-273,L2);
+//END \ No newline at end of file