diff options
Diffstat (limited to '534/CH11/EX11.3/11_3_Crossflow_finned_tube_HeatX.sce')
-rw-r--r-- | 534/CH11/EX11.3/11_3_Crossflow_finned_tube_HeatX.sce | 34 |
1 files changed, 34 insertions, 0 deletions
diff --git a/534/CH11/EX11.3/11_3_Crossflow_finned_tube_HeatX.sce b/534/CH11/EX11.3/11_3_Crossflow_finned_tube_HeatX.sce new file mode 100644 index 000000000..ef5e9baa6 --- /dev/null +++ b/534/CH11/EX11.3/11_3_Crossflow_finned_tube_HeatX.sce @@ -0,0 +1,34 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 11.3 Page 692 \n'); //Example 11.3
+// Required gas side surface area
+
+//Operating Conditions
+Tho = 100+273 ;//[K] Hot Fluid outlet Temperature
+Thi = 300+273 ;//[K] Hot Fluid intlet Temperature
+Tci = 35+273 ;//[K] Cold Fluid intlet Temperature
+Tco = 125+273 ; //[K] Cold Fluid outlet Temperature
+mc = 1 ;//[kg/s] Cold Fluid flow rate
+Uh = 100 ;//[W/m^2.K] Coefficient of heat transfer
+//Table A.5 Water Properties T = 353 K
+cph = 1000 ; //[J/kg.K] Specific Heat
+//Table A.6 Saturated water Liquid Properties Tc = 308 K
+cpc = 4197 ; //[J/kg.K] Specific Heat
+
+Cc = mc*cpc;
+//Equation 11.6b and 11.7b
+Ch = Cc*(Tco-Tci)/(Thi-Tho);
+// Equation 11.18
+qmax = Ch*(Thi-Tci);
+//Equation 11.7b
+q = mc*cpc*(Tco-Tci);
+
+e = q/qmax;
+ratio = Ch/Cc;
+
+printf("\n As effectiveness is %.2f with Ratio Cmin/Cmax = %.2f, It follows from figure 11.14 that NTU = 2.1",e,ratio);
+NTU = 2.1;
+A = 2.1*Ch/Uh;
+
+printf("\n Required gas side surface area = %.1f m^2",A);
+//END
\ No newline at end of file |