blob: ef5e9baa672690a44e0a13a736dbdb7778f26afa (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
clear;
clc;
printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 11.3 Page 692 \n'); //Example 11.3
// Required gas side surface area
//Operating Conditions
Tho = 100+273 ;//[K] Hot Fluid outlet Temperature
Thi = 300+273 ;//[K] Hot Fluid intlet Temperature
Tci = 35+273 ;//[K] Cold Fluid intlet Temperature
Tco = 125+273 ; //[K] Cold Fluid outlet Temperature
mc = 1 ;//[kg/s] Cold Fluid flow rate
Uh = 100 ;//[W/m^2.K] Coefficient of heat transfer
//Table A.5 Water Properties T = 353 K
cph = 1000 ; //[J/kg.K] Specific Heat
//Table A.6 Saturated water Liquid Properties Tc = 308 K
cpc = 4197 ; //[J/kg.K] Specific Heat
Cc = mc*cpc;
//Equation 11.6b and 11.7b
Ch = Cc*(Tco-Tci)/(Thi-Tho);
// Equation 11.18
qmax = Ch*(Thi-Tci);
//Equation 11.7b
q = mc*cpc*(Tco-Tci);
e = q/qmax;
ratio = Ch/Cc;
printf("\n As effectiveness is %.2f with Ratio Cmin/Cmax = %.2f, It follows from figure 11.14 that NTU = 2.1",e,ratio);
NTU = 2.1;
A = 2.1*Ch/Uh;
printf("\n Required gas side surface area = %.1f m^2",A);
//END
|