diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3638 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3638')
150 files changed, 1548 insertions, 0 deletions
diff --git a/3638/CH10/EX10.1/Ex10_1.jpg b/3638/CH10/EX10.1/Ex10_1.jpg Binary files differnew file mode 100644 index 000000000..9eb20cdf5 --- /dev/null +++ b/3638/CH10/EX10.1/Ex10_1.jpg diff --git a/3638/CH10/EX10.1/Ex10_1.sce b/3638/CH10/EX10.1/Ex10_1.sce new file mode 100644 index 000000000..a1d87c17e --- /dev/null +++ b/3638/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,18 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 10.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+n1=1.450840;//refractive index of core
+n2=1.446918;//refractive imdex of cladding
+a=4.1e-6;//radius of core in m
+n=2*%pi*a*sqrt((n1^2)-(n2^2))//numerator of the corresponding V number
+//corresponding V number expression where lambda0 is in nm
+mprintf("V=%.1f/lambda0",n*1e9);//multiplying numerator by 10^9 to convert lambda0 in nm
+//For cutoff wavelength:
+V=2.4048;
+//Since V=n/lambda0
+lambda0=n/V;//cutoff wavelength of single mode fiber in m
+mprintf("\n The cutoff wavelength is %.1f nm",lambda0/1e-9);//Division by 10^(-9) to convert into nm
diff --git a/3638/CH10/EX10.3/Ex10_3.jpg b/3638/CH10/EX10.3/Ex10_3.jpg Binary files differnew file mode 100644 index 000000000..a4585d96b --- /dev/null +++ b/3638/CH10/EX10.3/Ex10_3.jpg diff --git a/3638/CH10/EX10.3/Ex10_3.sce b/3638/CH10/EX10.3/Ex10_3.sce new file mode 100644 index 000000000..faff92367 --- /dev/null +++ b/3638/CH10/EX10.3/Ex10_3.sce @@ -0,0 +1,20 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 10.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+n1=1.457893;//refractive index of core
+n2=1.446918;//refractive imdex of cladding
+a=2.3e-6;//radius of core in m
+delta=(n1-n2)/n2;//fractional change in refractive index
+mprintf("\n Delta=%f",delta);//The answers vary due to round off error
+n=2*%pi*a*sqrt((n1^2)-(n2^2))//numerator of the corresponding V number
+//corresponding V number expression where lambda0 is in nm
+mprintf("\n V=%.1f/lambda0",n*1e9);//multiplying numerator by 10^9 to convert lambda0 in nm
+//For cutoff wavelength:
+V=2.4048;
+//Since V=n/lambda0
+lambda0=n/V;//cutoff wavelength of single mode fiber in m
+mprintf("\n The cutoff wavelength is %.1f nm",lambda0/1e-9);//Division by 10^(-9) to convert into nm
diff --git a/3638/CH10/EX10.4/Ex10_4.jpg b/3638/CH10/EX10.4/Ex10_4.jpg Binary files differnew file mode 100644 index 000000000..d898460a4 --- /dev/null +++ b/3638/CH10/EX10.4/Ex10_4.jpg diff --git a/3638/CH10/EX10.4/Ex10_4.sce b/3638/CH10/EX10.4/Ex10_4.sce new file mode 100644 index 000000000..bd6411c52 --- /dev/null +++ b/3638/CH10/EX10.4/Ex10_4.sce @@ -0,0 +1,22 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 10.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda0=1550e-9;//operating wavelength of single mode fiber in m
+n1=1.476754;//refractive index of core
+n2=1.446918;//refractive imdex of cladding
+a=1.5e-6;//radius of core in m
+delta=(n1-n2)/n2;//fractional change in refractive index
+mprintf("\n Delta=%f",delta);//The answers vary due to round off error
+n=2*%pi*a*sqrt((n1^2)-(n2^2))//numerator of the corresponding V number
+//corresponding V number expression where lambda0 is in nm
+mprintf("\n V=%.1f/lambda0",n*1e9);//multiplying numerator by 10^9 to convert lambda0 in nm
+//For cutoff wavelength:
+V=2.4048;
+//Since V=n/lambda0
+lambda0=n/V;//cutoff wavelength of single mode fiber in m
+mprintf("\n The cutoff wavelength is %.1f nm",lambda0/1e-9);//Division by 10^(-9) to convert into nm
+//The answers vary due to round off error
diff --git a/3638/CH11/EX11.1/Ex11_1.jpg b/3638/CH11/EX11.1/Ex11_1.jpg Binary files differnew file mode 100644 index 000000000..7e884598e --- /dev/null +++ b/3638/CH11/EX11.1/Ex11_1.jpg diff --git a/3638/CH11/EX11.1/Ex11_1.sce b/3638/CH11/EX11.1/Ex11_1.sce new file mode 100644 index 000000000..a891c6732 --- /dev/null +++ b/3638/CH11/EX11.1/Ex11_1.sce @@ -0,0 +1,21 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 11.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+//E1 & E2 are the ground level and first excited level of energy respectively
+h=6.626e-34;//Planck's constant in SI Units
+c=3e8;//speed of electrons in m/s
+lambda=694e-9;//wavelength corresponding to the energy gap between E1 & E2
+//Let E2-E1=DeltaE
+DeltaE=h*c/lambda;
+mprintf("\n E2-E1=%e",DeltaE);//Energy gap between E1 & E2 in J
+//The answers vary due to round off error
+kB=1.38e-23;//Boltzmann constant in SI Units
+T=300;//Temperature in K
+mprintf("\n kB*T=%e",kB*T);
+//Let N2/N1 be N
+N=exp(-DeltaE/(kB*T));//Ratio of population density at E2 and E1 energy levels
+mprintf("\n N2/N1=%e",N);//The answers vary due to round off error
diff --git a/3638/CH11/EX11.2/Ex11_2.jpg b/3638/CH11/EX11.2/Ex11_2.jpg Binary files differnew file mode 100644 index 000000000..92ff3bcae --- /dev/null +++ b/3638/CH11/EX11.2/Ex11_2.jpg diff --git a/3638/CH11/EX11.2/Ex11_2.sce b/3638/CH11/EX11.2/Ex11_2.sce new file mode 100644 index 000000000..861d3897e --- /dev/null +++ b/3638/CH11/EX11.2/Ex11_2.sce @@ -0,0 +1,21 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 11.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+//For Cr+3 ions in ruby
+N1=1.6e19;//Population density of E1 energy level in cm^(-3)
+N2=0;//Population density of E2 energy level in cm^(-3)
+n=1.76;//refractive index of medium
+Tsp=3e-3;//Spontaneous emission lifetime of atom in sec
+//Let g(v0) be g
+g=6.9e-12;//normalized lineshape function in s
+lambda0=694.3e-7;//wavelength at which absorption takes place in cm
+c=3e10;//speed of electrons in cm/s
+v=c/lambda0;
+//Let Y(v0) be Y
+Y=((c/n)^2)*g*(N2-N1)/(8*%pi*Tsp*(v^2));//Corresponding gain coefficient of medium
+mprintf("\n Absorption coefficient = %f",Y);//The answers vary due to round off error
+//negative sign implies absorption
diff --git a/3638/CH11/EX11.3/Ex11_3.jpg b/3638/CH11/EX11.3/Ex11_3.jpg Binary files differnew file mode 100644 index 000000000..e55326668 --- /dev/null +++ b/3638/CH11/EX11.3/Ex11_3.jpg diff --git a/3638/CH11/EX11.3/Ex11_3.sce b/3638/CH11/EX11.3/Ex11_3.sce new file mode 100644 index 000000000..26a94b810 --- /dev/null +++ b/3638/CH11/EX11.3/Ex11_3.sce @@ -0,0 +1,13 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 11.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+R1=0.99;//reflection coefficient of mirror 1
+R2=0.9;//reflection coefficient of mirror 2
+l=10;//Distance between the two mirrors in cm
+alpha=0;//average loss coefficient per unit length of resonator in cm^(-1)
+Vth=alpha-log(R1*R2)/(2*l);//Corresponding threshold gain coefficient in cm^(-1)
+mprintf("\n The threshold gain coefficient = %e cm^-1",Vth);//The answers vary due to round off error
diff --git a/3638/CH11/EX11.4/Ex11_4.jpg b/3638/CH11/EX11.4/Ex11_4.jpg Binary files differnew file mode 100644 index 000000000..799cb1ef9 --- /dev/null +++ b/3638/CH11/EX11.4/Ex11_4.jpg diff --git a/3638/CH11/EX11.4/Ex11_4.sce b/3638/CH11/EX11.4/Ex11_4.sce new file mode 100644 index 000000000..d5aeb33fb --- /dev/null +++ b/3638/CH11/EX11.4/Ex11_4.sce @@ -0,0 +1,13 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 11.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+R1=0.32;//reflection coefficient of mirror 1
+R2=0.32;//reflection coefficient of mirror 2
+l=300e-4;//Distance between the two mirrors in cm
+alpha=10;//average loss coefficient per unit length of resonator in cm^(-1)
+Vth=alpha-log(R1*R2)/(2*l);//Corresponding threshold gain coefficient in cm^(-1)
+mprintf("\n The threshold gain coefficient = %e cm^-1",Vth);//The answers vary due to round off error
diff --git a/3638/CH11/EX11.5/Ex11_5.jpg b/3638/CH11/EX11.5/Ex11_5.jpg Binary files differnew file mode 100644 index 000000000..7d17e207f --- /dev/null +++ b/3638/CH11/EX11.5/Ex11_5.jpg diff --git a/3638/CH11/EX11.5/Ex11_5.sce b/3638/CH11/EX11.5/Ex11_5.sce new file mode 100644 index 000000000..20984b125 --- /dev/null +++ b/3638/CH11/EX11.5/Ex11_5.sce @@ -0,0 +1,13 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 11.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+R1=0.3;//reflection coefficient of mirror 1
+R2=0.3;//reflection coefficient of mirror 2
+l=500e-4;//Distance between the two mirrors in cm
+alpha=5e1;//average loss coefficient per unit length of resonator in cm^(-1)
+Vth=alpha-log(R1*R2)/(2*l);//Corresponding threshold gain coefficient in cm^(-1)
+mprintf("\n The threshold gain coefficient = %e cm^-1",Vth);//The answers vary due to round off error
diff --git a/3638/CH11/EX11.6/Ex11_6.jpg b/3638/CH11/EX11.6/Ex11_6.jpg Binary files differnew file mode 100644 index 000000000..98bcef740 --- /dev/null +++ b/3638/CH11/EX11.6/Ex11_6.jpg diff --git a/3638/CH11/EX11.6/Ex11_6.sce b/3638/CH11/EX11.6/Ex11_6.sce new file mode 100644 index 000000000..955777a45 --- /dev/null +++ b/3638/CH11/EX11.6/Ex11_6.sce @@ -0,0 +1,26 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 11.6
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given Case(i)
+lambdag=1.30e-6;//emission wavelength in m
+//Bandgap energy in eV is given by :
+Eg=1.24/(lambdag/1e-6);//Division by 10^(-6) to convert lambdag into um
+mprintf("\nCase 1: for lambda0 =1.30 um");
+mprintf("\n Eg=%f eV",Eg);//The answers vary due to round off error
+p=[0.12 -0.72 1.35-Eg];//Relation between Eg & y is given as 'Eg(y)=1.35-0.72y+0.12y^2 in eV'
+y=roots(p);
+mprintf("\n y=%f",y(2,1));//Roots are arranged in descending order & y cannot be greater than 1
+//The answers vary due to round off error
+//given Case(ii)
+lambdag=1.55e-6;//emission wavelength in m
+//Bandgap energy in eV is given by :
+Eg=1.24/(lambdag/1e-6);//Division by 10^(-6) to convert lambdag into um
+mprintf("\nCase 2: for lambda0 =1.55 um");
+mprintf("\n Eg=%f eV",Eg);//The answers vary due to round off error
+p=[0.12 -0.72 1.35-Eg];//Relation between Eg & y is given as 'Eg(y)=1.35-0.72y+0.12y^2 in eV'
+y=roots(p);
+mprintf("\n y=%f",y(2,1));//Roots are arranged in descending order & y cannot be greater than 1
+//The answers vary due to round off error
diff --git a/3638/CH12/EX12.1/Ex12_1.jpg b/3638/CH12/EX12.1/Ex12_1.jpg Binary files differnew file mode 100644 index 000000000..de6e1609e --- /dev/null +++ b/3638/CH12/EX12.1/Ex12_1.jpg diff --git a/3638/CH12/EX12.1/Ex12_1.sce b/3638/CH12/EX12.1/Ex12_1.sce new file mode 100644 index 000000000..54683a1b4 --- /dev/null +++ b/3638/CH12/EX12.1/Ex12_1.sce @@ -0,0 +1,22 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 12.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda=0.8e-6;//wavelength of light in m
+n=3.5;//refractive index of Si
+e=1.6e-19;//electronic charge in C
+h=6.626e-34;//Planck's constant in SI Units
+c=3e8;//speed of electrons in m/s
+alpha=1e5;//average loss coefficient per unit length of resonator in m^(-1)
+w=20e-6;//width of depletion layer in m
+R=((n-1)/(n+1))^2;//Reflection coefficient of uncoated Si
+mprintf("\n R=%.2f",R);
+//Assuming all e-h pairs contribute to photo current i.e. zeta=1
+eta=(1-R)*(1-exp(-alpha*w));//Corresponding quantum efficiency
+mprintf("\n eta=%.1f",eta);
+v=c/lambda;//frequency corresponding to given wavelength in Hz
+rho=eta*e/(h*v);//corresponding responsivity in A/W
+mprintf("\n rho=%.2f A/W",rho);//The answers vary due to round off error
diff --git a/3638/CH12/EX12.2/Ex12_2.jpg b/3638/CH12/EX12.2/Ex12_2.jpg Binary files differnew file mode 100644 index 000000000..354c81328 --- /dev/null +++ b/3638/CH12/EX12.2/Ex12_2.jpg diff --git a/3638/CH12/EX12.2/Ex12_2.sce b/3638/CH12/EX12.2/Ex12_2.sce new file mode 100644 index 000000000..086d1d638 --- /dev/null +++ b/3638/CH12/EX12.2/Ex12_2.sce @@ -0,0 +1,22 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 12.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+rho=0.5;//responsitivity of Si PIN detector in A/W
+Vb=20;//reverse bias voltage across the detector in V
+//Case (i):
+Rl=100;//load resistor in ohms
+Pmax=Vb/(rho*Rl);//maximum value of optical power P falling on the photodetector in W
+mprintf("\n For Rl=100 Ohm:");
+mprintf("\n Pmax=%.1f mW",Pmax/1e-3)//Division by 10^(-3) to convert into mW
+mprintf("\n Vr/P = %.1f mV/mW",rho*Rl);//Bias voltage per unit power in mV/mW
+//Case (ii):
+Rl=10e3;//load resistor in ohms
+Pmax=Vb/(rho*Rl);//maximum value of optical power P falling on the photodetector in W
+mprintf("\n For Rl=10 kOhm:");
+mprintf("\n Pmax=%.1f mW",Pmax/1e-3)//Division by 10^(-3) to convert into mW
+//Bias voltage per unit power in V/mW :
+mprintf("\n Vr/P = %.1f V/mW",rho*Rl/1e3);//Division by 10^3 to convert into V/mW
diff --git a/3638/CH12/EX12.3/Ex12_3.jpg b/3638/CH12/EX12.3/Ex12_3.jpg Binary files differnew file mode 100644 index 000000000..9ebf4a4c8 --- /dev/null +++ b/3638/CH12/EX12.3/Ex12_3.jpg diff --git a/3638/CH12/EX12.3/Ex12_3.sce b/3638/CH12/EX12.3/Ex12_3.sce new file mode 100644 index 000000000..0c27c9d4a --- /dev/null +++ b/3638/CH12/EX12.3/Ex12_3.sce @@ -0,0 +1,14 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 12.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+epsilon=10.5e-13;//permittivity of Si in F/cm
+d=500e-4;//diameter of Si detector in cm
+w=20e-4;//width of depletion layer in cm
+A=%pi*((d/2)^2);//Area of detector in cm^2
+Cd=epsilon*A/d;//Junction capacitance in F
+mprintf("\n The junction capacitance Cd=%f pF",Cd/1e-12);//division by 10^(-12) to convert into pF
+//The answer provided in the textbook is wrong
diff --git a/3638/CH13/EX13.1/Ex13_1.jpg b/3638/CH13/EX13.1/Ex13_1.jpg Binary files differnew file mode 100644 index 000000000..17618ac70 --- /dev/null +++ b/3638/CH13/EX13.1/Ex13_1.jpg diff --git a/3638/CH13/EX13.1/Ex13_1.sce b/3638/CH13/EX13.1/Ex13_1.sce new file mode 100644 index 000000000..817b50978 --- /dev/null +++ b/3638/CH13/EX13.1/Ex13_1.sce @@ -0,0 +1,26 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+//Vc(t)=V0*(1-exp(-t/(R*C))) is the voltage across capacitance in an RC circuit
+//Hence, the time t=R*C*(-log(1-Vc/V0))
+
+//The Rise time is the time taken by a system to rise from 10% to 90% of maximum value
+//So, it is given as Tr=T90-T10 where T90 is time when Vc is 90% of maximum value and T10 is time when Vc is 10% of maximum value
+//i.e. Tr=R*C*(-log(1-0.9))-R*C*(-log(1-0.1))
+//Let Tr=R*C*k; where k=log(1-0.1))-log(1-0.9)
+k=log(1-0.1)-log(1-0.9);
+mprintf("\n The Rise Time Tr=%.2fRC",k);
+
+//Now, The 3dB bandwidth is given as Deltaf=1/(2*%pi*R*C);
+//Let Deltaf=m/(R*C); where m=1/(2*%pi)
+m=1/(2*%pi);
+mprintf("\n The 3dB bandwidth Deltaf=%.2f/RC",m);
+
+//By multiplying expressions of Tr and Deltaf, we eliminate RC from the expressions
+//Rearranging te terms, we get Tr in terms of Deltaf
+mprintf("\n Rise time in terms of Bandwidth is given as:");
+mprintf("\n Tr=%.2f/Deltaf",k*m);
diff --git a/3638/CH13/EX13.10/Ex13_10.jpg b/3638/CH13/EX13.10/Ex13_10.jpg Binary files differnew file mode 100644 index 000000000..84ed6f463 --- /dev/null +++ b/3638/CH13/EX13.10/Ex13_10.jpg diff --git a/3638/CH13/EX13.10/Ex13_10.sce b/3638/CH13/EX13.10/Ex13_10.sce new file mode 100644 index 000000000..31a2602cf --- /dev/null +++ b/3638/CH13/EX13.10/Ex13_10.sce @@ -0,0 +1,18 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.10
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+P=100e-9;//Optical power in W
+R=0.6;//Responsivity in A/W
+Rl=1000;//Value of load resistor in Ohms
+e=1.6e-19//Electronic charge in C
+kB=1.38e-23;//Boltzmann constant in SI Units
+T=300;//Missing data- Temperature in K
+x=0.7;//Excess noise
+Id=0;//Since the dark current is neglected in the example
+
+Mop=(4*kB*T/(x*e*Rl*(R*P+Id)))^(1/(x+2));//Optimum value of internal gain corresponding to input optical power P
+mprintf("Mop= %.1f",Mop);
diff --git a/3638/CH13/EX13.11/Ex13_11.jpg b/3638/CH13/EX13.11/Ex13_11.jpg Binary files differnew file mode 100644 index 000000000..a3f0d59d6 --- /dev/null +++ b/3638/CH13/EX13.11/Ex13_11.jpg diff --git a/3638/CH13/EX13.11/Ex13_11.sce b/3638/CH13/EX13.11/Ex13_11.sce new file mode 100644 index 000000000..a463dc181 --- /dev/null +++ b/3638/CH13/EX13.11/Ex13_11.sce @@ -0,0 +1,23 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.11
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+R=0.5;//Responsivity in A/W
+T=300;//Missing data- Temperature in K
+C=1e-12;//Photodiode capacitance in F
+BER=1e-9;//Bit error rate
+SNR=144;//Signal-to-noise ratio corresponding to BER of (10)^(-9)
+kB=1.38e-23;//Boltzmann constant in SI Units
+
+//Case(i):
+B=100e6;//Bit rate in b/s
+Pmin=B/R*sqrt(2*%pi*kB*T*C*SNR);
+mprintf("\n For 100 Mb/s, Pmin=%.2f uW",Pmin/1e-6);//Dividing by 10^(-6) to convert into uW
+
+//Case(ii):
+B=1e9;//Bit rate in b/s
+Pmin=B/R*sqrt(2*%pi*kB*T*C*SNR);
+mprintf("\n For 1 Gb/s, Pmin=%.2f uW",Pmin/1e-6);//Dividing by 10^(-6) to convert into uW
diff --git a/3638/CH13/EX13.12/Ex13_12.jpg b/3638/CH13/EX13.12/Ex13_12.jpg Binary files differnew file mode 100644 index 000000000..f4010d7dd --- /dev/null +++ b/3638/CH13/EX13.12/Ex13_12.jpg diff --git a/3638/CH13/EX13.12/Ex13_12.sce b/3638/CH13/EX13.12/Ex13_12.sce new file mode 100644 index 000000000..1f77ffaa4 --- /dev/null +++ b/3638/CH13/EX13.12/Ex13_12.sce @@ -0,0 +1,18 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.12
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+R=0.5;//Responsivity in A/W
+T=300;//Missing data- Temperature in K
+C=1e-12;//Photodiode capacitance in F
+BER=1e-6;//Bit error rate
+SNR=90;//Signal-to-noise ratio corresponding to BER of (10)^(-6)
+kB=1.38e-23;//Boltzmann constant in SI Units
+
+B=100e6;//Bit rate in b/s
+Pmin=B/R*sqrt(2*%pi*kB*T*C*SNR);
+mprintf("\n For 100 Mb/s, Pmin=%.2f uW",Pmin/1e-6);//Dividing by 10^(-6) to convert into uW
+//The answers vary due to round off error
diff --git a/3638/CH13/EX13.13/Ex13_13.jpg b/3638/CH13/EX13.13/Ex13_13.jpg Binary files differnew file mode 100644 index 000000000..38f8ae7f6 --- /dev/null +++ b/3638/CH13/EX13.13/Ex13_13.jpg diff --git a/3638/CH13/EX13.13/Ex13_13.sce b/3638/CH13/EX13.13/Ex13_13.sce new file mode 100644 index 000000000..4660ddd4a --- /dev/null +++ b/3638/CH13/EX13.13/Ex13_13.sce @@ -0,0 +1,19 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.13
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+L=40;//Total fiber length in km
+alphat=0.5;//Fiber transmission loss in dB/km
+Pmin=-39;//Receiver sensitivity in dBm is the minimum power received by receiver
+Ns=4;//Number of splices contributing to loss
+Ls=0.5;//Loss of each splice in dB
+Nc=2;//Number of connectors contributing to loss
+Lc=1;//Loss of each connector in dB;
+Pm=6;//Power margin in dB
+//Let the source power be P
+P=Pmin+Pm+Ns*Ls+Nc*Lc+L*alphat;//Minimum value of source power in dBm
+mprintf("\n The source power must exceed %.2f dBm= %.2f mW",P,(10^(P/10)));//Taking 10^(P/10) to convert into mW
+
diff --git a/3638/CH13/EX13.14/Ex13_14.jpg b/3638/CH13/EX13.14/Ex13_14.jpg Binary files differnew file mode 100644 index 000000000..7702fe8d6 --- /dev/null +++ b/3638/CH13/EX13.14/Ex13_14.jpg diff --git a/3638/CH13/EX13.14/Ex13_14.sce b/3638/CH13/EX13.14/Ex13_14.sce new file mode 100644 index 000000000..d2b3ffa2e --- /dev/null +++ b/3638/CH13/EX13.14/Ex13_14.sce @@ -0,0 +1,25 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.14
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+Pi=50e-6;//Source power in W
+R=0.65;//Responsivity in A/W
+T=300;//Missing data- Temperature in K
+C=5e-12;//Photodiode capacitance in F
+BER=1e-9;//Bit error rate
+SNR=144;//Signal-to-noise ratio corresponding to BER of (10)^(-6)
+kB=1.38e-23;//Boltzmann constant in SI Units
+
+B=20e6;//Bit rate in b/s
+Pmin=(B/R)*sqrt(2*%pi*kB*T*C*SNR);//Receiver sensitivity in W
+//Let the value of Pmin in dBm be denoted by 'PmindBm'
+PmindBm=10*log10(Pmin/1e-3);//Taking 10*log(Pmin) to convert into dBm where Pmin must be in mW
+mprintf("\n For 20 Mb/s, Pmin=%.2e W = %.1f dBm",Pmin,PmindBm);//The answers vary due to round off error
+//Let the value of Pi in dBm be denoted by 'PidBm'
+PidBm=10*log10(Pi/1e-3);//Taking 10*log(Pi) to convert into dBm where Pi must be in mW
+Pl=abs(PmindBm-PidBm);//The permissible loss between transmitter and receiver in dB
+mprintf("\n The permissible loss between transmitter and receiver = %.1f dB",Pl);
+//The answers vary due to round off error
diff --git a/3638/CH13/EX13.15/Ex13_15.jpg b/3638/CH13/EX13.15/Ex13_15.jpg Binary files differnew file mode 100644 index 000000000..9928e8916 --- /dev/null +++ b/3638/CH13/EX13.15/Ex13_15.jpg diff --git a/3638/CH13/EX13.15/Ex13_15.sce b/3638/CH13/EX13.15/Ex13_15.sce new file mode 100644 index 000000000..c1557ddcd --- /dev/null +++ b/3638/CH13/EX13.15/Ex13_15.sce @@ -0,0 +1,14 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.15
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+B=400e6;//Bit rate in b/s
+BER=1e-9;//Bit error rate
+L=100;//Total fiber length in km
+
+//The Total system rise time is given as:
+Ts=0.7/B;//The expression for total rise time under NRZ transmission in s
+mprintf("\n The total system rise time Ts=%.2f ns",Ts/1e-9);//Dividing by 10^(-9) to convert into ns
diff --git a/3638/CH13/EX13.16/Ex13_16.jpg b/3638/CH13/EX13.16/Ex13_16.jpg Binary files differnew file mode 100644 index 000000000..ad519723e --- /dev/null +++ b/3638/CH13/EX13.16/Ex13_16.jpg diff --git a/3638/CH13/EX13.16/Ex13_16.sce b/3638/CH13/EX13.16/Ex13_16.sce new file mode 100644 index 000000000..ee202e679 --- /dev/null +++ b/3638/CH13/EX13.16/Ex13_16.sce @@ -0,0 +1,18 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.16
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda=1300e-9;//Operating wavekength of the system in m
+alpha=0.4;//Fiber loss in dB/km
+Pi=1e-3;//Input power in W
+Np=1000;//Minimum number of photons per bit of information
+B=2.5e9;//Bit rate in b/s
+h=6.63e-34;//Planck's constant in SI Units
+c=3e8;//Speed of photons in m/s
+v=c/lambda;//Frequency corresponding to the operating frequency
+
+Lmax=10/alpha*log10(2*Pi/(Np*B*h*v));//Maximum permissible loss-limited length in km
+mprintf("\n Maximum permissible loss-limited length Lmax=%.2f km",Lmax);//The answers vary due to round off error
diff --git a/3638/CH13/EX13.17/Ex13_17.jpg b/3638/CH13/EX13.17/Ex13_17.jpg Binary files differnew file mode 100644 index 000000000..46f948a7d --- /dev/null +++ b/3638/CH13/EX13.17/Ex13_17.jpg diff --git a/3638/CH13/EX13.17/Ex13_17.sce b/3638/CH13/EX13.17/Ex13_17.sce new file mode 100644 index 000000000..040f657a3 --- /dev/null +++ b/3638/CH13/EX13.17/Ex13_17.sce @@ -0,0 +1,18 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.17
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda=1550e-9;//Operating wavekength of the system in m
+alpha=0.2;//Fiber loss in dB/km
+Pi=1e-3;//Input power in W
+Np=1000;//Minimum number of photons per bit of information
+B=2.5e9;//Bit rate in b/s
+h=6.63e-34;//Planck's constant in SI Units
+c=3e8;//Speed of photons in m/s
+v=c/lambda;//Frequency corresponding to the operating frequency
+
+Lmax=10/alpha*log10(2*Pi/(Np*B*h*v));//Maximum permissible loss-limited length in km
+mprintf("\n Maximum permissible loss-limited length Lmax=%.2f km",Lmax);//The answers vary due to round off error
diff --git a/3638/CH13/EX13.18/Ex13_18.jpg b/3638/CH13/EX13.18/Ex13_18.jpg Binary files differnew file mode 100644 index 000000000..8321a9800 --- /dev/null +++ b/3638/CH13/EX13.18/Ex13_18.jpg diff --git a/3638/CH13/EX13.18/Ex13_18.sce b/3638/CH13/EX13.18/Ex13_18.sce new file mode 100644 index 000000000..6058d92a5 --- /dev/null +++ b/3638/CH13/EX13.18/Ex13_18.sce @@ -0,0 +1,18 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.18
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda=850e-9;//Operating wavekength of the system in m
+alpha=2.5;//Fiber loss in dB/km
+Pi=1e-3;//Input power in W
+Np=1000;//Minimum number of photons per bit of information
+B=100e6;//Bit rate in b/s
+h=6.63e-34;//Planck's constant in SI Units
+c=3e8;//Speed of photons in m/s
+v=c/lambda;//Frequency corresponding to the operating frequency
+
+Lmax=10/alpha*log10(2*Pi/(Np*B*h*v));//Maximum permissible loss-limited length in km
+mprintf("\n Maximum permissible loss-limited length Lmax=%.2f km",Lmax);//The answers vary due to round off error
diff --git a/3638/CH13/EX13.2/Ex13_2.jpg b/3638/CH13/EX13.2/Ex13_2.jpg Binary files differnew file mode 100644 index 000000000..715a31181 --- /dev/null +++ b/3638/CH13/EX13.2/Ex13_2.jpg diff --git a/3638/CH13/EX13.2/Ex13_2.sce b/3638/CH13/EX13.2/Ex13_2.sce new file mode 100644 index 000000000..39df7da91 --- /dev/null +++ b/3638/CH13/EX13.2/Ex13_2.sce @@ -0,0 +1,11 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+B=2.5e9;//pulse rate of signal in bits/sec
+
+mprintf("\n In the RZ format, we would require a bandwidth = %.2f GHz",B/1e9);//In RZ format, Deltaf=B and Division by 10^9 to convert into GHz
+mprintf("\n In the NRZ format, we would require a bandwidth = %.2f GHz",(B/2)/1e9);//In RZ format, Deltaf=B/2 and Division by 10^9 to convert into GHz
diff --git a/3638/CH13/EX13.3/Ex13_3.jpg b/3638/CH13/EX13.3/Ex13_3.jpg Binary files differnew file mode 100644 index 000000000..2511369d7 --- /dev/null +++ b/3638/CH13/EX13.3/Ex13_3.jpg diff --git a/3638/CH13/EX13.3/Ex13_3.sce b/3638/CH13/EX13.3/Ex13_3.sce new file mode 100644 index 000000000..80c9fc3ec --- /dev/null +++ b/3638/CH13/EX13.3/Ex13_3.sce @@ -0,0 +1,19 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+Id=1e-9;//Dark current of a silicon PIN photodiode in A
+P=1e-6;//Optical power in W
+R=0.65;//Responsivity in A/W
+e=1.6e-19//Electronic charge in C
+Deltaf=100e6;//Detector bandwidth in Hz
+
+I=R*P;
+mprintf("\n I=%.2f uA",I/1e-6)//Division by 10^(-6) to convert into uA
+//Let the root mean square shot noise current be Ins
+Ins=sqrt(2*e*(I+Id)*Deltaf);//As the root mean square shot noise current is the square root of mean square shot noise current in A
+mprintf("\n The rms shot noise current = %.2f nA",Ins/1e-9);//Division by 10^(-9) to convert into nA
+//The answers vary due to round off error
diff --git a/3638/CH13/EX13.4/Ex13_4.jpg b/3638/CH13/EX13.4/Ex13_4.jpg Binary files differnew file mode 100644 index 000000000..d95efac71 --- /dev/null +++ b/3638/CH13/EX13.4/Ex13_4.jpg diff --git a/3638/CH13/EX13.4/Ex13_4.sce b/3638/CH13/EX13.4/Ex13_4.sce new file mode 100644 index 000000000..a003023f1 --- /dev/null +++ b/3638/CH13/EX13.4/Ex13_4.sce @@ -0,0 +1,16 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+Rl=500;//Value of load resistor Rl in Ohms
+kB=1.38e-23;//Boltzmann constant in SI Units
+Deltaf=100e6;//Bandwidth of detection in Hz
+T=300;//Temperature in K
+
+//Let the root mean square shot noise current be Ins
+Ins=sqrt(4*kB*T*Deltaf/Rl);//As the root mean square shot noise current is the square root of mean square shot noise current in A
+mprintf("\n The rms shot noise current = %.2e A",Ins);
+mprintf("\n The mean square shot noise current = %.2e A^2",Ins^2)//The answers vary due to round off error
diff --git a/3638/CH13/EX13.5/Ex13_5.jpg b/3638/CH13/EX13.5/Ex13_5.jpg Binary files differnew file mode 100644 index 000000000..4e21e1544 --- /dev/null +++ b/3638/CH13/EX13.5/Ex13_5.jpg diff --git a/3638/CH13/EX13.5/Ex13_5.sce b/3638/CH13/EX13.5/Ex13_5.sce new file mode 100644 index 000000000..1e75b2ef2 --- /dev/null +++ b/3638/CH13/EX13.5/Ex13_5.sce @@ -0,0 +1,20 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+R=0.65;//Responsivity of a Si detector in A/W
+Id=1e-9;//Dark current in A
+e=1.6e-19;//Electronic charge in C
+kB=1.38e-23;//Boltzmann constant in SI Units
+Rl=1000;//Assumed value of load resistor Rl in Ohms
+T=300;//Assumed value of temperature in K
+
+NEP=1/R*sqrt(2*e*Id+4*kB*T/Rl);//Noise equivalent power in W/(Hz)^(1/2)
+mprintf("\n NEP = %.2e W/(Hz)^(1/2)",NEP);//The answers vary due to round off error
+//If Id is the major noise term :
+NEP=1/R*sqrt(2*e*Id);//Noise equivalent power in W/(Hz)^(1/2)
+mprintf("\n If Id is the major noise term:");
+mprintf("\n NEP = %.2e W/(Hz)^(1/2)",NEP);
diff --git a/3638/CH13/EX13.6/Ex13_6.jpg b/3638/CH13/EX13.6/Ex13_6.jpg Binary files differnew file mode 100644 index 000000000..58b1d18bc --- /dev/null +++ b/3638/CH13/EX13.6/Ex13_6.jpg diff --git a/3638/CH13/EX13.6/Ex13_6.sce b/3638/CH13/EX13.6/Ex13_6.sce new file mode 100644 index 000000000..27102af8b --- /dev/null +++ b/3638/CH13/EX13.6/Ex13_6.sce @@ -0,0 +1,36 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.6
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+Id=1e-9;//Dark current of a silicon PIN photodiode in A
+P=500e-9;//Optical power in W
+R=0.65;//Responsivity in A/W
+Rl=1000;//Value of load resistor in Ohms
+e=1.6e-19//Electronic charge in C
+kB=1.38e-23;//Boltzmann constant in SI Units
+Deltaf=100e6;//Detector bandwidth in Hz
+T=300;//Missing data- Temperature in K
+
+I=R*P;//Signal current in A
+mprintf("\n I=%.3f uA",I/1e-6)//Division by 10^(-6) to convert into uA
+//Let the root mean square shot noise current be Ins
+//The rms shot noise current due to signal is:
+Ins=sqrt(2*e*I*Deltaf);//As the root mean square shot noise current is the square root of mean square shot noise current in A
+mprintf("\n The rms shot noise current due to signal = %.2f nA",Ins/1e-9);//Division by 10^(-9) to convert into nA
+//The answers vary due to round off error
+
+//The rms shot noise current due to dark current is:
+Ins=sqrt(2*e*Id*Deltaf);//As the root mean square shot noise current is the square root of mean square shot noise current in A
+mprintf("\n The rms shot noise current due to dark current = %.2f nA",Ins/1e-9);//Division by 10^(-9) to convert into nA
+
+//The rms shot thermal noise current is:
+Ins=sqrt(4*kB*T*Deltaf/Rl);//As the root mean square shot noise current is the square root of mean square shot noise current in A
+mprintf("\n The rms shot thermal noise current = %.2f nA",Ins/1e-9);//Division by 10^(-9) to convert into nA
+//The answers vary due to round off error
+SNR=((R*P)^2)*Rl/(4*kB*T*Deltaf);//Corresponding Signal-to-noise ratio
+mprintf("\n SNR = %f",SNR);//The answers vary due to round off error
+mprintf("\n SNR in dB = %f dB",10*log10(SNR));//For conversion to dB
+//The answers vary due to round off error
diff --git a/3638/CH13/EX13.7/Ex13_7.jpg b/3638/CH13/EX13.7/Ex13_7.jpg Binary files differnew file mode 100644 index 000000000..8357283f1 --- /dev/null +++ b/3638/CH13/EX13.7/Ex13_7.jpg diff --git a/3638/CH13/EX13.7/Ex13_7.sce b/3638/CH13/EX13.7/Ex13_7.sce new file mode 100644 index 000000000..cf6258c2a --- /dev/null +++ b/3638/CH13/EX13.7/Ex13_7.sce @@ -0,0 +1,39 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.7
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+Id=1e-9;//Dark current of a silicon PIN photodiode in A
+P=500e-9;//Optical power in W
+R=0.65;//Responsivity in A/W
+Rl=1000;//Value of load resistor in Ohms
+e=1.6e-19//Electronic charge in C
+kB=1.38e-23;//Boltzmann constant in SI Units
+Deltaf=100e6;//Detector bandwidth in Hz
+T=300;//Missing data- Temperature in K
+M=50;//Internal gain corresponding to input optical power P
+x=0;//No excess noise
+
+I=M*R*P;//Signal current in A
+mprintf("\n I=%.2f uA",I/1e-6)//Division by 10^(-6) to convert into uA
+//Let the root mean square shot noise current be Ins
+//The rms shot noise current due to signal is:
+Ins=sqrt(2*e*M*I*Deltaf);//As the root mean square shot noise current is the square root of mean square shot noise current in A
+mprintf("\n The rms shot noise current due to signal = %.2f nA",Ins/1e-9);//Division by 10^(-9) to convert into nA
+//The answers vary due to round off error
+
+//The rms shot noise current due to dark current is:
+Ins=sqrt(2*e*(M^2)*Id*Deltaf);//As the root mean square shot noise current is the square root of mean square shot noise current in A
+mprintf("\n The rms shot noise current due to dark current = %.2f nA",Ins/1e-9);//Division by 10^(-9) to convert into nA
+//The answers vary due to round off error
+
+//The rms shot thermal noise current is:
+Ins=sqrt(4*kB*T*Deltaf/Rl);//As the root mean square shot noise current is the square root of mean square shot noise current in A
+mprintf("\n The rms shot thermal noise current = %.2f nA",Ins/1e-9);//Division by 10^(-9) to convert into nA
+//The answers vary due to round off error
+SNR=((M*R*P)^2)/(2*e*(M^(2+x))*(R*P+Id)*Deltaf+4*kB*T*Deltaf/Rl);//Corresponding Signal-to-noise ratio since x=0
+mprintf("\n SNR = %f",SNR);//The answers vary due to round off error
+mprintf("\n SNR in dB = %.2f dB",10*log10(SNR));//For conversion to dB
+//The answers vary due to round off error
diff --git a/3638/CH13/EX13.8/Ex13_8.jpg b/3638/CH13/EX13.8/Ex13_8.jpg Binary files differnew file mode 100644 index 000000000..11d7dfca0 --- /dev/null +++ b/3638/CH13/EX13.8/Ex13_8.jpg diff --git a/3638/CH13/EX13.8/Ex13_8.sce b/3638/CH13/EX13.8/Ex13_8.sce new file mode 100644 index 000000000..3eec3dea1 --- /dev/null +++ b/3638/CH13/EX13.8/Ex13_8.sce @@ -0,0 +1,31 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.8
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+P=100e-9;//Optical power in W
+R=0.65;//Responsivity in A/W
+Rl=1000;//Value of load resistor in Ohms
+e=1.6e-19//Electronic charge in C
+kB=1.38e-23;//Boltzmann constant in SI Units
+Deltaf=100e6;//Detector bandwidth in Hz
+T=300;//Missing data- Temperature in K
+x=0.3;//Excess noise
+Id=0;//Since the dark current is neglected in the example
+
+Mop=(4*kB*T/(x*e*Rl*(R*P+Id)))^(1/(x+2));//Optimum value of internal gain corresponding to input optical power P
+mprintf("Mop= %.1f",Mop);//The answers vary due to round off error
+SNR=((Mop*R*P)^2)/(2*e*(Mop^(2+x))*(R*P+Id)*Deltaf+4*kB*T*Deltaf/Rl);//Corresponding Signal-to-noise ratio since x=0
+mprintf("\n SNR = %f",SNR);//The answers vary due to round off error
+mprintf("\n SNR in dB = %.2f dB",10*log10(SNR));//For conversion to dB
+//The answers vary due to round off error
+
+//Case (ii):
+M=1;//Internal gain corresponding to input optical power P
+SNR=((M*R*P)^2)/(2*e*(M^(2+x))*(R*P+Id)*Deltaf+4*kB*T*Deltaf/Rl);//Corresponding Signal-to-noise ratio since x=0
+mprintf("\n For M=1:");
+mprintf("\n SNR = %f",SNR);//The answers vary due to round off error
+mprintf("\n SNR in dB = %.2f dB",10*log10(SNR));//For conversion to dB
+//The answers vary due to round off error
diff --git a/3638/CH13/EX13.9/Ex13_9.jpg b/3638/CH13/EX13.9/Ex13_9.jpg Binary files differnew file mode 100644 index 000000000..9cbf1e4bf --- /dev/null +++ b/3638/CH13/EX13.9/Ex13_9.jpg diff --git a/3638/CH13/EX13.9/Ex13_9.sce b/3638/CH13/EX13.9/Ex13_9.sce new file mode 100644 index 000000000..f76e16086 --- /dev/null +++ b/3638/CH13/EX13.9/Ex13_9.sce @@ -0,0 +1,18 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 13.9
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+P=500e-9;//Optical power in W
+R=0.45;//Responsivity in A/W
+Rl=1000;//Value of load resistor in Ohms
+e=1.6e-19//Electronic charge in C
+kB=1.38e-23;//Boltzmann constant in SI Units
+T=300;//Missing data- Temperature in K
+x=1;//Excess noise
+Id=0;//Since the dark current is neglected in the example
+
+Mop=(4*kB*T/(x*e*Rl*(R*P+Id)))^(1/(x+2));//Optimum value of internal gain corresponding to input optical power P
+mprintf("Mop= %.1f",Mop);
diff --git a/3638/CH14/EX14.1/Ex14_1.jpg b/3638/CH14/EX14.1/Ex14_1.jpg Binary files differnew file mode 100644 index 000000000..fc1c0c6d8 --- /dev/null +++ b/3638/CH14/EX14.1/Ex14_1.jpg diff --git a/3638/CH14/EX14.1/Ex14_1.sce b/3638/CH14/EX14.1/Ex14_1.sce new file mode 100644 index 000000000..0fe0c0382 --- /dev/null +++ b/3638/CH14/EX14.1/Ex14_1.sce @@ -0,0 +1,45 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 14.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda=980e-9;//Operating wavelength in m
+Sigmapa=3.1e-25;//Absorption cross section at pump in m^2
+tsp=12e-3;//spontaneous emission lifetime in sec
+h=6.626e-34;//Planck's constant in SI Units
+c=3e8;//speed of electrons in m/s
+v=c/lambda;//frequency corresponding to given wavelength in Hz
+Ip0=h*v/(Sigmapa*tsp);//Intensity at pump in W/(m^2)
+mprintf("\n Ip0=%e W/(m^2)",Ip0)//The answers vary due to round off error
+
+//Case (i)
+lambdas=1536e-9;//Wavelength of signal used
+Sigmasa=4.644e-25;//Absorption cross section at signal in m^2
+Sigmase=4.644e-25;//Emission cross section at signal in m^2
+etas=Sigmase/Sigmasa;//Ratio of emission to absorption cross sections
+mprintf("\n\n For a signal wavelength of 1536 nm:");
+Ipt=Ip0/etas;//Threshold pump intensity in W/(m^2)
+mprintf("\n Threshold pump intensity = %.2e W/(m^2)",Ipt);//The answers vary due to round off error
+vs=c/lambdas;//frequency corresponding to wavelength of signal used
+Is0=h*vs/((Sigmasa+Sigmase)*tsp);//Corresponding intensity at signal in W/(m^2)
+mprintf("\n Is0=%.2e W/(m^2)",Is0);//The answers vary due to round off error
+
+//Case (ii)
+lambdas=1550e-9;//Wavelength of signal used
+Sigmasa=2.545e-25;//Absorption cross section at signal in m^2
+Sigmase=3.410e-25;//Emission cross section at signal in m^2
+etas=Sigmase/Sigmasa;//Ratio of emission to absorption cross sections
+mprintf("\n\n For a signal wavelength of 1550 nm:");
+Ipt=Ip0/etas;//Threshold pump intensity in W/(m^2)
+mprintf("\n Threshold pump intensity = %.2e W/(m^2)",Ipt);
+
+//Case (iii)
+lambdas=15380e-9;//Wavelength of signal used
+Sigmasa=0.654e-25;//Absorption cross section at signal in m^2
+Sigmase=1.133e-25;//Emission cross section at signal in m^2
+etas=Sigmase/Sigmasa;//Ratio of emission to absorption cross sections
+mprintf("\n\n For a signal wavelength of 1580 nm:");
+Ipt=Ip0/etas;//Threshold pump intensity in W/(m^2)
+mprintf("\n Threshold pump intensity = %.2e W/(m^2)",Ipt);
diff --git a/3638/CH14/EX14.4/Ex14_4.jpg b/3638/CH14/EX14.4/Ex14_4.jpg Binary files differnew file mode 100644 index 000000000..87d5be332 --- /dev/null +++ b/3638/CH14/EX14.4/Ex14_4.jpg diff --git a/3638/CH14/EX14.4/Ex14_4.sce b/3638/CH14/EX14.4/Ex14_4.sce new file mode 100644 index 000000000..d880380cf --- /dev/null +++ b/3638/CH14/EX14.4/Ex14_4.sce @@ -0,0 +1,13 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 14.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+DeltaLambda0=30e-9;//Gain bandwidth in wavelength domain in m
+Lambda0=1550e-9;//central wavelength in wavelength domain in m
+c=3e8;//Speed of light in m/s
+v=c/Lambda0;
+Deltav=DeltaLambda0/Lambda0*v;
+mprintf("\n Gain Bandwidth in frequency domain = %.1f THz",Deltav/1e12);
diff --git a/3638/CH17/EX17.1/Ex17_1.jpg b/3638/CH17/EX17.1/Ex17_1.jpg Binary files differnew file mode 100644 index 000000000..75caf7041 --- /dev/null +++ b/3638/CH17/EX17.1/Ex17_1.jpg diff --git a/3638/CH17/EX17.1/Ex17_1.sce b/3638/CH17/EX17.1/Ex17_1.sce new file mode 100644 index 000000000..7fa24ba5d --- /dev/null +++ b/3638/CH17/EX17.1/Ex17_1.sce @@ -0,0 +1,45 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+n1=1.4532;//refractive index of core
+n2=1.45;//refractive index of cladding
+a=5e-6;//fiber core radius in m
+d=12e-6;//Distance between the fiber axes in m
+dbar=d/a;//Ratio of distance between fiber axes to the core radius
+delta=((n1)^2-(n2)^2)/((n1)^2);//Dimensionless quantity
+
+//Case (i):
+lambda0=1.3e-6;//Free space wavelength in m
+k0=2*%pi/lambda0;//free space wave number in rad/m
+V=k0*a*sqrt((n1^2)-(n2^2));//dimensionless waveguide parameter
+//The approximate expression for k consists of constants A, B and C
+A=5.2789-3.663*V+0.3841*(V^2);//Expression for constant A in terms of 'V'
+B=-0.7769+1.2252*V-0.0152*(V^2);//Expression for constant B in terms of 'V'
+C=-0.0175-0.0064*V-0.0009*(V^2);//Expression for constant C in terms of 'V'
+k=(%pi/(2*a))*sqrt(delta)*exp(-(A+B*dbar+C*(dbar)^2));//Expression for Coupling Coefficient in m^(-1)
+mprintf("\n For lambda=1.3 um:");
+mprintf("\n k=%f mm^(-1)",k/1e3);//Dividing by 10^3 to conevert into mm^(-1)
+//The answers vary due to round off error
+Lc=%pi/(2*k);//Corresponding coupling length in m
+mprintf("\n Lc =%.2f mm",Lc/1e-3);//Dividing by 10^(-3) to convert into mm
+P2=(sin(k*Lc/2))^2;//The coupled power at given wavelength
+mprintf("\n P2=%.2f",P2);
+
+//Case (ii):
+lambda0=1.35e-6;//Free space wavelength in m
+k0=2*%pi/lambda0;//free space wave number in rad/m
+V=k0*a*sqrt((n1^2)-(n2^2));//dimensionless waveguide parameter
+//The approximate expression for k consists of constants A, B and C
+A=5.2789-3.663*V+0.3841*(V^2);//Expression for constant A in terms of 'V'
+B=-0.7769+1.2252*V-0.0152*(V^2);//Expression for constant B in terms of 'V'
+C=-0.0175-0.0064*V-0.0009*(V^2);//Expression for constant C in terms of 'V'
+k=(%pi/(2*a))*sqrt(delta)*exp(-(A+B*dbar+C*(dbar)^2));//Expression for Coupling Coefficient in m^(-1)
+mprintf("\n For lambda=1.35 um:");
+mprintf("\n k=%f mm^(-1)",k/1e3);//Dividing by 10^3 to conevert into mm^(-1)
+//The answers vary due to round off error
+P2=(sin(k*Lc/2))^2;//The coupled power at given wavelength
+mprintf("\n P2=%.2f",P2);//The answers vary due to round off error
diff --git a/3638/CH17/EX17.2/Ex17_2.jpg b/3638/CH17/EX17.2/Ex17_2.jpg Binary files differnew file mode 100644 index 000000000..f48f2b8d1 --- /dev/null +++ b/3638/CH17/EX17.2/Ex17_2.jpg diff --git a/3638/CH17/EX17.2/Ex17_2.sce b/3638/CH17/EX17.2/Ex17_2.sce new file mode 100644 index 000000000..adb35ce8e --- /dev/null +++ b/3638/CH17/EX17.2/Ex17_2.sce @@ -0,0 +1,13 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+b=62.5e-6;//Outer radius of silica fiber in m
+R=30e-3;//Radius of the circular loop formed by the fiber in m
+lambda=633e-9;//Wavelength in m
+C=0.133;//Value of constant C for a silica fiber at 633 nm
+Deltaneff=-C*(b/R)^2;//The Corresponding dimensionless birefringence
+mprintf("\n The birefringence of the given fiber = %.2e",Deltaneff);//The negative sign indicates that the polarization of the slow wave is perpendicular to the optic axis
diff --git a/3638/CH17/EX17.3/Ex17_3.jpg b/3638/CH17/EX17.3/Ex17_3.jpg Binary files differnew file mode 100644 index 000000000..5c51c9e6f --- /dev/null +++ b/3638/CH17/EX17.3/Ex17_3.jpg diff --git a/3638/CH17/EX17.3/Ex17_3.sce b/3638/CH17/EX17.3/Ex17_3.sce new file mode 100644 index 000000000..1790eb175 --- /dev/null +++ b/3638/CH17/EX17.3/Ex17_3.sce @@ -0,0 +1,15 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda0=633e-9;//Wavelength in m
+b=62.5e-6;//Outer radius of silica fiber in m
+N=1;//Number of loops formed by the fiber
+C=0.133;//Value of constant C for a silica fiber at 633 nm
+
+R=8*%pi*C*(b^2)*N/lambda0;//Radius of the circular loop corresponding to a quarter plate formed by the fiber in m
+mprintf("\n R= %.2f cm",R/1e-2);//Division by 10^(-2) to convert into cm
+//The answers vary due to round off error
diff --git a/3638/CH17/EX17.4/Ex17_4.jpg b/3638/CH17/EX17.4/Ex17_4.jpg Binary files differnew file mode 100644 index 000000000..1ee5811ba --- /dev/null +++ b/3638/CH17/EX17.4/Ex17_4.jpg diff --git a/3638/CH17/EX17.4/Ex17_4.sce b/3638/CH17/EX17.4/Ex17_4.sce new file mode 100644 index 000000000..6d076a109 --- /dev/null +++ b/3638/CH17/EX17.4/Ex17_4.sce @@ -0,0 +1,26 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+n2=1.45;//refractive imdex of cladding
+NA=0.1;//Numerical aperture of the fiber
+a=3e-6;//radius of core in m
+n=2*%pi*a*NA;//numerator of the corresponding V number
+
+//For cutoff wavelength:
+V=2.4048;
+//Since V=n/lambda0
+lambdac=n/V;//cutoff wavelength of single mode fiber in m
+mprintf("\n The cutoff wavelength is %.3f um",lambdac/1e-6);//Division by 10^(-6) to convert into um
+
+//Now, For lambdaB=850 nm:
+lambdaB=850e-9;//Bragg wavelength in m
+neff=1.4517;//Corresponding value of effective index in LP01 mode
+
+//Let A be grating period
+A=lambdaB/(2*neff);//Grating period in m
+mprintf("\n Grating period= %.3f um",A/1e-6);//Division by 10^(-6) to convert into um
+//The answers vary due to round off error
diff --git a/3638/CH17/EX17.5/Ex17_5.jpg b/3638/CH17/EX17.5/Ex17_5.jpg Binary files differnew file mode 100644 index 000000000..2d9c99b20 --- /dev/null +++ b/3638/CH17/EX17.5/Ex17_5.jpg diff --git a/3638/CH17/EX17.5/Ex17_5.sce b/3638/CH17/EX17.5/Ex17_5.sce new file mode 100644 index 000000000..682e5a5c8 --- /dev/null +++ b/3638/CH17/EX17.5/Ex17_5.sce @@ -0,0 +1,26 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+//Since the reflectivity of fiber is 90%,
+R=0.9;//Reflection coefficient of fiber
+L=25e-3;//Length of fiber in m
+lambdaB=800e-9;//Bragg wavelength in m
+neff=1.4517;//Corresponding value of effective index in LP01 mode
+I=0.5;//Transverse overlap integral of modal distribution
+
+//Now, (tanh(k*L))^2=R
+//Rearranging terms, we get:
+k=atanh(sqrt(R))/L;//Corresponding coupling coefficient in m^(-1)
+mprintf("\n k=%.3f mm^(-1)",k/1e3);//Dividing by 10^3 to convert into mm^(-1)
+
+//Rearranging terms of expression k=%pi*Deltan*I/lambdaB
+Deltan=k*lambdaB/(%pi*I);//Change in refractive index
+mprintf("\n Deltan=%.2e",Deltan);//Unitless quantity
+//The answers vary due to round off error
+
+DeltaLambda=lambdaB^2/(%pi*neff*L)*sqrt((k*L)^2+(%pi)^2);//Corresponding bandwidth in m
+mprintf("\n DeltaLambda=%.2f nm",DeltaLambda/1e-9);//Division by 10^(-9) to convert into nm
diff --git a/3638/CH17/EX17.6/Ex17_6.jpg b/3638/CH17/EX17.6/Ex17_6.jpg Binary files differnew file mode 100644 index 000000000..812b375a3 --- /dev/null +++ b/3638/CH17/EX17.6/Ex17_6.jpg diff --git a/3638/CH17/EX17.6/Ex17_6.sce b/3638/CH17/EX17.6/Ex17_6.sce new file mode 100644 index 000000000..521c0b77e --- /dev/null +++ b/3638/CH17/EX17.6/Ex17_6.sce @@ -0,0 +1,27 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.6
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+//Since the reflectivity of fiber is 90%,
+R=0.9;//Reflection coefficient of fiber
+L=10e-3;//Length of fiber in m
+lambdaB=800e-9;//Bragg wavelength in m
+neff=1.4517;//Corresponding value of effective index in LP01 mode
+I=0.5;//Transverse overlap integral of modal distribution
+
+//Now, (tanh(k*L))^2=R
+//Rearranging terms, we get:
+k=atanh(sqrt(R))/L;//Corresponding coupling coefficient in m^(-1)
+mprintf("\n k=%.3f mm^(-1)",k/1e3);//Dividing by 10^3 to convert into mm^(-1)
+//The answers vary due to round off error
+
+//Rearranging terms of expression k=%pi*Deltan*I/lambdaB
+Deltan=k*lambdaB/(%pi*I);//Change in refractive index
+mprintf("\n Deltan=%.2e",Deltan);//Unitless quantity
+//The answers vary due to round off error
+
+DeltaLambda=lambdaB^2/(%pi*neff*L)*sqrt((k*L)^2+(%pi)^2);//Corresponding bandwidth in m
+mprintf("\n DeltaLambda=%.2f nm",DeltaLambda/1e-9);//Division by 10^(-9) to convert into nm
diff --git a/3638/CH17/EX17.7/Ex17_7.jpg b/3638/CH17/EX17.7/Ex17_7.jpg Binary files differnew file mode 100644 index 000000000..815d00906 --- /dev/null +++ b/3638/CH17/EX17.7/Ex17_7.jpg diff --git a/3638/CH17/EX17.7/Ex17_7.sce b/3638/CH17/EX17.7/Ex17_7.sce new file mode 100644 index 000000000..7ce8f9574 --- /dev/null +++ b/3638/CH17/EX17.7/Ex17_7.sce @@ -0,0 +1,27 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.7
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+//Since the peak reflectivity of fiber is 0.93%,
+R=0.93;//Reflection coefficient of fiber
+L=4.8e-3;//Length of fiber in m
+lambdaB=1532.1e-9;//Bragg wavelength in m
+neff=1.4517;//Corresponding value of effective index in LP01 mode
+I=0.5;//Transverse overlap integral of modal distribution
+
+//Now, (tanh(k*L))^2=R
+//Rearranging terms, we get:
+k=atanh(sqrt(R))/L;//Corresponding coupling coefficient in m^(-1)
+mprintf("\n k=%.3f mm^(-1)",k/1e3);//Dividing by 10^3 to convert into mm^(-1)
+//The answers vary due to round off error
+
+//Rearranging terms of expression k=%pi*Deltan*I/lambdaB
+Deltaneff=k*lambdaB/(%pi);//Change in effective refractive index
+mprintf("\n Deltaneff=%.2e",Deltaneff);//Unitless quantity
+//The answers vary due to round off error
+
+DeltaLambda=lambdaB^2/(%pi*neff*L)*sqrt((k*L)^2+(%pi)^2);//Corresponding bandwidth in m
+mprintf("\n DeltaLambda=%.2f nm",DeltaLambda/1e-9);//Division by 10^(-9) to convert into nm
diff --git a/3638/CH17/EX17.8/Ex17_8.jpg b/3638/CH17/EX17.8/Ex17_8.jpg Binary files differnew file mode 100644 index 000000000..c36e204a0 --- /dev/null +++ b/3638/CH17/EX17.8/Ex17_8.jpg diff --git a/3638/CH17/EX17.8/Ex17_8.sce b/3638/CH17/EX17.8/Ex17_8.sce new file mode 100644 index 000000000..a302e2e82 --- /dev/null +++ b/3638/CH17/EX17.8/Ex17_8.sce @@ -0,0 +1,30 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.8
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+//Since the reflectivity of fiber is 99%,
+R=0.99;//Reflection coefficient of fiber
+lambdaB=1550e-9;//Bragg wavelength in m
+neff=1.45;//Corresponding value of effective index in LP01 mode
+DeltaLambda=1e-9;//Bandwidth of reflection spectrum in m
+I=0.75;//Typical value of transverse overlap integral of modal distribution
+
+//Now, (tanh(k*L))^2=R
+//Rearranging terms, we get: k*L=atanh(sqrt(R))
+//Let m=k*L
+m=atanh(sqrt(R));
+
+//Rearranging terms of expression DeltaLambda=lambdaB^2/(%pi*neff*L)*sqrt((k*L)^2+(%pi)^2) , we get
+L=lambdaB^2/(%pi*neff*DeltaLambda)*sqrt(m^2+(%pi)^2)//Since m=k*L
+//Length of fiber in m
+mprintf("\n L=%.2f mm",L/1e-3);//Division by 10^(-3) to convert into mm
+
+//Rearranging terms of m=k*L, we get:
+k=m/L;//Corresponding coupling coefficient in m^(-1)
+
+//Rearranging terms of expression k=%pi*Deltan*I/lambdaB
+Deltan=k*lambdaB/(%pi*I);//Change in refractive index
+mprintf("\n Deltan=%.2e",Deltan);//Unitless quantity
diff --git a/3638/CH17/EX17.9/Ex17_9.jpg b/3638/CH17/EX17.9/Ex17_9.jpg Binary files differnew file mode 100644 index 000000000..bab197c7f --- /dev/null +++ b/3638/CH17/EX17.9/Ex17_9.jpg diff --git a/3638/CH17/EX17.9/Ex17_9.sce b/3638/CH17/EX17.9/Ex17_9.sce new file mode 100644 index 000000000..5892a8980 --- /dev/null +++ b/3638/CH17/EX17.9/Ex17_9.sce @@ -0,0 +1,22 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 17.9
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+a=5e-6;//Fiber core radius in m
+NA=0.09;//Numerical aperture of the fiber
+lambda0=1.3e-6;//Wavelength of radiation to be reflected from a Bragg grating
+
+V=2*%pi*a*NA/lambda0;//Corrseponding dimensionless V number
+mprintf("\n V=%f",V);//The answers vary due to round off error
+
+//Since W0=(0.65+1.619/V^(3/2)+2.879/V^6)*a , where W0 is the mode spot size in m
+//Let W0=m*a , where m=0.65+1.619/V^(3/2)+2.879/V^6
+m=0.65+1.619/V^(3/2)+2.879/V^6;
+mprintf("\n W0/a=%f",m);//The answers vary due to round off error
+
+//Given that I=1-exp(-2*(a/W0)^2);
+I=1-exp(-2/m^2);//From the assumption that m=W0/a
+mprintf("\n I=%.2f",I);
diff --git a/3638/CH18/EX18.1/Ex18_1.jpg b/3638/CH18/EX18.1/Ex18_1.jpg Binary files differnew file mode 100644 index 000000000..990f37f53 --- /dev/null +++ b/3638/CH18/EX18.1/Ex18_1.jpg diff --git a/3638/CH18/EX18.1/Ex18_1.sce b/3638/CH18/EX18.1/Ex18_1.sce new file mode 100644 index 000000000..a9aed2f82 --- /dev/null +++ b/3638/CH18/EX18.1/Ex18_1.sce @@ -0,0 +1,13 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 18.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda0=0.633e-6;//Operating wavelength in m
+DeltaPhi=1e-6;//Phase change in rad
+n=1.45;//refractive index of fiber
+
+DeltaL=DeltaPhi/(2*%pi*n/lambda0);//Corresponding change in fiber length in m
+mprintf("\n Corresponding change in fiber length = %.2e m",DeltaL);//The answers vary due to round off error
diff --git a/3638/CH18/EX18.2/Ex18_2.jpg b/3638/CH18/EX18.2/Ex18_2.jpg Binary files differnew file mode 100644 index 000000000..56b38a84a --- /dev/null +++ b/3638/CH18/EX18.2/Ex18_2.jpg diff --git a/3638/CH18/EX18.2/Ex18_2.sce b/3638/CH18/EX18.2/Ex18_2.sce new file mode 100644 index 000000000..10db65651 --- /dev/null +++ b/3638/CH18/EX18.2/Ex18_2.sce @@ -0,0 +1,14 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 18.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+SPL=20;//Sound Pressure Level of a whisper in dB
+Pr=2e-5;//Reference pressure is the threshold of hearing in Pa
+
+//Now, SPL=20log10(Pw/Pr)
+//Rearranging the terms, we get
+Pw=10^(SPL/20)*Pr;
+mprintf("\n Pw=%.1e Pa",Pw);
diff --git a/3638/CH18/EX18.3/Ex18_3.jpg b/3638/CH18/EX18.3/Ex18_3.jpg Binary files differnew file mode 100644 index 000000000..9aa0dcc80 --- /dev/null +++ b/3638/CH18/EX18.3/Ex18_3.jpg diff --git a/3638/CH18/EX18.3/Ex18_3.sce b/3638/CH18/EX18.3/Ex18_3.sce new file mode 100644 index 000000000..be96f1e77 --- /dev/null +++ b/3638/CH18/EX18.3/Ex18_3.sce @@ -0,0 +1,13 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 18.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+L=100;//Length of sensing element in m
+DeltaP=2e-5;//Threshold of hearing in Pa
+S=3.4e-4;//Sensitivity of element in rad/Pa/m
+
+DeltaPhi=S*DeltaP*L;//Corresponding change in phase in rad
+mprintf("\n DeltaPhi=%.1e rad",DeltaPhi);
diff --git a/3638/CH18/EX18.4/Ex18_4.jpg b/3638/CH18/EX18.4/Ex18_4.jpg Binary files differnew file mode 100644 index 000000000..7ea3b6368 --- /dev/null +++ b/3638/CH18/EX18.4/Ex18_4.jpg diff --git a/3638/CH18/EX18.4/Ex18_4.sce b/3638/CH18/EX18.4/Ex18_4.sce new file mode 100644 index 000000000..73fb8a631 --- /dev/null +++ b/3638/CH18/EX18.4/Ex18_4.sce @@ -0,0 +1,13 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 18.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+S=3.4e-4;//Sensitivity of the sensing element in rad/Pa/m
+DeltaMin=3.6e-8;//Minimum detectable phase change in rad
+L=1;//Length of sensing element in m
+
+Pmin=DeltaMin/(L*S);//Corresponding minimum detectable pressure in Pa
+mprintf("\n Pmin= %.1e Pa",Pmin);//The answers vary due to round off error
diff --git a/3638/CH18/EX18.5/Ex18_5.jpg b/3638/CH18/EX18.5/Ex18_5.jpg Binary files differnew file mode 100644 index 000000000..d73fc4ee7 --- /dev/null +++ b/3638/CH18/EX18.5/Ex18_5.jpg diff --git a/3638/CH18/EX18.5/Ex18_5.sce b/3638/CH18/EX18.5/Ex18_5.sce new file mode 100644 index 000000000..b1d849bf0 --- /dev/null +++ b/3638/CH18/EX18.5/Ex18_5.sce @@ -0,0 +1,13 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 18.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+V=2.64e-4;//Verdet constant for silica in deg/A
+N=30;//Number of turns of fiber
+I=1;//Current through the fiber in A
+
+Theta=V*N*I;//Corresponding rotation of plane of polarization in deg
+mprintf("\n Theta= %.2e deg",Theta);
diff --git a/3638/CH18/EX18.6/Ex18_6.jpg b/3638/CH18/EX18.6/Ex18_6.jpg Binary files differnew file mode 100644 index 000000000..1212a9d8b --- /dev/null +++ b/3638/CH18/EX18.6/Ex18_6.jpg diff --git a/3638/CH18/EX18.6/Ex18_6.sce b/3638/CH18/EX18.6/Ex18_6.sce new file mode 100644 index 000000000..407338883 --- /dev/null +++ b/3638/CH18/EX18.6/Ex18_6.sce @@ -0,0 +1,20 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 18.6
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+b=62.5e-6;//Fiber radius in m
+R=20e-2;//Loop radius in m
+lambda0=633e-9;//Wavelength in m
+C=0.133;//Value of constant C for a silica fiber at 633 nm
+V=4.6e-6;//Verdet constant for silica in rad/A
+N=30;//Number of turns of fiber
+I=1;//Current through the fiber in A
+
+Delta=((2*%pi)^2)*R*N*(-C*(b/R)^2)/lambda0;//The Corresponding dimensionless birefringence
+mprintf("\n Delta= %.2f rad",Delta);//The negative sign indicates that the polarization of the slow wave is perpendicular to the optic axis
+
+Theta=V*N*I;//Corresponding rotation of plane of polarization in rad
+mprintf("\n Theta= %.2e rad",Theta);//The answers vary due to round off error
diff --git a/3638/CH2/EX2.1/Ex2_1.jpg b/3638/CH2/EX2.1/Ex2_1.jpg Binary files differnew file mode 100644 index 000000000..fcaf4dc89 --- /dev/null +++ b/3638/CH2/EX2.1/Ex2_1.jpg diff --git a/3638/CH2/EX2.1/Ex2_1.sce b/3638/CH2/EX2.1/Ex2_1.sce new file mode 100644 index 000000000..80497f19a --- /dev/null +++ b/3638/CH2/EX2.1/Ex2_1.sce @@ -0,0 +1,15 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 2.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+P=1e-3;//power of laser beam in W
+A=3e-6;//cross-sectional area of laser beam in m^2
+I=P/A;//power per unit area of laser beam in W/m^2
+n=1;//refractive index of air medium
+c=3e8;//speed of light in air medium in m/s
+meu0=4*(%pi)*1e-7;//permeability of free space in SI units
+E0=sqrt(2*c*meu0*I/n)//Corresponding electric field in V/m
+mprintf("Electric field=%.1f V/m",E0);//The answers vary due to round off error
diff --git a/3638/CH2/EX2.2/Ex2_2.jpg b/3638/CH2/EX2.2/Ex2_2.jpg Binary files differnew file mode 100644 index 000000000..574dfc423 --- /dev/null +++ b/3638/CH2/EX2.2/Ex2_2.jpg diff --git a/3638/CH2/EX2.2/Ex2_2.sce b/3638/CH2/EX2.2/Ex2_2.sce new file mode 100644 index 000000000..690ac63a0 --- /dev/null +++ b/3638/CH2/EX2.2/Ex2_2.sce @@ -0,0 +1,15 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 2.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+P=10;//power of bulb in W
+A=4*%pi*1e2;//cross-sectional area covered by bulb in m^2
+I=P/A;//power per unit area of bulb in W/m^2
+n=1;//refractive index of air medium
+c=3e8;//speed of light in air medium in m/s
+meu0=4*(%pi)*1e-7;//permeability of free space in SI units
+E0=sqrt(2*c*meu0*I/n)//Corresponding electric field in V/m
+mprintf("Electric field=%.1f V/m",E0);//Final answer
diff --git a/3638/CH2/EX2.3/Ex2_3.jpg b/3638/CH2/EX2.3/Ex2_3.jpg Binary files differnew file mode 100644 index 000000000..2288ecbc8 --- /dev/null +++ b/3638/CH2/EX2.3/Ex2_3.jpg diff --git a/3638/CH2/EX2.3/Ex2_3.sce b/3638/CH2/EX2.3/Ex2_3.sce new file mode 100644 index 000000000..04e86cc87 --- /dev/null +++ b/3638/CH2/EX2.3/Ex2_3.sce @@ -0,0 +1,15 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 2.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+P=1e-3;//power of laser beam in W
+A=%pi*(6e-6)^2;//cross-sectional area of spot of laser beam in m^2
+I=P/A;//power per unit area of laser beam in W/m^2
+n=1;//refractive index of air medium
+c=3e8;//speed of light in air medium in m/s
+meu0=4*(%pi)*1e-7;//permeability of free space in SI units
+E0=sqrt(2*c*meu0*I/n)//Corresponding electric field in V/m
+mprintf("Electric field=%.1e V/m",E0);//The answers vary due to round off error
diff --git a/3638/CH2/EX2.4/Ex2_4.jpg b/3638/CH2/EX2.4/Ex2_4.jpg Binary files differnew file mode 100644 index 000000000..282cd8905 --- /dev/null +++ b/3638/CH2/EX2.4/Ex2_4.jpg diff --git a/3638/CH2/EX2.4/Ex2_4.sce b/3638/CH2/EX2.4/Ex2_4.sce new file mode 100644 index 000000000..7635c0ab8 --- /dev/null +++ b/3638/CH2/EX2.4/Ex2_4.sce @@ -0,0 +1,16 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 2.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given Case(1)
+n1=1;//refractive index of air
+n2=1.45;//refractive index of silica
+R=[(n1-n2)/(n1+n2)]^2;//corresponding energy reflection coefficient
+mprintf("Energy reflection coefficient for air-silica interface=%.2f",R);
+//given Case(2)
+n1=1;//refractive index of air
+n2=3.6;//refractive index of GaAs
+R=[(n1-n2)/(n1+n2)]^2;//corresponding energy reflection coefficient
+mprintf("\n Energy reflection coefficient for GaAs-air interface=%.2f",R);
diff --git a/3638/CH2/EX2.5/Ex2_5.jpg b/3638/CH2/EX2.5/Ex2_5.jpg Binary files differnew file mode 100644 index 000000000..c310e887b --- /dev/null +++ b/3638/CH2/EX2.5/Ex2_5.jpg diff --git a/3638/CH2/EX2.5/Ex2_5.sce b/3638/CH2/EX2.5/Ex2_5.sce new file mode 100644 index 000000000..bff5a8dc1 --- /dev/null +++ b/3638/CH2/EX2.5/Ex2_5.sce @@ -0,0 +1,12 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 2.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+n1=1.45;//refractive index of silica
+n2=1;//refractive index of air
+thetac=asin(n2/n1);//critical angle for the air-silica interface in radians
+mprintf("Critical angle for air-silica interface=%.1f degrees",thetac*180/%pi);//multiplying by 180/pi to convert radians to degrees
+
diff --git a/3638/CH2/EX2.6/Ex2_6.jpg b/3638/CH2/EX2.6/Ex2_6.jpg Binary files differnew file mode 100644 index 000000000..46a60a0fd --- /dev/null +++ b/3638/CH2/EX2.6/Ex2_6.jpg diff --git a/3638/CH2/EX2.6/Ex2_6.sce b/3638/CH2/EX2.6/Ex2_6.sce new file mode 100644 index 000000000..b7e9b14db --- /dev/null +++ b/3638/CH2/EX2.6/Ex2_6.sce @@ -0,0 +1,11 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 2.6
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+n1=1.46;//refractive index of doped silica
+n2=1.45;//refractive index of pure silica
+thetac=asin(n2/n1);//critical angle for interface between doped silica and pure silica in radians
+mprintf("Critical angle for interface between doped silica and pure silica=%.1f degrees",thetac*180/%pi);//multiplying by 180/pi to convert radians to degrees
diff --git a/3638/CH2/EX2.7/Ex2_7.jpg b/3638/CH2/EX2.7/Ex2_7.jpg Binary files differnew file mode 100644 index 000000000..25c7d52d2 --- /dev/null +++ b/3638/CH2/EX2.7/Ex2_7.jpg diff --git a/3638/CH2/EX2.7/Ex2_7.sce b/3638/CH2/EX2.7/Ex2_7.sce new file mode 100644 index 000000000..8fd1649b4 --- /dev/null +++ b/3638/CH2/EX2.7/Ex2_7.sce @@ -0,0 +1,17 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 2.7
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given Case(1)
+lambda=850e-9;//wavelength of LED in m
+deltalambda=30e-9;//spacing between wavelengths in m
+lc=(lambda)^2/deltalambda;//Corresponding coherence length
+mprintf("Coherence length of LED=%.1f um",lc/1e-6);//Dividing by 10^(-6) to convert in micrometers
+//The answers vary due to round off error
+//given Case(2)
+lambda=850e-9;//wavelength of laser diode in m
+deltalambda=2e-9;//spacing between wavelengths in m
+lc=(lambda)^2/deltalambda;//Corresponding coherence length
+mprintf("\n Coherence length of laser diode=%.2f mm",lc/1e-3);//Dividing by 10^(-3) to convert in millimeters
diff --git a/3638/CH2/EX2.8/Ex2_8.jpg b/3638/CH2/EX2.8/Ex2_8.jpg Binary files differnew file mode 100644 index 000000000..07f0c9f33 --- /dev/null +++ b/3638/CH2/EX2.8/Ex2_8.jpg diff --git a/3638/CH2/EX2.8/Ex2_8.sce b/3638/CH2/EX2.8/Ex2_8.sce new file mode 100644 index 000000000..92bf2906a --- /dev/null +++ b/3638/CH2/EX2.8/Ex2_8.sce @@ -0,0 +1,11 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 2.8
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+deltanu=1.5e9;//change in frequency of He-Ne laser in Hz
+c=3e8;//speed of light in m/s
+lc=c/deltanu;//Corresponding coherence length
+mprintf("Coherence length of He-Ne laser=%.1f cm",lc/1e-2);//Dividing by 10^(-2) to convert in cm
diff --git a/3638/CH2/EX2.9/Ex2_9.jpg b/3638/CH2/EX2.9/Ex2_9.jpg Binary files differnew file mode 100644 index 000000000..b0519bb57 --- /dev/null +++ b/3638/CH2/EX2.9/Ex2_9.jpg diff --git a/3638/CH2/EX2.9/Ex2_9.sce b/3638/CH2/EX2.9/Ex2_9.sce new file mode 100644 index 000000000..92b447ef5 --- /dev/null +++ b/3638/CH2/EX2.9/Ex2_9.sce @@ -0,0 +1,11 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 2.9
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda0=1300e-9;//wavelength of single-mode fiber in m
+omega0=5e-6;//spot size of beam in m
+theta=atan(lambda0/(%pi*omega0));//Corresponding divergence in radians
+mprintf("Divergence of beam=%.2f degrees",theta*180/%pi);//multiplying by 180/pi to convert radians to degrees
diff --git a/3638/CH21/EX21.1/Ex21_1.jpg b/3638/CH21/EX21.1/Ex21_1.jpg Binary files differnew file mode 100644 index 000000000..8b74a51da --- /dev/null +++ b/3638/CH21/EX21.1/Ex21_1.jpg diff --git a/3638/CH21/EX21.1/Ex21_1.sce b/3638/CH21/EX21.1/Ex21_1.sce new file mode 100644 index 000000000..6ceed3ddc --- /dev/null +++ b/3638/CH21/EX21.1/Ex21_1.sce @@ -0,0 +1,31 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 21.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+nf=1.51;//refractive index of film
+ns=1.50;//refractive index of substrate
+nc=1.0;//refractive index of cover
+d=4e-6;//thickness of film in m
+lambda0=0.6e-6;//Wavelength in m
+ne1=1.50862;//Corresponding effective refractive index for core
+ne2=1.5046;//Corresponding effective refractive index for cladding
+k0=2*(%pi)/lambda0;//free space wave number in rad/m
+//Let A be the period of perturbation in m
+
+A=lambda0/(ne1-ne2);
+mprintf("\n A= %.1f um",A/1e-6);//Division by 10^(-6) to convert into um
+
+d1=d+1/(k0*sqrt(ne1^2-ns^2))+1/(k0*sqrt(ne1^2-nc^2));//Effective waveguide thickness for mode 1 in m
+mprintf("\n d1= %.3f um",d1/1e-6);//Division by 10^(-6) to convert into um
+d2=d+1/(k0*sqrt(ne2^2-ns^2))+1/(k0*sqrt(ne2^2-nc^2));//Effective waveguide thickness for mode 2 in m
+mprintf("\n d2= %.3f um",d2/1e-6);//Division by 10^(-6) to convert into um
+//Assuming h=0.01um in expression for k, we get:
+k=%pi/lambda0*0.01e-6*sqrt(((nf^2-ne1^2)*(nf^2-nc^2))/d1*d2*ne1*ne2);//Coupling coefficient in m^-1
+mprintf("\n k=%.3f cm^(-1)",k*1e2);//Multiplying by 10^2 to convert into cm^(-1)
+//The answers vary due to round off error
+L=%pi/(2*k);//Length for complete power transfer in m
+mprintf("\n L=%.2f cm",L/1e2);//Division by 10^2 to convert into cm
+//The answers vary due to round off error
diff --git a/3638/CH21/EX21.2/Ex21_2.jpg b/3638/CH21/EX21.2/Ex21_2.jpg Binary files differnew file mode 100644 index 000000000..9f5edd149 --- /dev/null +++ b/3638/CH21/EX21.2/Ex21_2.jpg diff --git a/3638/CH21/EX21.2/Ex21_2.sce b/3638/CH21/EX21.2/Ex21_2.sce new file mode 100644 index 000000000..2539437db --- /dev/null +++ b/3638/CH21/EX21.2/Ex21_2.sce @@ -0,0 +1,45 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 21.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+nf=1.51;//refractive index of film
+ns=1.50;//refractive index of substrate
+nc=1.0;//refractive index of cover
+d=4e-6;//thickness of film in m
+lambda0=0.6e-6;//Wavelength in m
+ne1=1.50862;//Corresponding effective refractive index for core
+ne2=1.5046;//Corresponding effective refractive index for cladding
+//Let A be the period of perturbation in m
+
+
+//Case (i):
+A=100e-6;
+K=2*%pi/A;
+k=0.598e2;//coupling coefficient in m^-1 (from previous example)
+T=2*%pi/lambda0*(ne1-ne2)-K;//Phase mismatch in m^-1
+y=sqrt(k^2+(T/2)^2);//Resultant of k and T in m^-1
+
+mprintf("\n For A=100 um:");
+P2max=(k/y)^2;//Maximum power that gets transferred between the modes
+mprintf("\n P2max= %.1e",P2max);
+L=%pi/(2*y);//Distance for maximum power transfer in m
+mprintf("\n L=%.1f um\n",L/1e-6);//Division by 10^(-6) to convert into um
+//The answers vary due to round off error
+
+
+//Case (ii):
+A=148e-6;
+K=2*%pi/A;
+k=0.598e2;//coupling coefficient in m^-1 (from previous example)
+T=2*%pi/lambda0*(ne1-ne2)-K;//Phase mismatch in m^-1
+y=sqrt(k^2+(T/2)^2);//Resultant of k and T in m^-1
+
+mprintf("\n For A=148 um:");
+P2max=(k/y)^2;//Maximum power that gets transferred between the modes
+mprintf("\n P2max= %.1e",P2max);
+L=%pi/(2*y);//Distance for maximum power transfer in m
+mprintf("\n L=%.1f mm",L/1e-3);//Division by 10^(-6) to convert into mm
+
diff --git a/3638/CH21/EX21.3/Ex21_3.jpg b/3638/CH21/EX21.3/Ex21_3.jpg Binary files differnew file mode 100644 index 000000000..cd5d9dd30 --- /dev/null +++ b/3638/CH21/EX21.3/Ex21_3.jpg diff --git a/3638/CH21/EX21.3/Ex21_3.sce b/3638/CH21/EX21.3/Ex21_3.sce new file mode 100644 index 000000000..5482ad427 --- /dev/null +++ b/3638/CH21/EX21.3/Ex21_3.sce @@ -0,0 +1,14 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 21.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambdac=0.6e-6;//Wavelength in m
+//Let A be perturbation of length in m
+A=149.3e-6;
+L=2.63e-2;//Length of the periodic waveguide in m
+
+DeltaLambda=0.8*A*lambdac/L;//Bandwidth of the wavelength filter in m
+mprintf("\n DeltaLambda= %.1f nm",DeltaLambda/1e-9);//Division by 10^(-9) to convert into nm
diff --git a/3638/CH21/EX21.4/Ex21_4.jpg b/3638/CH21/EX21.4/Ex21_4.jpg Binary files differnew file mode 100644 index 000000000..eb37acab3 --- /dev/null +++ b/3638/CH21/EX21.4/Ex21_4.jpg diff --git a/3638/CH21/EX21.4/Ex21_4.sce b/3638/CH21/EX21.4/Ex21_4.sce new file mode 100644 index 000000000..eb99462b7 --- /dev/null +++ b/3638/CH21/EX21.4/Ex21_4.sce @@ -0,0 +1,12 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 21.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+va=5.96e3;//Velocity of the acoustic wave
+Lb=2e-3;//Beat length in m
+
+f=va/Lb;//Acoustic frequency in Hz for Theta=0 degrees
+mprintf("\n f=%.2f MHz",f/1e6);//Division by 10^6 to convert into MHz
diff --git a/3638/CH21/EX21.5/Ex21_5.jpg b/3638/CH21/EX21.5/Ex21_5.jpg Binary files differnew file mode 100644 index 000000000..3c25a140c --- /dev/null +++ b/3638/CH21/EX21.5/Ex21_5.jpg diff --git a/3638/CH21/EX21.5/Ex21_5.sce b/3638/CH21/EX21.5/Ex21_5.sce new file mode 100644 index 000000000..ba0104265 --- /dev/null +++ b/3638/CH21/EX21.5/Ex21_5.sce @@ -0,0 +1,14 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 21.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+va=5.96e3;//Velocity of the acoustic wave
+Lb=1.7e-3;//Beat length in m
+Theta=13.5;//Angle between acoustic wave and the light waves
+
+f=va/(Lb*sind(Theta));//Acoustic frequency in Hz
+mprintf("\n f=%.2f MHz",f/1e6);//Division by 10^6 to convert into MHz
+//The answers vary due to round off error
diff --git a/3638/CH21/EX21.6/Ex21_6.jpg b/3638/CH21/EX21.6/Ex21_6.jpg Binary files differnew file mode 100644 index 000000000..2dd98f612 --- /dev/null +++ b/3638/CH21/EX21.6/Ex21_6.jpg diff --git a/3638/CH21/EX21.6/Ex21_6.sce b/3638/CH21/EX21.6/Ex21_6.sce new file mode 100644 index 000000000..c307626a9 --- /dev/null +++ b/3638/CH21/EX21.6/Ex21_6.sce @@ -0,0 +1,24 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 21.6
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+nf=1.51;//refractive index of film
+ns=1.50;//refractive index of substrate
+nc=1.0;//refractive index of cover
+d=4e-6;//thickness of film in m
+lambda0=0.6e-6;//Wavelength in m
+ne1=1.50862;//Corresponding effective refractive index for core
+ne2=1.5046;//Corresponding effective refractive index for cladding
+//Let A be the perturbation of length in m
+A=6e-6;
+
+//Rearranging the terms of the equation 'ne1-lambda0/A=ns*cos(Thetas0)', we get:
+Thetas0=acosd((ne1-lambda0/A)/ns);
+mprintf("\n Thetas0 = %.1f degrees",Thetas0);
+
+//Rearranging the terms of the equation 'ne2-lambda0/A=ns*cos(Thetas1)', we get:
+Thetas1=acosd((ne2-lambda0/A)/ns);
+mprintf("\n Thetas1 = %.1f degrees",Thetas1);
diff --git a/3638/CH21/EX21.7/Ex21_7.jpg b/3638/CH21/EX21.7/Ex21_7.jpg Binary files differnew file mode 100644 index 000000000..1359f7cb9 --- /dev/null +++ b/3638/CH21/EX21.7/Ex21_7.jpg diff --git a/3638/CH21/EX21.7/Ex21_7.sce b/3638/CH21/EX21.7/Ex21_7.sce new file mode 100644 index 000000000..11306e0c5 --- /dev/null +++ b/3638/CH21/EX21.7/Ex21_7.sce @@ -0,0 +1,24 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 21.7
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+nf=1.51;//refractive index of film
+ns=1.50;//refractive index of substrate
+nc=1.0;//refractive index of cover
+d=4e-6;//thickness of film in m
+lambda0=0.6e-6;//Wavelength in m
+ne1=1.50862;//Corresponding effective refractive index for core
+ne2=1.5046;//Corresponding effective refractive index for cladding
+//Let A be the perturbation of length in m
+A=0.2e-6;
+
+//Rearranging the terms of the equation 'ne1-lambda0/A=ns*cos(Thetas0)', we get:
+Thetas0=acosd((ne1-lambda0/A)/ns);
+mprintf("\n Thetas0 = %.1f degrees",Thetas0);
+
+//Rearranging the terms of the equation 'ne2-lambda0/A=ns*cos(Thetas1)', we get:
+Thetas1=acosd((ne2-lambda0/A)/ns);
+mprintf("\n Thetas1 = %.1f degrees",Thetas1);
diff --git a/3638/CH21/EX21.8/Ex21_8.jpg b/3638/CH21/EX21.8/Ex21_8.jpg Binary files differnew file mode 100644 index 000000000..6ff3e8a65 --- /dev/null +++ b/3638/CH21/EX21.8/Ex21_8.jpg diff --git a/3638/CH21/EX21.8/Ex21_8.sce b/3638/CH21/EX21.8/Ex21_8.sce new file mode 100644 index 000000000..2ee948662 --- /dev/null +++ b/3638/CH21/EX21.8/Ex21_8.sce @@ -0,0 +1,26 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 21.8
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+//Since the peak reflectivity of fiber is 0.98,
+R=0.98;//Reflection coefficient of fiber
+L=1e-3;//Length of interaction in m
+lambda0=1092e-9;//Central wavelength in m
+neff=1.46;//Corresponding value of effective index in LP01 mode
+
+//Now, (tanh(k*L))^2=R
+//Rearranging terms, we get:
+k=atanh(sqrt(R))/L;//Corresponding coupling coefficient in m^(-1)
+mprintf("\n k=%.3f mm^(-1)",k/1e3);//Dividing by 10^3 to convert into mm^(-1)
+//The answers vary due to round off error
+
+//Let A be the perturbation of length in m
+A=lambda0/(2*neff);
+mprintf("\n A=%.2f um",A/1e-6);//Division by 10^(-6) to convert into um
+
+DeltaLambda=lambda0*A/L;//Corresponding bandwidth in m
+mprintf("\n DeltaLambda=%.2f nm",DeltaLambda/1e-9);//Division by 10^(-9) to convert into nm
+//The answers vary due to round off error
diff --git a/3638/CH21/EX21.9/Ex21_9.jpg b/3638/CH21/EX21.9/Ex21_9.jpg Binary files differnew file mode 100644 index 000000000..8b8e05dfd --- /dev/null +++ b/3638/CH21/EX21.9/Ex21_9.jpg diff --git a/3638/CH21/EX21.9/Ex21_9.sce b/3638/CH21/EX21.9/Ex21_9.sce new file mode 100644 index 000000000..b4ffd2f6e --- /dev/null +++ b/3638/CH21/EX21.9/Ex21_9.sce @@ -0,0 +1,26 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 21.9
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+//Since the peak reflectivity of fiber is 0.85,
+R=0.85;//Reflection coefficient of fiber
+L=1e-2;//Length of interaction in m
+lambda0=1.55e-6;//Central wavelength in m
+neff=1.46;//Corresponding value of effective index in LP01 mode
+
+//Now, (tanh(k*L))^2=R
+//Rearranging terms, we get:
+k=atanh(sqrt(R))/L;//Corresponding coupling coefficient in m^(-1)
+mprintf("\n k=%.3f m^(-1)",k);//The answer provided in the textbook is wrong
+
+//Let A be the perturbation of length in m
+A=lambda0/(2*neff);
+mprintf("\n A=%.2f nm",A/1e-9);//Division by 10^(-9) to convert into nm
+//The answers vary due to round off error
+
+DeltaLambda=lambda0^2/(%pi*neff*L)*sqrt((k*L)^2+(%pi)^2);//Corresponding bandwidth in m
+mprintf("\n DeltaLambda=%.2f nm",DeltaLambda/1e-9);//Division by 10^(-9) to convert into nm
+//The answer provided in the textbook is wrong
diff --git a/3638/CH7/EX7.1/Ex7_1.jpg b/3638/CH7/EX7.1/Ex7_1.jpg Binary files differnew file mode 100644 index 000000000..9a097defd --- /dev/null +++ b/3638/CH7/EX7.1/Ex7_1.jpg diff --git a/3638/CH7/EX7.1/Ex7_1.sce b/3638/CH7/EX7.1/Ex7_1.sce new file mode 100644 index 000000000..afac2c184 --- /dev/null +++ b/3638/CH7/EX7.1/Ex7_1.sce @@ -0,0 +1,56 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 7.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+n1=1.503;//refractive index of film
+n2=1.500;//refractive index of cover
+d=4e-6;//thickness of film in m
+
+
+//Case(1)
+lambda0=1e-6;//wavelength in m
+k0=2*(%pi)/lambda0;//free space wave number in rad/m
+funcprot(0);//To avoid warning message when function is redefined
+mprintf("\n For 1st value of lambda:");
+V=k0*d*sqrt((n1^2)-(n2^2));//dimensionless waveguide parameter
+mprintf("\n V=%f",V);//The answers vary due to round off error
+
+//To find Xi for symmetric TE mode
+deff('t=f(Xi)','t=V/2*cos(Xi)-Xi');//Rearranging the terms of eqn for symmetric TE modes i.e. 'ξtanξ=((V/2)^2-ξ^2)', we get 'ξ=V/2*cos(ξ)'
+Xi0=0;//Starting value of Xi
+Xi=fsolve(Xi0,f);//Root of eqn 't=0'
+mprintf("\n For symmetric mode ξ=%f",Xi);//The answers vary due to round off error
+b=1-(Xi^2)/(V^2/4);//dimensionless propagation constant
+mprintf("\n b=%f",b);
+B=sqrt(b*((n1^2)-(n2^2))+(n2^2));
+mprintf("\nBeta/k0=%f",B);//The answers vary due to round off error
+
+
+//Case(2)
+lambda0=0.5e-6;//wavelength in m
+k0=2*(%pi)/lambda0;//phase constant in rad/m
+mprintf("\n\n For 2nd value of lambda:");
+V=k0*d*sqrt((n1^2)-(n2^2))//dimensionless waveguide parameter
+mprintf("\n V=%f ",V);//The answers vary due to round off error
+
+//To find Xi for symmetric TE mode
+deff('t=f(Xi)','t=V/2*cos(Xi)-Xi');//Rearranging the terms of eqn for symmetric TE modes i.e. 'ξtanξ=((V/2)^2-ξ^2)^(1/2)', we get 'ξ=V/2*cos(ξ)'
+Xi0=0;//Starting value of Xi
+Xi=fsolve(Xi0,f);//Root of eqn 't=0'
+mprintf("\n For symmetric mode ξ=%f",Xi);//The answers vary due to round off error
+b=1-(Xi^2)/(V^2/4);//dimensionless propagation constant
+mprintf("\n b=%f",b);
+B=sqrt(b*((n1^2)-(n2^2))+(n2^2));
+mprintf("\nBeta/k0=%f",B);
+//To find Xi for antisymmetric TE mode
+deff('t=f(Xi)','t=V/2*sin(Xi)-Xi');//Rearranging the terms of eqn for antisymmetric TE modes i.e. '-ξcotξ=((V/2)^2-ξ^2)^(1/2)', we get 'ξ=V/2*sin(ξ)'
+Xi0=1;//Starting value of Xi
+Xi=fsolve(Xi0,f);//Root of eqn 't=0'
+mprintf("\n For antisymmetric mode ξ=%f",Xi);//The answers vary due to round off error
+b=1-(Xi^2)/(V^2/4);//dimensionless propagation constant
+mprintf("\n b=%f",b);
+B=sqrt(b*((n1^2)-(n2^2))+(n2^2));
+mprintf("\nBeta/k0=%f",B);
diff --git a/3638/CH7/EX7.2/Ex7_2.jpg b/3638/CH7/EX7.2/Ex7_2.jpg Binary files differnew file mode 100644 index 000000000..9307cb611 --- /dev/null +++ b/3638/CH7/EX7.2/Ex7_2.jpg diff --git a/3638/CH7/EX7.2/Ex7_2.sce b/3638/CH7/EX7.2/Ex7_2.sce new file mode 100644 index 000000000..87a7c00af --- /dev/null +++ b/3638/CH7/EX7.2/Ex7_2.sce @@ -0,0 +1,35 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 7.2
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+n1=1.5;//refractive index of film
+n2=1.0;//refractive index of cover
+d=.555e-6;//thickness of film in m
+
+
+//Case(1)
+lambda0=1.3e-6;//wavelength in m
+k0=2*(%pi)/lambda0;//free space wave number in rad/m
+V=k0*d*sqrt((n1^2)-(n2^2));//dimensionless waveguide parameter
+mprintf("V=%f \n",V);//The answers vary due to round off error
+
+//To find Xi for symmetric TE mode
+deff('t=f(Xi)','t=V/2*cos(Xi)-Xi');//Rearranging the terms of eqn for symmetric TE modes i.e. 'ξtanξ=((V/2)^2-ξ^2)', we get 'ξ=V/2*cos(ξ)'
+Xi0=0;//Starting value of Xi
+Xi=fsolve(Xi0,f);//Root of eqn 't=0'
+b=1-(Xi^2)/(V^2/4);//dimensionless propagation constant
+mprintf("\n b=%f",b);//The answers vary due to round off error
+B=sqrt(b*((n1^2)-(n2^2))+(n2^2));
+mprintf("\nBeta/k0=%f",B);//The answers vary due to round off error
+
+//To find Xi for symmetric TM mode
+deff('t=f(Xi)','t=(1-(n1/n2)^2)*(Xi^2)+(V^2)/4-(Xi*sec(Xi))^2');//Rearranging the terms of eqn for symmetric TE modes i.e. 'ξtanξ=((V/2)^2-ξ^2)', we get 'ξ=V/2*cos(ξ)'
+Xi0=0;//Starting value of Xi
+Xi=fsolve(Xi0,f);//Root of eqn 't=0'
+b=1-(Xi^2)/(V^2/4);//dimensionless propagation constant
+mprintf("\n b=%f",b);//The answer provided in the textbook is wrong
+B=sqrt(b*((n1^2)-(n2^2))+(n2^2));
+mprintf("\nBeta/k0=%f",B);//The answer provided in the textbook is wrong
diff --git a/3638/CH8/EX8.1/Ex8_1.jpg b/3638/CH8/EX8.1/Ex8_1.jpg Binary files differnew file mode 100644 index 000000000..e111b4f38 --- /dev/null +++ b/3638/CH8/EX8.1/Ex8_1.jpg diff --git a/3638/CH8/EX8.1/Ex8_1.sce b/3638/CH8/EX8.1/Ex8_1.sce new file mode 100644 index 000000000..571d79a35 --- /dev/null +++ b/3638/CH8/EX8.1/Ex8_1.sce @@ -0,0 +1,31 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 8.1
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given Case(1)
+n2=1.45;//refractive index of cladding
+a=3e-6;//radius of core in m
+delta=0.0064//fractional change in refractive index
+lambda0=1.546e-6;//wavelength in m
+n1=n2/(1-delta);//refractive index of core
+V=2*(%pi)*a*sqrt((n1^2)-(n2^2))/lambda0;//corresponding dimensionless V number
+mprintf("\n For fiber 1:");
+mprintf("\n V=%.1f at lambda0=%.3f um ",V,lambda0/1e-6);//Division by 10^(-6) to convert into um
+b=0.41616;//value of dimensionless propagation constant corresponding to V=2 as per given table
+B=sqrt((n2^2)+b*((n1^2)-(n2^2)));//corresponding value of Beta/k0
+mprintf("\n Beta/k0=%f",B);//The answers vary due to round off error
+
+//given Case(2)
+n2=1.45;//refractive index of cladding
+a=2e-6;//radius of core in m
+delta=0.010//fractional change in refractive index
+lambda0=1.288e-6;//wavelength in m
+n1=n2/(1-delta);//refractive index of core
+V=2*(%pi)*a*sqrt((n1^2)-(n2^2))/lambda0;//corresponding dimensionless V number
+mprintf("\n For fiber 2:");
+mprintf("\n V=%.1f at lambda0=%.3f um ",V,lambda0/1e-6);//Division by 10^(-6) to convert into um
+b=0.41616;//value of dimensionless propagation constant corresponding to V=2 as per given table
+B=sqrt((n2^2)+b*((n1^2)-(n2^2)));//corresponding value of Beta/k0
+mprintf("\n Beta/k0=%f",B);//The answers vary due to round off error
diff --git a/3638/CH8/EX8.3/Ex8_3.jpg b/3638/CH8/EX8.3/Ex8_3.jpg Binary files differnew file mode 100644 index 000000000..f2c1c6592 --- /dev/null +++ b/3638/CH8/EX8.3/Ex8_3.jpg diff --git a/3638/CH8/EX8.3/Ex8_3.sce b/3638/CH8/EX8.3/Ex8_3.sce new file mode 100644 index 000000000..bff1d201c --- /dev/null +++ b/3638/CH8/EX8.3/Ex8_3.sce @@ -0,0 +1,12 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 8.3
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda0=1300e-9;//operating wavelength of single mode fiber in m
+omega=5e-6;//spot size of fiber in m
+alphat=0.1;//maximum value of loss in dB
+u=sqrt(alphat*(omega^2)/4.34);//corresponding maximum value of transverse offset in m
+mprintf("Maximum value of u=%.2f um",u/1e-6);//division by 1e-6 to convert in um
diff --git a/3638/CH8/EX8.4/Ex8_4.jpg b/3638/CH8/EX8.4/Ex8_4.jpg Binary files differnew file mode 100644 index 000000000..3134a8be5 --- /dev/null +++ b/3638/CH8/EX8.4/Ex8_4.jpg diff --git a/3638/CH8/EX8.4/Ex8_4.sce b/3638/CH8/EX8.4/Ex8_4.sce new file mode 100644 index 000000000..84a33eaca --- /dev/null +++ b/3638/CH8/EX8.4/Ex8_4.sce @@ -0,0 +1,14 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 8.4
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda0=1300e-9;//operating wavelength of single mode fiber in m
+omega=5e-6;//spot size of fiber in m
+n1=1.45;//refractive index of core
+n2=1.45;//refractive index of cladding
+alphat=0.1;//maximum value of splice loss due to angular misalignment in dB
+theta=sqrt(alphat*(lambda0^2)/(4.34*((%pi)*n1*omega)^2));//corresponding maximum value of angular misalignment in radians
+mprintf("Maximum value of theta=%.1f degrees",theta*180/(%pi));//multiplying by 180/pi to convert in degrees
diff --git a/3638/CH8/EX8.5/Ex8_5.jpg b/3638/CH8/EX8.5/Ex8_5.jpg Binary files differnew file mode 100644 index 000000000..fa6c60656 --- /dev/null +++ b/3638/CH8/EX8.5/Ex8_5.jpg diff --git a/3638/CH8/EX8.5/Ex8_5.sce b/3638/CH8/EX8.5/Ex8_5.sce new file mode 100644 index 000000000..2b0aad6d6 --- /dev/null +++ b/3638/CH8/EX8.5/Ex8_5.sce @@ -0,0 +1,16 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 8.5
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda0=1300e-9;//operating wavelength of single mode fiber in m
+omega=5e-6;//spot size of fiber in m
+n1=1.45;//refractive index of core
+n2=1.45;//refractive index of cladding
+D=20e-6;//longitudinal misalignment in m
+Dbar=D*lambda0/(2*(%pi)*n1*(omega^2));//dimensionless normalized separation
+mprintf("Dbar=%f",Dbar);//The answers vary due to round off error
+alphat=10*log10(1+(Dbar^2));//corresponding value of splice loss due to longitudinal misalignment in dB
+mprintf("\n Corresponding value of splice loss=%.2f dB",alphat);
diff --git a/3638/CH8/EX8.6/Ex8_6.jpg b/3638/CH8/EX8.6/Ex8_6.jpg Binary files differnew file mode 100644 index 000000000..4d3bb9c07 --- /dev/null +++ b/3638/CH8/EX8.6/Ex8_6.jpg diff --git a/3638/CH8/EX8.6/Ex8_6.sce b/3638/CH8/EX8.6/Ex8_6.sce new file mode 100644 index 000000000..460a95753 --- /dev/null +++ b/3638/CH8/EX8.6/Ex8_6.sce @@ -0,0 +1,12 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 8.6
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda0=1300e-9;//operating wavelength of single mode fiber in m
+MFD=10e-6;//mode field diameter of fiber in m
+omega=MFD/2;//corresponding spot size of fiber in m
+thetae=asind(lambda0/(%pi*omega));//corresponding value of angle in degrees where amplitude falls to 1/e of maximum value
+mprintf("Corresponding value of angle=%.2f degrees",thetae);
diff --git a/3638/CH8/EX8.7/Ex8_7.jpg b/3638/CH8/EX8.7/Ex8_7.jpg Binary files differnew file mode 100644 index 000000000..ba2b9dca9 --- /dev/null +++ b/3638/CH8/EX8.7/Ex8_7.jpg diff --git a/3638/CH8/EX8.7/Ex8_7.sce b/3638/CH8/EX8.7/Ex8_7.sce new file mode 100644 index 000000000..409e8cf79 --- /dev/null +++ b/3638/CH8/EX8.7/Ex8_7.sce @@ -0,0 +1,12 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 8.7
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda0=633e-9;//operating wavelength of single mode fiber in m
+MFD=5e-6;//mode field diameter of fiber in m
+omega=MFD/2;//corresponding spot size of fiber in m
+thetae=asind(lambda0/(%pi*omega));//corresponding value of angle in degrees where amplitude falls to 1/e of maximum value
+mprintf("Corresponding value of angle=%.2f degrees",thetae);
diff --git a/3638/CH8/EX8.8/Ex8_8.jpg b/3638/CH8/EX8.8/Ex8_8.jpg Binary files differnew file mode 100644 index 000000000..37e77dd21 --- /dev/null +++ b/3638/CH8/EX8.8/Ex8_8.jpg diff --git a/3638/CH8/EX8.8/Ex8_8.sce b/3638/CH8/EX8.8/Ex8_8.sce new file mode 100644 index 000000000..0bdab9bd1 --- /dev/null +++ b/3638/CH8/EX8.8/Ex8_8.sce @@ -0,0 +1,14 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 8.8
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda0=1.3e-6;//operating wavelength of single mode fiber in m
+thetah=2.74;//angle corresponding to 3 dB point in degrees
+k0=2*%pi/lambda0;//free space wave number in rad/m
+omega=sqrt(2*log(2))/(k0*sind(2.74));//corresponding spot size of fiber in m
+d=2*omega;//corresponding value of Gaussian mode field diameter in m
+mprintf("Corresponding mode field diameter=%f um",d/1e-6)//division by 1e-6 to convert in um
+//The answer provided in the textbook is wrong
diff --git a/3638/CH8/EX8.9/Ex8_9.jpg b/3638/CH8/EX8.9/Ex8_9.jpg Binary files differnew file mode 100644 index 000000000..50ad46336 --- /dev/null +++ b/3638/CH8/EX8.9/Ex8_9.jpg diff --git a/3638/CH8/EX8.9/Ex8_9.sce b/3638/CH8/EX8.9/Ex8_9.sce new file mode 100644 index 000000000..4bfaaee5e --- /dev/null +++ b/3638/CH8/EX8.9/Ex8_9.sce @@ -0,0 +1,20 @@ +//Introduction to Fiber Optics by A. Ghatak and K. Thyagarajan, Cambridge, New Delhi, 1999
+//Example 8.9
+//OS=Windows XP sp3
+//Scilab version 5.5.2
+clc;
+clear;
+//given
+lambda0=1.3e-6;//operating wavelength of single mode fiber in m
+thetah=2.357;//angle corresponding to 3 dB point in degrees
+thetax=12.73;//angle in degrees at which intensity first becomes zero
+sigmax=sind(thetax)/sind(thetah);//ratio of sine of angles
+V=8.039-2.347*sigmax+0.3329*sigmax^2-0.0218*sigmax^3+0.00054*sigmax^4;//corresponding dimensionless V number
+alphah=-0.7858+0.994*V-0.1155*V^2;
+k0=2*%pi/lambda0;//free space wave number in rad/m
+a=alphah/(k0*sind(thetah));//radius of core in m
+NA=V*lambda0/(2*%pi*a);//corresponding value of numerical aperture
+mprintf("The ESI parameters of given fiber are:");
+mprintf("\n Radius of core=%f um",a/1e-6);//division by 1e-6 to convert in um
+//The answers vary due to round off error
+mprintf("\n Numerical aperture=%.2f",NA);
|