diff options
author | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
---|---|---|
committer | prashantsinalkar | 2017-10-10 12:27:19 +0530 |
commit | 7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch) | |
tree | dbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /3472/CH24 | |
parent | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff) | |
download | Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2 Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip |
initial commit / add all books
Diffstat (limited to '3472/CH24')
-rw-r--r-- | 3472/CH24/EX24.1/Example24_1.sce | 41 | ||||
-rw-r--r-- | 3472/CH24/EX24.2/Example24_2.sce | 22 | ||||
-rw-r--r-- | 3472/CH24/EX24.3/Example24_3.sce | 23 | ||||
-rw-r--r-- | 3472/CH24/EX24.4/Example24_4.sce | 22 | ||||
-rw-r--r-- | 3472/CH24/EX24.5/Example24_5.sce | 41 | ||||
-rw-r--r-- | 3472/CH24/EX24.6/Example24_6.sce | 35 | ||||
-rw-r--r-- | 3472/CH24/EX24.7/Example24_7.sce | 40 | ||||
-rw-r--r-- | 3472/CH24/EX24.8/Example24_8.sce | 29 | ||||
-rw-r--r-- | 3472/CH24/EX24.9/Example24_9.sce | 35 |
9 files changed, 288 insertions, 0 deletions
diff --git a/3472/CH24/EX24.1/Example24_1.sce b/3472/CH24/EX24.1/Example24_1.sce new file mode 100644 index 000000000..6ca53dff1 --- /dev/null +++ b/3472/CH24/EX24.1/Example24_1.sce @@ -0,0 +1,41 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
+
+// EXAMPLE : 17.1 :
+// Page number 422-423
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+no_phase = 3.0 // Number of phases in ac transmission system
+V = 380.0*10**3 // Voltage b/w lines(V)
+load = 100.0 // Load(MW)
+PF = 0.9 // Power factor
+l = 150.0 // Line length(km)
+n = 0.92 // Efficiency
+r = 0.045 // Resistance(ohm/km/sq.cm)
+w_cu_1 = 0.01 // Weight of 1 cm^3 copper(kg)
+
+// Calculations
+// Case(i)
+P_loss = (1-n)*load // Power loss in the line(MW)
+I_L = load*10**6/(3**0.5*V*PF) // Line current(A)
+loss_cu = P_loss/no_phase*10**6 // I^2*R loss per conductor(W)
+R = loss_cu/I_L**2 // Resistance per conductor(ohm)
+R_km = R/l // Resistance per conductor per km(ohm)
+area = r/R_km // Conductor area(Sq.cm)
+volume = area*100.0 // Volume of copper per km run(cm^3)
+W_cu_km = volume*w_cu_1 // Weight of copper per km run(kg)
+W_cu = no_phase*l*1000*W_cu_km // Weight of copper for 3 conductors of 150 km(kg)
+// Case(ii)
+W_cu_dc = 1.0/2*PF**2*W_cu // Weight of copper conductor in dc(kg)
+
+// Results
+disp("PART II - EXAMPLE : 17.1 : SOLUTION :-")
+printf("\nWeight of copper required for a three-phase transmission system = %.f kg", W_cu)
+printf("\nWeight of copper required for the d-c transmission system = %.f kg \n", W_cu_dc)
+printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision")
diff --git a/3472/CH24/EX24.2/Example24_2.sce b/3472/CH24/EX24.2/Example24_2.sce new file mode 100644 index 000000000..5a018c867 --- /dev/null +++ b/3472/CH24/EX24.2/Example24_2.sce @@ -0,0 +1,22 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
+
+// EXAMPLE : 17.2 :
+// Page number 423
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+P_1 = 1.0 // Assume P1 to be 1
+
+// Calculations
+P_2 = (3.0*2)**0.5 // 3-phase power transmitted in terms of P_1
+inc_per = (P_2-P_1)/P_1*100 // Increase in power transmitted(%)
+
+// Results
+disp("PART II - EXAMPLE : 17.2 : SOLUTION :-")
+printf("\nPercentage increase in power transmitted = %.f percent", inc_per)
diff --git a/3472/CH24/EX24.3/Example24_3.sce b/3472/CH24/EX24.3/Example24_3.sce new file mode 100644 index 000000000..96520138e --- /dev/null +++ b/3472/CH24/EX24.3/Example24_3.sce @@ -0,0 +1,23 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
+
+// EXAMPLE : 17.3 :
+// Page number 424
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+PF = 0.95 // Lagging power factor
+
+// Calculations
+P_1 = 1.0 // Power in terms of V*I_1
+P_2 = 2.0*PF**2 // Power in terms of V*I_1
+P_additional_percentage = (P_2-P_1)/P_1*100 // Percentage additional power transmitted in a 3-phase 3-wire system
+
+// Results
+disp("PART II - EXAMPLE : 17.3 : SOLUTION :-")
+printf("\nPercentage additional power transmitted in a 3-phase 3-wire system = %.f percent", P_additional_percentage)
diff --git a/3472/CH24/EX24.4/Example24_4.sce b/3472/CH24/EX24.4/Example24_4.sce new file mode 100644 index 000000000..adc332977 --- /dev/null +++ b/3472/CH24/EX24.4/Example24_4.sce @@ -0,0 +1,22 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
+
+// EXAMPLE : 17.4 :
+// Page number 424-425
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+n = 3.0 // 3-phase 4 wire ac system
+
+// Calculations
+a2_a1 = 1.0/6 // Ratio of cross-sectional area of 2 wire dc to 3-phase 4-wire system
+ratio_cu = 3.5/2*a2_a1 // Copper for 3 phase 4 wire system to copper for 2 wire dc system
+
+// Results
+disp("PART II - EXAMPLE : 17.4 : SOLUTION :-")
+printf("\nCopper for 3-phase 4-wire system/Copper for 2-wire dc system = %.3f : 1", ratio_cu)
diff --git a/3472/CH24/EX24.5/Example24_5.sce b/3472/CH24/EX24.5/Example24_5.sce new file mode 100644 index 000000000..6975ac3c5 --- /dev/null +++ b/3472/CH24/EX24.5/Example24_5.sce @@ -0,0 +1,41 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
+
+// EXAMPLE : 17.5 :
+// Page number 425
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+L = 60.0 // Line length(km)
+P = 5.0 // Load(MW)
+PF = 0.8 // Lagging power factor
+V = 33.0*10**3 // Voltage(V)
+n = 0.85 // Transmission efficiency
+rho = 1.73*10**-8 // Specific resistance of copper(ohm-mt)
+density = 8900.0 // Density(kg/mt^3)
+
+// Calculations
+I = P*10**6/(3**0.5*V*PF) // Line current(A)
+line_loss = (1-n)*P*1000/n // Line loss(kW)
+line_loss_phase = line_loss/3.0 // Line loss/phase(kW)
+R = line_loss_phase*1000/I**2 // Resistance/phase(ohm)
+a = rho*L*1000/R // Area of cross section of conductor(m^2)
+volume = 3.0*a*L*1000 // Volume of copper(m^3)
+W_cu = volume*density // Weight of copper in 3-phase system(kg)
+I_1 = P*10**6/V // Current in single phase system(A)
+R_1 = line_loss*1000/(2*I_1**2) // Resistance in single phase system(ohm)
+a_1 = rho*L*1000/R_1 // Area of cross section of conductor in single phase system(m^2)
+volume_1 = 2.0*a_1*L*1000 // Volume of copper(m^3)
+W_cu_1 = volume_1*density // Weight of copper in 1-phase system(kg)
+reduction_cu = (W_cu-W_cu_1)/W_cu*100 // Reduction in copper(%)
+
+// Results
+disp("PART II - EXAMPLE : 17.5 : SOLUTION :-")
+printf("\nWeight of copper required for 3-phase 2-wire system = %.2e kg", W_cu)
+printf("\nReduction of weight of copper possible = %.1f percent \n", reduction_cu)
+printf("\nNOTE: ERROR: Calculation mistakes in the textbook solution")
diff --git a/3472/CH24/EX24.6/Example24_6.sce b/3472/CH24/EX24.6/Example24_6.sce new file mode 100644 index 000000000..c7a194cbc --- /dev/null +++ b/3472/CH24/EX24.6/Example24_6.sce @@ -0,0 +1,35 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
+
+// EXAMPLE : 17.6 :
+// Page number 427-428
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+L = 250.0 // Cable length(m)
+P = 80.0*10**3 // Load(W)
+V = 400.0 // Voltage(V)
+PF = 0.8 // Lagging power factor
+time = 4000.0 // Time of operation(hours/annum)
+a = poly(0,'a') // Area of each conductor(Sq.cm)
+cost_instal = 15.0*a+25 // Cost of cable including installation(Rs/m)
+interest_per = 0.1 // Interest & depreciation
+cost_waste_per = 0.1 // Cost of energy wasted(Rs/unit)
+r = 0.173 // Resistance per km of 1 cm^2(ohm)
+
+// Calculations
+I = P/(3**0.5*V*PF) // Line current(A)
+energy_waste = 3.0*I**2*r/a*L*10**-3*time*10**-3 // Energy wasted per annum(kWh)
+cost_energy_waste = cost_waste_per*energy_waste // Annual cost of energy wasted as losses(Rs)
+capitaL_cost_cable = cost_instal*L // Capital cost of cable(Rs)
+annual_cost_cable = capitaL_cost_cable*cost_waste_per // Annual cost on cable(Rs)
+area = (1081.25/375)**0.5 // Area = a(Sq.cm). Simplified and taken final answer
+
+// Results
+disp("PART II - EXAMPLE : 17.6 : SOLUTION :-")
+printf("\nEconomical cross-section of a 3-core distributor cable, a = %.1f cm^2", area)
diff --git a/3472/CH24/EX24.7/Example24_7.sce b/3472/CH24/EX24.7/Example24_7.sce new file mode 100644 index 000000000..73082f6ce --- /dev/null +++ b/3472/CH24/EX24.7/Example24_7.sce @@ -0,0 +1,40 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
+
+// EXAMPLE : 17.7 :
+// Page number 428
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+V = 110.0*10**3 // Voltage(V)
+l_1 = 24.0*10**6 // Load(MW)
+t_1 = 6.0 // Time(hours)
+l_2 = 8.0*10**6 // Load(MW)
+t_2 = 6.0 // Time(hours)
+l_3 = 4.0*10**6 // Load(MW)
+t_3 = 12.0 // Time(hours)
+PF = 0.8 // Lagging power factor
+a = poly(0,'a') // Cross-section of each conductor(Sq.cm)
+cost_line = 12000.0+8000*a // Cost of line including erection(Rs/km)
+R = 0.19/a // Resistance per km of each conductor(ohm)
+cost_energy = 8.0/100 // Energy cost(Rs/unit)
+interest_per = 0.1 // Interest & depreciation. Assumption
+
+// Calculations
+annual_charge = interest_per*cost_line // Total annual charge(Rs)
+I_1 = l_1/(3**0.5*V*PF) // Line current for load 1(A)
+I_2 = l_2/(3**0.5*V*PF) // Line current for load 2(A)
+I_3 = l_3/(3**0.5*V*PF) // Line current for load 3(A)
+I_2_t = I_1**2*t_1+I_2**2*t_2+I_3**2*t_3 // I^2*t
+annual_energy = 3.0*R*365/1000*I_2_t // Annual energy consumption on account of losses(kWh)
+cost_waste = annual_energy*cost_energy // Cost of energy wasted per annum(Rs)
+area = (2888.62809917355/800.0)**0.5 // Economical cross-section = a(Sq.cm). Simplified and taken final answer
+
+// Results
+disp("PART II - EXAMPLE : 17.7 : SOLUTION :-")
+printf("\nMost economical cross-section, a = %.2f cm^2", area)
diff --git a/3472/CH24/EX24.8/Example24_8.sce b/3472/CH24/EX24.8/Example24_8.sce new file mode 100644 index 000000000..5522c76d1 --- /dev/null +++ b/3472/CH24/EX24.8/Example24_8.sce @@ -0,0 +1,29 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
+
+// EXAMPLE : 17.8 :
+// Page number 428-429
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+cost_km_cu = 2800.0 // Cost per km for each copper conductor of sq.cm(Rs)
+LF_I = 80.0/100 // Load factor of load current
+LF_loss = 65.0/100 // Load factor of losses
+interest_per = 10.0/100 // Rate of interest and depreciation
+cost_energy = 5.0/100 // Cost of energy(Rs/kWh)
+rho = 1.78*10**-8 // Resistivity(ohm-m)
+
+// Calculations
+P_2 = cost_km_cu*interest_per // Cost in terms of L(Rs)
+time_year = 365.0*24 // Total hours in a year
+P_3 = cost_energy*rho*10**4*time_year*LF_loss // Cost in terms of I^2 & L(Rs)
+delta = (P_2/P_3)**0.5 // Economical current density for the transmission line(A/sq.cm)
+
+// Results
+disp("PART II - EXAMPLE : 17.8 : SOLUTION :-")
+printf("\nMost economical current density for the transmission line, δ = %.f A/sq.cm", delta)
diff --git a/3472/CH24/EX24.9/Example24_9.sce b/3472/CH24/EX24.9/Example24_9.sce new file mode 100644 index 000000000..47de007ac --- /dev/null +++ b/3472/CH24/EX24.9/Example24_9.sce @@ -0,0 +1,35 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
+
+// EXAMPLE : 17.9 :
+// Page number 429
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+MD = 1000.0 // Maximum demand(kW)
+energy_cons = 5.0*10**6 // Annual energy consumption(kWh)
+PF = 0.85 // Power factor
+capital_cost = 80000.0 // Capital cost of cable(Rs/km)
+cost_energy = 5.0/100 // Energy cost(Rs/kWh)
+interest_per = 10.0/100 // Rate of interest and depreciation
+r_specific = 1.72*10**-6 // Specific resistance of copper(ohm/cubic.cm)
+V = 11.0 // Voltage(kV)
+
+// Calculations
+I = MD/(3**0.5*V*PF) // Line current corresponding to maximum demand(A)
+hours_year = 365.0*24 // Total hours in a year
+LF = energy_cons/(MD*hours_year) // Load factor
+loss_LF = 0.25*LF+0.75*LF**2 // Loss load factor
+P_2 = capital_cost*interest_per // Cost in terms of L(Rs)
+P_3 = 3.0*I**2*r_specific*10**4*hours_year*loss_LF*cost_energy // Cost in terms of I^2 & L(Rs)
+a = (P_3/P_2)**0.5 // Most economical cross-section of conductor(sq.cm)
+
+// Results
+disp("PART II - EXAMPLE : 17.9 : SOLUTION :-")
+printf("\nMost economical cross-section of the conductor, a = %.2f cm^2 \n", a)
+printf("\nNOTE: ERROR: Calculation mistake in the textbook solution")
|