blob: 6ca53dff15483c25cd9c27df4a2c4a91f7361073 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS
// EXAMPLE : 17.1 :
// Page number 422-423
clear ; clc ; close ; // Clear the work space and console
// Given data
no_phase = 3.0 // Number of phases in ac transmission system
V = 380.0*10**3 // Voltage b/w lines(V)
load = 100.0 // Load(MW)
PF = 0.9 // Power factor
l = 150.0 // Line length(km)
n = 0.92 // Efficiency
r = 0.045 // Resistance(ohm/km/sq.cm)
w_cu_1 = 0.01 // Weight of 1 cm^3 copper(kg)
// Calculations
// Case(i)
P_loss = (1-n)*load // Power loss in the line(MW)
I_L = load*10**6/(3**0.5*V*PF) // Line current(A)
loss_cu = P_loss/no_phase*10**6 // I^2*R loss per conductor(W)
R = loss_cu/I_L**2 // Resistance per conductor(ohm)
R_km = R/l // Resistance per conductor per km(ohm)
area = r/R_km // Conductor area(Sq.cm)
volume = area*100.0 // Volume of copper per km run(cm^3)
W_cu_km = volume*w_cu_1 // Weight of copper per km run(kg)
W_cu = no_phase*l*1000*W_cu_km // Weight of copper for 3 conductors of 150 km(kg)
// Case(ii)
W_cu_dc = 1.0/2*PF**2*W_cu // Weight of copper conductor in dc(kg)
// Results
disp("PART II - EXAMPLE : 17.1 : SOLUTION :-")
printf("\nWeight of copper required for a three-phase transmission system = %.f kg", W_cu)
printf("\nWeight of copper required for the d-c transmission system = %.f kg \n", W_cu_dc)
printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision")
|