diff options
author | priyanka | 2015-06-24 15:03:17 +0530 |
---|---|---|
committer | priyanka | 2015-06-24 15:03:17 +0530 |
commit | b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch) | |
tree | ab291cffc65280e58ac82470ba63fbcca7805165 /1949/CH1 | |
download | Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2 Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip |
initial commit / add all books
Diffstat (limited to '1949/CH1')
32 files changed, 505 insertions, 0 deletions
diff --git a/1949/CH1/EX1.1/1_1.sce b/1949/CH1/EX1.1/1_1.sce new file mode 100755 index 000000000..e318e57c1 --- /dev/null +++ b/1949/CH1/EX1.1/1_1.sce @@ -0,0 +1,17 @@ +//Chapter-1,Example 1_1,Page 1-16
+clc()
+
+//Given Data:
+i=45*%pi/180 //angle of incidence
+u=1.33 //Refractive index of a soap film
+lam=5.896*10^-7 //wavelength of required yellow light
+
+//Calculations:
+//u=sin i/sin r //Snell's law .So,
+r=asin(sin(i)/u) //angle of reflection
+
+//Now, condition for bright fringe is
+//2ut*cos r=(2n-1)lam/2
+//Here n=1
+t=lam/(2*2*u*cos(r)) //minimum thickness of film at which light will appear bright yellow
+printf('Minimum thickness of film at which light will appear bright yellow of required wavelength is =%.10f m',t)
diff --git a/1949/CH1/EX1.10/1_10.sce b/1949/CH1/EX1.10/1_10.sce new file mode 100755 index 000000000..88bd745bc --- /dev/null +++ b/1949/CH1/EX1.10/1_10.sce @@ -0,0 +1,13 @@ +//Chapter-1,Example 1_10,Page 1-21
+clc()
+
+//Given Data:
+u1=1.2 //Refractive index of drop of oil
+u2=1.33 //Refractive index of water
+lam=4.8*10^-7 //wavelength of light
+n=3 //order
+r=0 //normal incidence,so r=0
+
+//Calculations:
+t=n*lam/(2*u1) //Thickness of oil drop
+printf('Thickness of oil drop is =%.8f m',t)
diff --git a/1949/CH1/EX1.11/1_11.sce b/1949/CH1/EX1.11/1_11.sce new file mode 100755 index 000000000..548c970b7 --- /dev/null +++ b/1949/CH1/EX1.11/1_11.sce @@ -0,0 +1,20 @@ +//Chapter-1,Example 1_11,Page 1-22
+clc()
+
+//Given Data:
+i=asin(4/5) //angle of incidence
+u=4/3 //Refractive index of a soap film
+lam1=6.1*10^-7 //wavelength of light
+lam2=6*10^-7 //wavelength of light
+
+//Calculations:
+//u=sin i/sin r //Snell's law .So,
+r=asin(sin(i)/u) //angle of reflection
+
+//Now, condition for dark band is
+//2ut*cos r=n*lam
+//for consecutive bands, n=lam2/(lam1-lam2). hence
+
+t=lam2*lam1/((lam1-lam2)*2*u*sqrt(1-(sin(i)/u)^2)) //thickness of film
+printf('Thickness of the film is =%.7f m',t)
+
diff --git a/1949/CH1/EX1.12/1_12.sce b/1949/CH1/EX1.12/1_12.sce new file mode 100755 index 000000000..6f23e5dbc --- /dev/null +++ b/1949/CH1/EX1.12/1_12.sce @@ -0,0 +1,15 @@ +//Chapter-1,Example 1_12,Page 1-40
+clc()
+
+//Given Data:
+n=10 //10th dark ring
+Dn=0.5*10^-2 //Diameter of ring
+lam=6*10^-7 //wavelength of light
+
+//Calculations:
+//As Dn^2=4*n*R*lam
+R=Dn^2/(4*n*lam) //Radius of curvature of the lens
+printf('Radius of curvature of the lens is =%.2f m \n \n',R)
+
+t=Dn^2/(8*R) //thickness of air film
+printf(' Thickness of air film is =%.7f m \n',t)
diff --git a/1949/CH1/EX1.13/1_13.sce b/1949/CH1/EX1.13/1_13.sce new file mode 100755 index 000000000..5d30de013 --- /dev/null +++ b/1949/CH1/EX1.13/1_13.sce @@ -0,0 +1,14 @@ +//Chapter-1,Example 1_13,Page 1-41
+clc()
+
+//Given Data:
+
+B=0.25*10^-2 //fringe spacing
+lam=5.5*10^-7 //Wavelength of light
+u=1.4 //Refractive index of wedge
+
+//Calculations:
+//We know, B=lam/(2*u*theta).
+theta1=lam/(2*u*B) //angle of wedge in radians
+theta=theta1*3600*180/%pi //angle of wedge in seconds
+printf('Angle of wedge is =%.1f seconds',theta)
diff --git a/1949/CH1/EX1.14/1_14.sce b/1949/CH1/EX1.14/1_14.sce new file mode 100755 index 000000000..5350955dd --- /dev/null +++ b/1949/CH1/EX1.14/1_14.sce @@ -0,0 +1,16 @@ +//Chapter-1,Example 1_14,Page 1-41
+clc()
+
+//Given Data:
+n=4 //4th dark ring
+m=12 //m=n+p
+D4=0.4*10^-2 //Diameter of 4th ring
+D12=0.7*10^-2 //Diameter of 12th ring
+
+//Calculations:
+
+//(Dn+p)^2-Dn^2=4*p*lam*R
+//Solving, (D12^2-D4^2)/(D20^2-D4^2)
+//We get above value =1/2. Hence
+D20=sqrt(2*D12^2-D4^2) //Diameter of 20th ring
+printf('Diameter of 20th ring is =%.5f m \n',D20)
diff --git a/1949/CH1/EX1.15/1_15.sce b/1949/CH1/EX1.15/1_15.sce new file mode 100755 index 000000000..2e6520d2c --- /dev/null +++ b/1949/CH1/EX1.15/1_15.sce @@ -0,0 +1,15 @@ +//Chapter-1,Example 1_15,Page 1-42
+clc()
+
+//Given Data:
+n=6 //6th bright ring
+D6=0.31*10^-2 //Diameter of 6th ring
+lam=6*10^-7 //wavelength of light
+R=1 //Radius of curvature
+
+//Calculations:
+
+//Diameter of nth bright ring is
+//Dn^2=2(2n-1)*lam*R/u. Hence
+u=2*(2*n-1)*lam*R/(D6)^2 //Refractive index of liquid
+printf('Refractive index of liquid is =%.3f \n',u)
diff --git a/1949/CH1/EX1.16/1_16.sce b/1949/CH1/EX1.16/1_16.sce new file mode 100755 index 000000000..5643f393e --- /dev/null +++ b/1949/CH1/EX1.16/1_16.sce @@ -0,0 +1,26 @@ +//Chapter-1,Example 1_16,Page 1-42
+clc()
+
+//Given Data:
+lam=6*10^-7 //wavelength of light
+k=0.125*10^-4 //k=D(n+1)^2-Dn^2.
+u=1 //Refractive index of medium between lens and plate
+//Calculations:
+
+//i)
+lam1=4.5*10^-7 //new wavelength of light
+//Difference between squres of diameters of successive rings is directly proportional to wavelength.So,
+k1=lam1/lam*k //new Difference between squres of diameters of successive rings after changing wavelength
+printf('New Difference between squres of diameters of successive rings after changing wavelength is =%.8f m^2 \n',k1)
+
+//ii)
+u2=1.33 //Refractive index of liquid introduced between lens and plate
+//Difference between squres of diameters of successive rings is inversely proportional to Refractive index.so,
+k2=u/u2*k //new Difference between squres of diameters of successive rings after changing refractive index
+printf(' New Difference between squres of diameters of successive rings after changing refrective index is =%.8f m^2 \n',k2)
+
+//iii)
+//Difference between squres of diameters of successive rings is directly proportional to Radius of curvature.So,
+//after doubling radius of curvature,
+k3=2*k //new Difference between squres of diameters of successive rings after doubling radius of curvature
+printf(' New Difference between squres of diameters of successive rings after doubling radius of curvature is =%.8f m^2 \n',k3)
diff --git a/1949/CH1/EX1.17/1_17.sce b/1949/CH1/EX1.17/1_17.sce new file mode 100755 index 000000000..be905679a --- /dev/null +++ b/1949/CH1/EX1.17/1_17.sce @@ -0,0 +1,14 @@ +//Chapter-1,Example 1_17,Page 1-43
+clc()
+
+//Given Data:
+Dn=0.225*10^-2 //Diameter of nth ring
+Dm=0.45*10^-2 //Diameter of (n+9)th ring
+lam=6*10^-7 //wavelength of light
+R=0.9 //Radius of curvature
+p=9
+
+//Calculations:
+//(Dn+p)^2-Dn^2=4*p*lam*R/u
+u=4*p*lam*R/((Dm)^2-Dn^2) //Refractive index of liquid
+printf('Refractive index of liquid is =%.2f \n',u)
diff --git a/1949/CH1/EX1.18/1_18.sce b/1949/CH1/EX1.18/1_18.sce new file mode 100755 index 000000000..9e4df424e --- /dev/null +++ b/1949/CH1/EX1.18/1_18.sce @@ -0,0 +1,14 @@ +//Chapter-1,Example 1_18,Page 1-44
+clc()
+
+//Given Data:
+D10=0.5*10^-2 //Diameter of 10th ring
+lam=5.5*10^-7 //wavelength of light
+u=1.25 //Refractive index of liquid
+
+
+//Calculations:
+//As Dn^2=4*n*R*lam/u
+//Dn^2 is inversely proportional to refractive index.
+D10n=D10/sqrt(u) //new diameter of 10th ring after changing medium between lens and plate
+printf('new diameter of 10th ring after changing medium between lens and plate is =%.6f m \n',D10n)
diff --git a/1949/CH1/EX1.19/1_19.sce b/1949/CH1/EX1.19/1_19.sce new file mode 100755 index 000000000..afa7e527d --- /dev/null +++ b/1949/CH1/EX1.19/1_19.sce @@ -0,0 +1,13 @@ +//Chapter-1,Example 1_19,Page 1-45
+clc()
+
+//Given Data:
+D5=0.336*10^-2 //Diameter of 5th ring
+D15=0.59*10^-2 //Diameter of 15th ring
+lam=5.89*10^-7 //wavelength of light
+p=10 //n=5,n+p=15
+
+//Calculations:
+//(Dn+p)^2-Dn^2=4*p*lam*R/u
+R=((D15)^2-D5^2)/(4*p*lam) //Radius of curvature of the lens
+printf('Radius of curvature of the lens is =%.3f m \n',R)
diff --git a/1949/CH1/EX1.2/1_2.sce b/1949/CH1/EX1.2/1_2.sce new file mode 100755 index 000000000..412400fe6 --- /dev/null +++ b/1949/CH1/EX1.2/1_2.sce @@ -0,0 +1,11 @@ +//Chapter-1,Example 1_2,Page 1-16
+clc()
+
+//Given Data:
+theta=40/3600*%pi/180 //angle of wedge in radians
+B=0.12*10^-2 //fringe spacing
+
+//Calculations:
+//We know, B=lam/(2*u*theta). Here u=1
+lam=2*B*theta //wavelength of light used
+printf('Wavelength of light used is =%.10f m',lam)
diff --git a/1949/CH1/EX1.20.1/1_20_1.sce b/1949/CH1/EX1.20.1/1_20_1.sce new file mode 100755 index 000000000..a37375d21 --- /dev/null +++ b/1949/CH1/EX1.20.1/1_20_1.sce @@ -0,0 +1,21 @@ +//Chapter-1,Example 1_20_1,Page 1-52
+clc()
+
+//Given Data:
+i=45*%pi/180 //angle of incidence
+u=1.2 //Refractive index of a film
+t=4*10^-7 //thickness of film
+
+//Calculations:
+//u=sin i/sin r //Snell's law .So,
+r=asin(sin(i)/u) //angle of reflection
+
+//Now, condition for dark fringe is
+//2ut*cos r=n*lam
+lam1=2*u*t*cos(r)/1 //n=1
+printf('For n=1 wavelength is =%.10f m \n',lam1)
+printf(' This is in the visible spectrum and it will remain absent.\n \n')
+
+lam2=2*u*t*cos(r)/2 //n=2
+printf(' For n=2 wavelength is =%.10f m \n',lam2)
+printf(' This is not in the visible spectrum \n \n')
diff --git a/1949/CH1/EX1.20.2/1_20_2.sce b/1949/CH1/EX1.20.2/1_20_2.sce new file mode 100755 index 000000000..13293ac76 --- /dev/null +++ b/1949/CH1/EX1.20.2/1_20_2.sce @@ -0,0 +1,15 @@ +//Chapter-1,Example 1_20_2,Page 1-53
+clc()
+
+//Given Data:
+r=45*%pi/180 //angle of refraction
+u=1.45 //Refractive index of a medium
+lam=5.5*10^-7 //wavelength of required yellow light
+n=1
+
+//Calculations:
+
+//Now, condition for dark fringe is
+//2ut*cos r=n*lam
+t=n*lam/(2*u*cos(r)) //thickness of thin medium
+printf('Thickness of the thin medium is =%.10f m',t)
diff --git a/1949/CH1/EX1.20/1_20.sce b/1949/CH1/EX1.20/1_20.sce new file mode 100755 index 000000000..4e1ef55c1 --- /dev/null +++ b/1949/CH1/EX1.20/1_20.sce @@ -0,0 +1,14 @@ +//Chapter-1,Example 1_20,Page 1-45
+clc()
+
+//Given Data:
+n=10 //10th dark ring
+D10=0.6*10^-2 //Diameter of ring
+lam=6*10^-7 //wavelength of light
+u=4/3 //Refractive index of water
+
+
+//Calculations:
+//As Dn^2=4*n*R*lam/u
+R=D10^2*u/(4*n*lam) //Radius of curvature of the lens
+printf('Radius of curvature of the lens is =%.1f m \n',R)
diff --git a/1949/CH1/EX1.21/1_21.sce b/1949/CH1/EX1.21/1_21.sce new file mode 100755 index 000000000..e54fadb6f --- /dev/null +++ b/1949/CH1/EX1.21/1_21.sce @@ -0,0 +1,23 @@ +//Chapter-1,Example 1_21,Page 1-45
+clc()
+
+//Given Data:
+u=1.33 //Refractive index of a soap film
+r=0 //normal incidence
+t=5*10^-7 //thickness of film
+
+//Calculations:
+
+//Now, condition for maxima is
+//2ut*cos r=(2n-1)lam/2
+lam1=4*u*t*cos(r)/(2*1-1) //n=1
+printf('For n=1 wavelength is =%.10f m \n',lam1)
+lam2=4*u*t*cos(r)/(2*2-1) //n=2
+printf(' For n=2 wavelength is =%.10f m \n',lam2)
+lam3=4*u*t*cos(r)/(2*3-1) //n=3
+printf(' For n=3 wavelength is =%.10f m \n',lam3)
+lam4=4*u*t*cos(r)/(2*4-1) //n=4
+printf(' For n=4 wavelength is =%.10f m \n \n',lam4)
+
+printf(' Out of these wavelengths wavelength for n=3 lies in the visible spectrum. \n \n')
+printf(' Hence, wavelength for n=3 is the most reflected wavelength.')
diff --git a/1949/CH1/EX1.22/1_22.sce b/1949/CH1/EX1.22/1_22.sce new file mode 100755 index 000000000..6b3c03b52 --- /dev/null +++ b/1949/CH1/EX1.22/1_22.sce @@ -0,0 +1,15 @@ +//Chapter-1,Example 1_22,Page 1-46
+clc()
+
+//Given Data:
+u=1.5 //Refractive index of a oil
+lam=5.88*10^-7 //wavelength of required yellow light
+n=1 //for smallest thickness
+r=60*%pi/180 //angle of reflection
+
+//Calculations:
+
+//Now, condition for dark fringe is
+//2ut*cos r=n*lam
+t=n*lam/(2*u*cos(r)) //thickness of film
+printf('Thickness of the film is =%.10f m',t)
diff --git a/1949/CH1/EX1.23/1_23.sce b/1949/CH1/EX1.23/1_23.sce new file mode 100755 index 000000000..5a7f5bb32 --- /dev/null +++ b/1949/CH1/EX1.23/1_23.sce @@ -0,0 +1,12 @@ +//Chapter-1,Example 1_23,Page 1-46
+clc()
+
+//Given Data:
+theta=20/3600*%pi/180 //angle of wedge in radians
+B=0.25*10^-2 //fringe spacing
+u=1.4 //Refractive index of film
+
+//Calculations:
+//We know, B=lam/(2*u*theta).
+lam=2*B*theta*u //wavelength of light
+printf('Wavelength of light is =%.10f m',lam)
diff --git a/1949/CH1/EX1.24/1_24.sce b/1949/CH1/EX1.24/1_24.sce new file mode 100755 index 000000000..3824ccad5 --- /dev/null +++ b/1949/CH1/EX1.24/1_24.sce @@ -0,0 +1,12 @@ +//Chapter-1,Example 1_24,Page 1-47
+clc()
+
+//Given Data:
+//Dn=2*D40
+
+//Calculations:
+//As Dn^2=4*n*R*lam/u and Dn^2=4*D40^2
+//i.e. 4*n*R*lam/u=4*4*40*R*lam/u .hence,
+n=4*40 //order of the required ring
+printf('Order of the dark ring which will have double the diameter of that of 40th ring is =%.0f ',n)
+
diff --git a/1949/CH1/EX1.25/1_25.sce b/1949/CH1/EX1.25/1_25.sce new file mode 100755 index 000000000..032370372 --- /dev/null +++ b/1949/CH1/EX1.25/1_25.sce @@ -0,0 +1,14 @@ +//Chapter-1,Example 1_25,Page 1-47
+clc()
+
+//Given Data:
+lam1=6*10^-7 //wavelength of light
+lam2=4.5*10^-7 //wavelength of light
+R=0.9 //Radius of curvature
+
+//Calculations:
+//As Dn^2=4*n*R*lam.
+//Dn^2=D(n+1)^2 for different wavelengths.we get,
+n=lam2/(lam1-lam2) //nth dark ring due to lam1 which coincides with (n+1)th dark ring due lam2
+D3=sqrt(4*n*R*lam1) //diameter of 3rd dark ring for lam1
+printf('Diameter of 3rd dark ring for lam1 is =%.5f m \n',D3)
diff --git a/1949/CH1/EX1.26/1_26.sce b/1949/CH1/EX1.26/1_26.sce new file mode 100755 index 000000000..fd819fab3 --- /dev/null +++ b/1949/CH1/EX1.26/1_26.sce @@ -0,0 +1,17 @@ +//Chapter-1,Example 1_26,Page 1-48
+clc()
+
+//Given Data:
+i=45*%pi/180 //angle of incidence
+u=4/3 //Refractive index of soap film
+lam=5*10^-7 //wavelength of light
+t=1.5*10^-6 //thickness of film
+
+//Calculations:
+//u=sin i/sin r //Snell's law .So,
+r=asin(sin(i)/u) //angle of reflection
+
+//Now, condition for dark band is
+//2ut*cos r=n*lam
+n=2*u*t*cos(r)/lam //order of band
+printf('order of dark band is =%.1f \n',n)
diff --git a/1949/CH1/EX1.27/1_27.sce b/1949/CH1/EX1.27/1_27.sce new file mode 100755 index 000000000..0f6758d24 --- /dev/null +++ b/1949/CH1/EX1.27/1_27.sce @@ -0,0 +1,13 @@ +//Chapter-1,Example 1_27,Page 1-49
+clc()
+
+//Given Data:
+D5=0.336*10^-2 //Diameter of 5th ring
+D15=0.59*10^-2 //Diameter of 15th ring
+lam=5.89*10^-7 //wavelength of light
+p=10 //n=5,n+p=15
+
+//Calculations:
+//(Dn+p)^2-Dn^2=4*p*lam*R/u
+R=((D15)^2-D5^2)/(4*p*lam) //Radius of curvature of the lens
+printf('Radius of curvature of the lens is =%.4f m \n',R)
diff --git a/1949/CH1/EX1.29/1_29.sce b/1949/CH1/EX1.29/1_29.sce new file mode 100755 index 000000000..bbe75b916 --- /dev/null +++ b/1949/CH1/EX1.29/1_29.sce @@ -0,0 +1,16 @@ +//Chapter-1,Example 1_29,Page 1-50
+clc()
+
+//As Dn^2=4*n*R*lam.
+//thus, Dn is directly proportional to sqaure root of n
+D5=sqrt(5) //D5 is directly proportional to sqaure root of 5
+D4=sqrt(4) //D4 is directly proportional to sqaure root of 4
+k1=D5-D4
+printf('Separation between D5 and D4 is directly proportional to =%.3f \n',k1)
+
+D80=sqrt(80) //D80 is directly proportional to sqaure root of 80
+D79=sqrt(79) //D79 is directly proportional to sqaure root of 79
+k2=D80-D79
+printf(' Separation between D80 and D79 is directly proportional to =%.3f \n \n',k2)
+
+printf(' Thus, (D80-D79) < (D5-D4).\n Hence proved.')
diff --git a/1949/CH1/EX1.3/1_3.sce b/1949/CH1/EX1.3/1_3.sce new file mode 100755 index 000000000..7b8f851e1 --- /dev/null +++ b/1949/CH1/EX1.3/1_3.sce @@ -0,0 +1,17 @@ +//Chapter-1,Example 1_3,Page 1-17
+clc()
+
+//Given Data:
+i=30*%pi/180 //angle of incidence
+u=1.46 //Refractive index of a oil
+lam=5.890*10^-7 //wavelength of required yellow light
+n=8 //eighth dark band
+
+//Calculations:
+//u=sin i/sin r //Snell's law .So,
+r=asin(sin(i)/u) //angle of reflection
+
+//Now, condition for dark fringe is
+//2ut*cos r=n*lam
+t=n*lam/(2*u*cos(r)) //thickness of film
+printf('Thickness of the film is =%.10f m',t)
diff --git a/1949/CH1/EX1.30/1_30.sce b/1949/CH1/EX1.30/1_30.sce new file mode 100755 index 000000000..643103f19 --- /dev/null +++ b/1949/CH1/EX1.30/1_30.sce @@ -0,0 +1,13 @@ +//Chapter-1,Example 1_30,Page 1-51
+clc()
+
+//Given Data:
+D5=0.336*10^-2 //Diameter of 5th ring
+D15=0.59*10^-2 //Diameter of 15th ring
+p=10 //n=5,n+p=15
+R=1 //Radius of curvature
+
+//Calculations:
+//(Dn+p)^2-Dn^2=4*p*lam*R/u
+lam=((D15)^2-D5^2)/(4*p*R) //Wavelength of light
+printf('Wavelength of light is =%.10f m',lam)
diff --git a/1949/CH1/EX1.31/1_31.sce b/1949/CH1/EX1.31/1_31.sce new file mode 100755 index 000000000..1718ed1ad --- /dev/null +++ b/1949/CH1/EX1.31/1_31.sce @@ -0,0 +1,13 @@ +//Chapter-1,Example 1_31,Page 1-51
+clc()
+
+
+//Condition for bright band is
+//2ut*cos r = (2n-1)*lam1
+
+//for consecutive bands, 2n=(lam1+lam2)/(lam1-lam2).
+//thus, 2ut*cos r = lam2*lam1/(lam1-lam2)
+
+//And, thicknessof film
+//t= lam2*lam1/((2*u*cosr)(lam1-lam2))
+printf('Hence expression for thickness of film is obtained.')
diff --git a/1949/CH1/EX1.4/1_4.sce b/1949/CH1/EX1.4/1_4.sce new file mode 100755 index 000000000..32f39d480 --- /dev/null +++ b/1949/CH1/EX1.4/1_4.sce @@ -0,0 +1,14 @@ +//Chapter-1,Example 1_4,Page 1-17
+clc()
+
+//Given Data:
+
+B=0.1*10^-2 //fringe spacing
+lam=5.893*10^-7 //Wavelength of light
+u=1.52 //Refractive index of wedge
+
+//Calculations:
+//We know, B=lam/(2*u*theta). Here u=1
+theta1=lam/(2*u*B) //angle of wedge in radians
+theta=theta1*3600*180/%pi //angle of wedge in seconds
+printf('Angle of wedge is =%.0f seconds of an arc',theta)
diff --git a/1949/CH1/EX1.5/1_5.sce b/1949/CH1/EX1.5/1_5.sce new file mode 100755 index 000000000..069506513 --- /dev/null +++ b/1949/CH1/EX1.5/1_5.sce @@ -0,0 +1,15 @@ +//Chapter-1,Example 1_5,Page 1-18
+clc()
+
+//Given Data:
+t=0.2/(100)^2*10^-2 //thickness of film in meter
+lam=5.5*10^-7 //wavelength of light in meter
+r=0 //normal incidence
+n=1 //first band
+
+//Calculations:
+
+//Condition for dark fringe is
+//2ut*cos r =n*lam
+u=n*lam/(2*t*cos(r)) //Refractive index of a oil
+printf('Refractive index of a oil is =%.3f ',u)
diff --git a/1949/CH1/EX1.6/1_6.sce b/1949/CH1/EX1.6/1_6.sce new file mode 100755 index 000000000..ca3d30ebe --- /dev/null +++ b/1949/CH1/EX1.6/1_6.sce @@ -0,0 +1,23 @@ +//Chapter-1,Example 1_6,Page 1-18
+clc()
+
+//Given Data:
+lam=5.893*10^-7 //Wavelength of light
+u=1.42 //Refractive index of a soap film
+r=0 //normal incidence
+n=1 //first band
+
+//Calculations:
+
+//i)
+//Condition for dark fringe is
+//2ut*cos r=n*lam
+t1=n*lam/(2*u*cos(r)) //thickness of film for dark black fringe
+printf('Thickness of the film for dark black fringe is =%.10f m \n \n',t1)
+
+//ii)
+//Now, condition for bright fringe is
+//2ut*cos r=(2n-1)lam/2
+t2=lam/(2*2*u*cos(r)) //Thickness of film for bright fringe
+printf(' Thickness of film for bright fringe is =%.10f m \n \n',t2)
+
diff --git a/1949/CH1/EX1.7/1_7.sce b/1949/CH1/EX1.7/1_7.sce new file mode 100755 index 000000000..91fb38b4f --- /dev/null +++ b/1949/CH1/EX1.7/1_7.sce @@ -0,0 +1,17 @@ +//Chapter-1,Example 1_7,Page 1-19
+clc()
+
+//Given Data:
+i=30*%pi/180 //angle of incidence
+u=1.43 //Refractive index of a soap film
+lam=6*10^-7 //wavelength of light
+n=1 //For minimum thickness
+
+//Calculations:
+//u=sin i/sin r //Snell's law .So,
+r=asin(sin(i)/u) //angle of reflection
+
+//Now, condition of minima in transmitted system is
+//2ut*cos r=(2n-1)lam/2
+t=lam/(2*2*u*cos(r)) //minimum thickness of film
+printf('Minimum thickness of film is =%.9f m',t)
diff --git a/1949/CH1/EX1.8/1_8.sce b/1949/CH1/EX1.8/1_8.sce new file mode 100755 index 000000000..2e7793884 --- /dev/null +++ b/1949/CH1/EX1.8/1_8.sce @@ -0,0 +1,15 @@ +//Chapter-1,Example 1_8,Page 1-19
+clc()
+
+//Given Data:
+lam=5.893*10^-7 //Wavelength of light
+theta=1 //assuming value of theta
+
+//We know, B=lam/(2*u*theta). Here u=1
+B=lam/(2*theta) //fringe spacing
+n=20 //interference fringes
+
+//Calculations:
+//t=n*B*tan(theta)
+t=20*B*theta //Thickness of wire
+printf('Thickness of wire is =%.9f m',t)
diff --git a/1949/CH1/EX1.9/1_9.sce b/1949/CH1/EX1.9/1_9.sce new file mode 100755 index 000000000..edc2ebb44 --- /dev/null +++ b/1949/CH1/EX1.9/1_9.sce @@ -0,0 +1,18 @@ +//Chapter-1,Example 1_9,Page 1-20
+clc()
+
+//Given Data:
+u1=1.3 //Refractive index of oil
+u2=1.5 //Refractive index of glass
+lam1=7*10^-7 //Wavelength of light
+lam2=5*10^-7 //Wavelength of light
+
+//Calculations:
+
+//for finding value of n, solve:
+//(2n+1)*lam1/2=(2(n+1)+1)*lam2/2
+//We get,n=2
+n=2
+
+toil=(2*n+1)*lam1/(2*u1*2) //thickness of oil layer
+printf('Thickness of oil layer is =%.9f m',toil)
|