From b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b Mon Sep 17 00:00:00 2001 From: priyanka Date: Wed, 24 Jun 2015 15:03:17 +0530 Subject: initial commit / add all books --- 1949/CH1/EX1.1/1_1.sce | 17 +++++++++++++++++ 1949/CH1/EX1.10/1_10.sce | 13 +++++++++++++ 1949/CH1/EX1.11/1_11.sce | 20 ++++++++++++++++++++ 1949/CH1/EX1.12/1_12.sce | 15 +++++++++++++++ 1949/CH1/EX1.13/1_13.sce | 14 ++++++++++++++ 1949/CH1/EX1.14/1_14.sce | 16 ++++++++++++++++ 1949/CH1/EX1.15/1_15.sce | 15 +++++++++++++++ 1949/CH1/EX1.16/1_16.sce | 26 ++++++++++++++++++++++++++ 1949/CH1/EX1.17/1_17.sce | 14 ++++++++++++++ 1949/CH1/EX1.18/1_18.sce | 14 ++++++++++++++ 1949/CH1/EX1.19/1_19.sce | 13 +++++++++++++ 1949/CH1/EX1.2/1_2.sce | 11 +++++++++++ 1949/CH1/EX1.20.1/1_20_1.sce | 21 +++++++++++++++++++++ 1949/CH1/EX1.20.2/1_20_2.sce | 15 +++++++++++++++ 1949/CH1/EX1.20/1_20.sce | 14 ++++++++++++++ 1949/CH1/EX1.21/1_21.sce | 23 +++++++++++++++++++++++ 1949/CH1/EX1.22/1_22.sce | 15 +++++++++++++++ 1949/CH1/EX1.23/1_23.sce | 12 ++++++++++++ 1949/CH1/EX1.24/1_24.sce | 12 ++++++++++++ 1949/CH1/EX1.25/1_25.sce | 14 ++++++++++++++ 1949/CH1/EX1.26/1_26.sce | 17 +++++++++++++++++ 1949/CH1/EX1.27/1_27.sce | 13 +++++++++++++ 1949/CH1/EX1.29/1_29.sce | 16 ++++++++++++++++ 1949/CH1/EX1.3/1_3.sce | 17 +++++++++++++++++ 1949/CH1/EX1.30/1_30.sce | 13 +++++++++++++ 1949/CH1/EX1.31/1_31.sce | 13 +++++++++++++ 1949/CH1/EX1.4/1_4.sce | 14 ++++++++++++++ 1949/CH1/EX1.5/1_5.sce | 15 +++++++++++++++ 1949/CH1/EX1.6/1_6.sce | 23 +++++++++++++++++++++++ 1949/CH1/EX1.7/1_7.sce | 17 +++++++++++++++++ 1949/CH1/EX1.8/1_8.sce | 15 +++++++++++++++ 1949/CH1/EX1.9/1_9.sce | 18 ++++++++++++++++++ 32 files changed, 505 insertions(+) create mode 100755 1949/CH1/EX1.1/1_1.sce create mode 100755 1949/CH1/EX1.10/1_10.sce create mode 100755 1949/CH1/EX1.11/1_11.sce create mode 100755 1949/CH1/EX1.12/1_12.sce create mode 100755 1949/CH1/EX1.13/1_13.sce create mode 100755 1949/CH1/EX1.14/1_14.sce create mode 100755 1949/CH1/EX1.15/1_15.sce create mode 100755 1949/CH1/EX1.16/1_16.sce create mode 100755 1949/CH1/EX1.17/1_17.sce create mode 100755 1949/CH1/EX1.18/1_18.sce create mode 100755 1949/CH1/EX1.19/1_19.sce create mode 100755 1949/CH1/EX1.2/1_2.sce create mode 100755 1949/CH1/EX1.20.1/1_20_1.sce create mode 100755 1949/CH1/EX1.20.2/1_20_2.sce create mode 100755 1949/CH1/EX1.20/1_20.sce create mode 100755 1949/CH1/EX1.21/1_21.sce create mode 100755 1949/CH1/EX1.22/1_22.sce create mode 100755 1949/CH1/EX1.23/1_23.sce create mode 100755 1949/CH1/EX1.24/1_24.sce create mode 100755 1949/CH1/EX1.25/1_25.sce create mode 100755 1949/CH1/EX1.26/1_26.sce create mode 100755 1949/CH1/EX1.27/1_27.sce create mode 100755 1949/CH1/EX1.29/1_29.sce create mode 100755 1949/CH1/EX1.3/1_3.sce create mode 100755 1949/CH1/EX1.30/1_30.sce create mode 100755 1949/CH1/EX1.31/1_31.sce create mode 100755 1949/CH1/EX1.4/1_4.sce create mode 100755 1949/CH1/EX1.5/1_5.sce create mode 100755 1949/CH1/EX1.6/1_6.sce create mode 100755 1949/CH1/EX1.7/1_7.sce create mode 100755 1949/CH1/EX1.8/1_8.sce create mode 100755 1949/CH1/EX1.9/1_9.sce (limited to '1949/CH1') diff --git a/1949/CH1/EX1.1/1_1.sce b/1949/CH1/EX1.1/1_1.sce new file mode 100755 index 000000000..e318e57c1 --- /dev/null +++ b/1949/CH1/EX1.1/1_1.sce @@ -0,0 +1,17 @@ +//Chapter-1,Example 1_1,Page 1-16 +clc() + +//Given Data: +i=45*%pi/180 //angle of incidence +u=1.33 //Refractive index of a soap film +lam=5.896*10^-7 //wavelength of required yellow light + +//Calculations: +//u=sin i/sin r //Snell's law .So, +r=asin(sin(i)/u) //angle of reflection + +//Now, condition for bright fringe is +//2ut*cos r=(2n-1)lam/2 +//Here n=1 +t=lam/(2*2*u*cos(r)) //minimum thickness of film at which light will appear bright yellow +printf('Minimum thickness of film at which light will appear bright yellow of required wavelength is =%.10f m',t) diff --git a/1949/CH1/EX1.10/1_10.sce b/1949/CH1/EX1.10/1_10.sce new file mode 100755 index 000000000..88bd745bc --- /dev/null +++ b/1949/CH1/EX1.10/1_10.sce @@ -0,0 +1,13 @@ +//Chapter-1,Example 1_10,Page 1-21 +clc() + +//Given Data: +u1=1.2 //Refractive index of drop of oil +u2=1.33 //Refractive index of water +lam=4.8*10^-7 //wavelength of light +n=3 //order +r=0 //normal incidence,so r=0 + +//Calculations: +t=n*lam/(2*u1) //Thickness of oil drop +printf('Thickness of oil drop is =%.8f m',t) diff --git a/1949/CH1/EX1.11/1_11.sce b/1949/CH1/EX1.11/1_11.sce new file mode 100755 index 000000000..548c970b7 --- /dev/null +++ b/1949/CH1/EX1.11/1_11.sce @@ -0,0 +1,20 @@ +//Chapter-1,Example 1_11,Page 1-22 +clc() + +//Given Data: +i=asin(4/5) //angle of incidence +u=4/3 //Refractive index of a soap film +lam1=6.1*10^-7 //wavelength of light +lam2=6*10^-7 //wavelength of light + +//Calculations: +//u=sin i/sin r //Snell's law .So, +r=asin(sin(i)/u) //angle of reflection + +//Now, condition for dark band is +//2ut*cos r=n*lam +//for consecutive bands, n=lam2/(lam1-lam2). hence + +t=lam2*lam1/((lam1-lam2)*2*u*sqrt(1-(sin(i)/u)^2)) //thickness of film +printf('Thickness of the film is =%.7f m',t) + diff --git a/1949/CH1/EX1.12/1_12.sce b/1949/CH1/EX1.12/1_12.sce new file mode 100755 index 000000000..6f23e5dbc --- /dev/null +++ b/1949/CH1/EX1.12/1_12.sce @@ -0,0 +1,15 @@ +//Chapter-1,Example 1_12,Page 1-40 +clc() + +//Given Data: +n=10 //10th dark ring +Dn=0.5*10^-2 //Diameter of ring +lam=6*10^-7 //wavelength of light + +//Calculations: +//As Dn^2=4*n*R*lam +R=Dn^2/(4*n*lam) //Radius of curvature of the lens +printf('Radius of curvature of the lens is =%.2f m \n \n',R) + +t=Dn^2/(8*R) //thickness of air film +printf(' Thickness of air film is =%.7f m \n',t) diff --git a/1949/CH1/EX1.13/1_13.sce b/1949/CH1/EX1.13/1_13.sce new file mode 100755 index 000000000..5d30de013 --- /dev/null +++ b/1949/CH1/EX1.13/1_13.sce @@ -0,0 +1,14 @@ +//Chapter-1,Example 1_13,Page 1-41 +clc() + +//Given Data: + +B=0.25*10^-2 //fringe spacing +lam=5.5*10^-7 //Wavelength of light +u=1.4 //Refractive index of wedge + +//Calculations: +//We know, B=lam/(2*u*theta). +theta1=lam/(2*u*B) //angle of wedge in radians +theta=theta1*3600*180/%pi //angle of wedge in seconds +printf('Angle of wedge is =%.1f seconds',theta) diff --git a/1949/CH1/EX1.14/1_14.sce b/1949/CH1/EX1.14/1_14.sce new file mode 100755 index 000000000..5350955dd --- /dev/null +++ b/1949/CH1/EX1.14/1_14.sce @@ -0,0 +1,16 @@ +//Chapter-1,Example 1_14,Page 1-41 +clc() + +//Given Data: +n=4 //4th dark ring +m=12 //m=n+p +D4=0.4*10^-2 //Diameter of 4th ring +D12=0.7*10^-2 //Diameter of 12th ring + +//Calculations: + +//(Dn+p)^2-Dn^2=4*p*lam*R +//Solving, (D12^2-D4^2)/(D20^2-D4^2) +//We get above value =1/2. Hence +D20=sqrt(2*D12^2-D4^2) //Diameter of 20th ring +printf('Diameter of 20th ring is =%.5f m \n',D20) diff --git a/1949/CH1/EX1.15/1_15.sce b/1949/CH1/EX1.15/1_15.sce new file mode 100755 index 000000000..2e6520d2c --- /dev/null +++ b/1949/CH1/EX1.15/1_15.sce @@ -0,0 +1,15 @@ +//Chapter-1,Example 1_15,Page 1-42 +clc() + +//Given Data: +n=6 //6th bright ring +D6=0.31*10^-2 //Diameter of 6th ring +lam=6*10^-7 //wavelength of light +R=1 //Radius of curvature + +//Calculations: + +//Diameter of nth bright ring is +//Dn^2=2(2n-1)*lam*R/u. Hence +u=2*(2*n-1)*lam*R/(D6)^2 //Refractive index of liquid +printf('Refractive index of liquid is =%.3f \n',u) diff --git a/1949/CH1/EX1.16/1_16.sce b/1949/CH1/EX1.16/1_16.sce new file mode 100755 index 000000000..5643f393e --- /dev/null +++ b/1949/CH1/EX1.16/1_16.sce @@ -0,0 +1,26 @@ +//Chapter-1,Example 1_16,Page 1-42 +clc() + +//Given Data: +lam=6*10^-7 //wavelength of light +k=0.125*10^-4 //k=D(n+1)^2-Dn^2. +u=1 //Refractive index of medium between lens and plate +//Calculations: + +//i) +lam1=4.5*10^-7 //new wavelength of light +//Difference between squres of diameters of successive rings is directly proportional to wavelength.So, +k1=lam1/lam*k //new Difference between squres of diameters of successive rings after changing wavelength +printf('New Difference between squres of diameters of successive rings after changing wavelength is =%.8f m^2 \n',k1) + +//ii) +u2=1.33 //Refractive index of liquid introduced between lens and plate +//Difference between squres of diameters of successive rings is inversely proportional to Refractive index.so, +k2=u/u2*k //new Difference between squres of diameters of successive rings after changing refractive index +printf(' New Difference between squres of diameters of successive rings after changing refrective index is =%.8f m^2 \n',k2) + +//iii) +//Difference between squres of diameters of successive rings is directly proportional to Radius of curvature.So, +//after doubling radius of curvature, +k3=2*k //new Difference between squres of diameters of successive rings after doubling radius of curvature +printf(' New Difference between squres of diameters of successive rings after doubling radius of curvature is =%.8f m^2 \n',k3) diff --git a/1949/CH1/EX1.17/1_17.sce b/1949/CH1/EX1.17/1_17.sce new file mode 100755 index 000000000..be905679a --- /dev/null +++ b/1949/CH1/EX1.17/1_17.sce @@ -0,0 +1,14 @@ +//Chapter-1,Example 1_17,Page 1-43 +clc() + +//Given Data: +Dn=0.225*10^-2 //Diameter of nth ring +Dm=0.45*10^-2 //Diameter of (n+9)th ring +lam=6*10^-7 //wavelength of light +R=0.9 //Radius of curvature +p=9 + +//Calculations: +//(Dn+p)^2-Dn^2=4*p*lam*R/u +u=4*p*lam*R/((Dm)^2-Dn^2) //Refractive index of liquid +printf('Refractive index of liquid is =%.2f \n',u) diff --git a/1949/CH1/EX1.18/1_18.sce b/1949/CH1/EX1.18/1_18.sce new file mode 100755 index 000000000..9e4df424e --- /dev/null +++ b/1949/CH1/EX1.18/1_18.sce @@ -0,0 +1,14 @@ +//Chapter-1,Example 1_18,Page 1-44 +clc() + +//Given Data: +D10=0.5*10^-2 //Diameter of 10th ring +lam=5.5*10^-7 //wavelength of light +u=1.25 //Refractive index of liquid + + +//Calculations: +//As Dn^2=4*n*R*lam/u +//Dn^2 is inversely proportional to refractive index. +D10n=D10/sqrt(u) //new diameter of 10th ring after changing medium between lens and plate +printf('new diameter of 10th ring after changing medium between lens and plate is =%.6f m \n',D10n) diff --git a/1949/CH1/EX1.19/1_19.sce b/1949/CH1/EX1.19/1_19.sce new file mode 100755 index 000000000..afa7e527d --- /dev/null +++ b/1949/CH1/EX1.19/1_19.sce @@ -0,0 +1,13 @@ +//Chapter-1,Example 1_19,Page 1-45 +clc() + +//Given Data: +D5=0.336*10^-2 //Diameter of 5th ring +D15=0.59*10^-2 //Diameter of 15th ring +lam=5.89*10^-7 //wavelength of light +p=10 //n=5,n+p=15 + +//Calculations: +//(Dn+p)^2-Dn^2=4*p*lam*R/u +R=((D15)^2-D5^2)/(4*p*lam) //Radius of curvature of the lens +printf('Radius of curvature of the lens is =%.3f m \n',R) diff --git a/1949/CH1/EX1.2/1_2.sce b/1949/CH1/EX1.2/1_2.sce new file mode 100755 index 000000000..412400fe6 --- /dev/null +++ b/1949/CH1/EX1.2/1_2.sce @@ -0,0 +1,11 @@ +//Chapter-1,Example 1_2,Page 1-16 +clc() + +//Given Data: +theta=40/3600*%pi/180 //angle of wedge in radians +B=0.12*10^-2 //fringe spacing + +//Calculations: +//We know, B=lam/(2*u*theta). Here u=1 +lam=2*B*theta //wavelength of light used +printf('Wavelength of light used is =%.10f m',lam) diff --git a/1949/CH1/EX1.20.1/1_20_1.sce b/1949/CH1/EX1.20.1/1_20_1.sce new file mode 100755 index 000000000..a37375d21 --- /dev/null +++ b/1949/CH1/EX1.20.1/1_20_1.sce @@ -0,0 +1,21 @@ +//Chapter-1,Example 1_20_1,Page 1-52 +clc() + +//Given Data: +i=45*%pi/180 //angle of incidence +u=1.2 //Refractive index of a film +t=4*10^-7 //thickness of film + +//Calculations: +//u=sin i/sin r //Snell's law .So, +r=asin(sin(i)/u) //angle of reflection + +//Now, condition for dark fringe is +//2ut*cos r=n*lam +lam1=2*u*t*cos(r)/1 //n=1 +printf('For n=1 wavelength is =%.10f m \n',lam1) +printf(' This is in the visible spectrum and it will remain absent.\n \n') + +lam2=2*u*t*cos(r)/2 //n=2 +printf(' For n=2 wavelength is =%.10f m \n',lam2) +printf(' This is not in the visible spectrum \n \n') diff --git a/1949/CH1/EX1.20.2/1_20_2.sce b/1949/CH1/EX1.20.2/1_20_2.sce new file mode 100755 index 000000000..13293ac76 --- /dev/null +++ b/1949/CH1/EX1.20.2/1_20_2.sce @@ -0,0 +1,15 @@ +//Chapter-1,Example 1_20_2,Page 1-53 +clc() + +//Given Data: +r=45*%pi/180 //angle of refraction +u=1.45 //Refractive index of a medium +lam=5.5*10^-7 //wavelength of required yellow light +n=1 + +//Calculations: + +//Now, condition for dark fringe is +//2ut*cos r=n*lam +t=n*lam/(2*u*cos(r)) //thickness of thin medium +printf('Thickness of the thin medium is =%.10f m',t) diff --git a/1949/CH1/EX1.20/1_20.sce b/1949/CH1/EX1.20/1_20.sce new file mode 100755 index 000000000..4e1ef55c1 --- /dev/null +++ b/1949/CH1/EX1.20/1_20.sce @@ -0,0 +1,14 @@ +//Chapter-1,Example 1_20,Page 1-45 +clc() + +//Given Data: +n=10 //10th dark ring +D10=0.6*10^-2 //Diameter of ring +lam=6*10^-7 //wavelength of light +u=4/3 //Refractive index of water + + +//Calculations: +//As Dn^2=4*n*R*lam/u +R=D10^2*u/(4*n*lam) //Radius of curvature of the lens +printf('Radius of curvature of the lens is =%.1f m \n',R) diff --git a/1949/CH1/EX1.21/1_21.sce b/1949/CH1/EX1.21/1_21.sce new file mode 100755 index 000000000..e54fadb6f --- /dev/null +++ b/1949/CH1/EX1.21/1_21.sce @@ -0,0 +1,23 @@ +//Chapter-1,Example 1_21,Page 1-45 +clc() + +//Given Data: +u=1.33 //Refractive index of a soap film +r=0 //normal incidence +t=5*10^-7 //thickness of film + +//Calculations: + +//Now, condition for maxima is +//2ut*cos r=(2n-1)lam/2 +lam1=4*u*t*cos(r)/(2*1-1) //n=1 +printf('For n=1 wavelength is =%.10f m \n',lam1) +lam2=4*u*t*cos(r)/(2*2-1) //n=2 +printf(' For n=2 wavelength is =%.10f m \n',lam2) +lam3=4*u*t*cos(r)/(2*3-1) //n=3 +printf(' For n=3 wavelength is =%.10f m \n',lam3) +lam4=4*u*t*cos(r)/(2*4-1) //n=4 +printf(' For n=4 wavelength is =%.10f m \n \n',lam4) + +printf(' Out of these wavelengths wavelength for n=3 lies in the visible spectrum. \n \n') +printf(' Hence, wavelength for n=3 is the most reflected wavelength.') diff --git a/1949/CH1/EX1.22/1_22.sce b/1949/CH1/EX1.22/1_22.sce new file mode 100755 index 000000000..6b3c03b52 --- /dev/null +++ b/1949/CH1/EX1.22/1_22.sce @@ -0,0 +1,15 @@ +//Chapter-1,Example 1_22,Page 1-46 +clc() + +//Given Data: +u=1.5 //Refractive index of a oil +lam=5.88*10^-7 //wavelength of required yellow light +n=1 //for smallest thickness +r=60*%pi/180 //angle of reflection + +//Calculations: + +//Now, condition for dark fringe is +//2ut*cos r=n*lam +t=n*lam/(2*u*cos(r)) //thickness of film +printf('Thickness of the film is =%.10f m',t) diff --git a/1949/CH1/EX1.23/1_23.sce b/1949/CH1/EX1.23/1_23.sce new file mode 100755 index 000000000..5a7f5bb32 --- /dev/null +++ b/1949/CH1/EX1.23/1_23.sce @@ -0,0 +1,12 @@ +//Chapter-1,Example 1_23,Page 1-46 +clc() + +//Given Data: +theta=20/3600*%pi/180 //angle of wedge in radians +B=0.25*10^-2 //fringe spacing +u=1.4 //Refractive index of film + +//Calculations: +//We know, B=lam/(2*u*theta). +lam=2*B*theta*u //wavelength of light +printf('Wavelength of light is =%.10f m',lam) diff --git a/1949/CH1/EX1.24/1_24.sce b/1949/CH1/EX1.24/1_24.sce new file mode 100755 index 000000000..3824ccad5 --- /dev/null +++ b/1949/CH1/EX1.24/1_24.sce @@ -0,0 +1,12 @@ +//Chapter-1,Example 1_24,Page 1-47 +clc() + +//Given Data: +//Dn=2*D40 + +//Calculations: +//As Dn^2=4*n*R*lam/u and Dn^2=4*D40^2 +//i.e. 4*n*R*lam/u=4*4*40*R*lam/u .hence, +n=4*40 //order of the required ring +printf('Order of the dark ring which will have double the diameter of that of 40th ring is =%.0f ',n) + diff --git a/1949/CH1/EX1.25/1_25.sce b/1949/CH1/EX1.25/1_25.sce new file mode 100755 index 000000000..032370372 --- /dev/null +++ b/1949/CH1/EX1.25/1_25.sce @@ -0,0 +1,14 @@ +//Chapter-1,Example 1_25,Page 1-47 +clc() + +//Given Data: +lam1=6*10^-7 //wavelength of light +lam2=4.5*10^-7 //wavelength of light +R=0.9 //Radius of curvature + +//Calculations: +//As Dn^2=4*n*R*lam. +//Dn^2=D(n+1)^2 for different wavelengths.we get, +n=lam2/(lam1-lam2) //nth dark ring due to lam1 which coincides with (n+1)th dark ring due lam2 +D3=sqrt(4*n*R*lam1) //diameter of 3rd dark ring for lam1 +printf('Diameter of 3rd dark ring for lam1 is =%.5f m \n',D3) diff --git a/1949/CH1/EX1.26/1_26.sce b/1949/CH1/EX1.26/1_26.sce new file mode 100755 index 000000000..fd819fab3 --- /dev/null +++ b/1949/CH1/EX1.26/1_26.sce @@ -0,0 +1,17 @@ +//Chapter-1,Example 1_26,Page 1-48 +clc() + +//Given Data: +i=45*%pi/180 //angle of incidence +u=4/3 //Refractive index of soap film +lam=5*10^-7 //wavelength of light +t=1.5*10^-6 //thickness of film + +//Calculations: +//u=sin i/sin r //Snell's law .So, +r=asin(sin(i)/u) //angle of reflection + +//Now, condition for dark band is +//2ut*cos r=n*lam +n=2*u*t*cos(r)/lam //order of band +printf('order of dark band is =%.1f \n',n) diff --git a/1949/CH1/EX1.27/1_27.sce b/1949/CH1/EX1.27/1_27.sce new file mode 100755 index 000000000..0f6758d24 --- /dev/null +++ b/1949/CH1/EX1.27/1_27.sce @@ -0,0 +1,13 @@ +//Chapter-1,Example 1_27,Page 1-49 +clc() + +//Given Data: +D5=0.336*10^-2 //Diameter of 5th ring +D15=0.59*10^-2 //Diameter of 15th ring +lam=5.89*10^-7 //wavelength of light +p=10 //n=5,n+p=15 + +//Calculations: +//(Dn+p)^2-Dn^2=4*p*lam*R/u +R=((D15)^2-D5^2)/(4*p*lam) //Radius of curvature of the lens +printf('Radius of curvature of the lens is =%.4f m \n',R) diff --git a/1949/CH1/EX1.29/1_29.sce b/1949/CH1/EX1.29/1_29.sce new file mode 100755 index 000000000..bbe75b916 --- /dev/null +++ b/1949/CH1/EX1.29/1_29.sce @@ -0,0 +1,16 @@ +//Chapter-1,Example 1_29,Page 1-50 +clc() + +//As Dn^2=4*n*R*lam. +//thus, Dn is directly proportional to sqaure root of n +D5=sqrt(5) //D5 is directly proportional to sqaure root of 5 +D4=sqrt(4) //D4 is directly proportional to sqaure root of 4 +k1=D5-D4 +printf('Separation between D5 and D4 is directly proportional to =%.3f \n',k1) + +D80=sqrt(80) //D80 is directly proportional to sqaure root of 80 +D79=sqrt(79) //D79 is directly proportional to sqaure root of 79 +k2=D80-D79 +printf(' Separation between D80 and D79 is directly proportional to =%.3f \n \n',k2) + +printf(' Thus, (D80-D79) < (D5-D4).\n Hence proved.') diff --git a/1949/CH1/EX1.3/1_3.sce b/1949/CH1/EX1.3/1_3.sce new file mode 100755 index 000000000..7b8f851e1 --- /dev/null +++ b/1949/CH1/EX1.3/1_3.sce @@ -0,0 +1,17 @@ +//Chapter-1,Example 1_3,Page 1-17 +clc() + +//Given Data: +i=30*%pi/180 //angle of incidence +u=1.46 //Refractive index of a oil +lam=5.890*10^-7 //wavelength of required yellow light +n=8 //eighth dark band + +//Calculations: +//u=sin i/sin r //Snell's law .So, +r=asin(sin(i)/u) //angle of reflection + +//Now, condition for dark fringe is +//2ut*cos r=n*lam +t=n*lam/(2*u*cos(r)) //thickness of film +printf('Thickness of the film is =%.10f m',t) diff --git a/1949/CH1/EX1.30/1_30.sce b/1949/CH1/EX1.30/1_30.sce new file mode 100755 index 000000000..643103f19 --- /dev/null +++ b/1949/CH1/EX1.30/1_30.sce @@ -0,0 +1,13 @@ +//Chapter-1,Example 1_30,Page 1-51 +clc() + +//Given Data: +D5=0.336*10^-2 //Diameter of 5th ring +D15=0.59*10^-2 //Diameter of 15th ring +p=10 //n=5,n+p=15 +R=1 //Radius of curvature + +//Calculations: +//(Dn+p)^2-Dn^2=4*p*lam*R/u +lam=((D15)^2-D5^2)/(4*p*R) //Wavelength of light +printf('Wavelength of light is =%.10f m',lam) diff --git a/1949/CH1/EX1.31/1_31.sce b/1949/CH1/EX1.31/1_31.sce new file mode 100755 index 000000000..1718ed1ad --- /dev/null +++ b/1949/CH1/EX1.31/1_31.sce @@ -0,0 +1,13 @@ +//Chapter-1,Example 1_31,Page 1-51 +clc() + + +//Condition for bright band is +//2ut*cos r = (2n-1)*lam1 + +//for consecutive bands, 2n=(lam1+lam2)/(lam1-lam2). +//thus, 2ut*cos r = lam2*lam1/(lam1-lam2) + +//And, thicknessof film +//t= lam2*lam1/((2*u*cosr)(lam1-lam2)) +printf('Hence expression for thickness of film is obtained.') diff --git a/1949/CH1/EX1.4/1_4.sce b/1949/CH1/EX1.4/1_4.sce new file mode 100755 index 000000000..32f39d480 --- /dev/null +++ b/1949/CH1/EX1.4/1_4.sce @@ -0,0 +1,14 @@ +//Chapter-1,Example 1_4,Page 1-17 +clc() + +//Given Data: + +B=0.1*10^-2 //fringe spacing +lam=5.893*10^-7 //Wavelength of light +u=1.52 //Refractive index of wedge + +//Calculations: +//We know, B=lam/(2*u*theta). Here u=1 +theta1=lam/(2*u*B) //angle of wedge in radians +theta=theta1*3600*180/%pi //angle of wedge in seconds +printf('Angle of wedge is =%.0f seconds of an arc',theta) diff --git a/1949/CH1/EX1.5/1_5.sce b/1949/CH1/EX1.5/1_5.sce new file mode 100755 index 000000000..069506513 --- /dev/null +++ b/1949/CH1/EX1.5/1_5.sce @@ -0,0 +1,15 @@ +//Chapter-1,Example 1_5,Page 1-18 +clc() + +//Given Data: +t=0.2/(100)^2*10^-2 //thickness of film in meter +lam=5.5*10^-7 //wavelength of light in meter +r=0 //normal incidence +n=1 //first band + +//Calculations: + +//Condition for dark fringe is +//2ut*cos r =n*lam +u=n*lam/(2*t*cos(r)) //Refractive index of a oil +printf('Refractive index of a oil is =%.3f ',u) diff --git a/1949/CH1/EX1.6/1_6.sce b/1949/CH1/EX1.6/1_6.sce new file mode 100755 index 000000000..ca3d30ebe --- /dev/null +++ b/1949/CH1/EX1.6/1_6.sce @@ -0,0 +1,23 @@ +//Chapter-1,Example 1_6,Page 1-18 +clc() + +//Given Data: +lam=5.893*10^-7 //Wavelength of light +u=1.42 //Refractive index of a soap film +r=0 //normal incidence +n=1 //first band + +//Calculations: + +//i) +//Condition for dark fringe is +//2ut*cos r=n*lam +t1=n*lam/(2*u*cos(r)) //thickness of film for dark black fringe +printf('Thickness of the film for dark black fringe is =%.10f m \n \n',t1) + +//ii) +//Now, condition for bright fringe is +//2ut*cos r=(2n-1)lam/2 +t2=lam/(2*2*u*cos(r)) //Thickness of film for bright fringe +printf(' Thickness of film for bright fringe is =%.10f m \n \n',t2) + diff --git a/1949/CH1/EX1.7/1_7.sce b/1949/CH1/EX1.7/1_7.sce new file mode 100755 index 000000000..91fb38b4f --- /dev/null +++ b/1949/CH1/EX1.7/1_7.sce @@ -0,0 +1,17 @@ +//Chapter-1,Example 1_7,Page 1-19 +clc() + +//Given Data: +i=30*%pi/180 //angle of incidence +u=1.43 //Refractive index of a soap film +lam=6*10^-7 //wavelength of light +n=1 //For minimum thickness + +//Calculations: +//u=sin i/sin r //Snell's law .So, +r=asin(sin(i)/u) //angle of reflection + +//Now, condition of minima in transmitted system is +//2ut*cos r=(2n-1)lam/2 +t=lam/(2*2*u*cos(r)) //minimum thickness of film +printf('Minimum thickness of film is =%.9f m',t) diff --git a/1949/CH1/EX1.8/1_8.sce b/1949/CH1/EX1.8/1_8.sce new file mode 100755 index 000000000..2e7793884 --- /dev/null +++ b/1949/CH1/EX1.8/1_8.sce @@ -0,0 +1,15 @@ +//Chapter-1,Example 1_8,Page 1-19 +clc() + +//Given Data: +lam=5.893*10^-7 //Wavelength of light +theta=1 //assuming value of theta + +//We know, B=lam/(2*u*theta). Here u=1 +B=lam/(2*theta) //fringe spacing +n=20 //interference fringes + +//Calculations: +//t=n*B*tan(theta) +t=20*B*theta //Thickness of wire +printf('Thickness of wire is =%.9f m',t) diff --git a/1949/CH1/EX1.9/1_9.sce b/1949/CH1/EX1.9/1_9.sce new file mode 100755 index 000000000..edc2ebb44 --- /dev/null +++ b/1949/CH1/EX1.9/1_9.sce @@ -0,0 +1,18 @@ +//Chapter-1,Example 1_9,Page 1-20 +clc() + +//Given Data: +u1=1.3 //Refractive index of oil +u2=1.5 //Refractive index of glass +lam1=7*10^-7 //Wavelength of light +lam2=5*10^-7 //Wavelength of light + +//Calculations: + +//for finding value of n, solve: +//(2n+1)*lam1/2=(2(n+1)+1)*lam2/2 +//We get,n=2 +n=2 + +toil=(2*n+1)*lam1/(2*u1*2) //thickness of oil layer +printf('Thickness of oil layer is =%.9f m',toil) -- cgit