summaryrefslogtreecommitdiff
path: root/1835
diff options
context:
space:
mode:
authorpriyanka2015-06-24 15:03:17 +0530
committerpriyanka2015-06-24 15:03:17 +0530
commitb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (patch)
treeab291cffc65280e58ac82470ba63fbcca7805165 /1835
downloadScilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.gz
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.tar.bz2
Scilab-TBC-Uploads-b1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b.zip
initial commit / add all books
Diffstat (limited to '1835')
-rwxr-xr-x1835/CH1/EX1.1/Ex1_1.sce16
-rwxr-xr-x1835/CH1/EX1.10/Ex1_10.sce22
-rwxr-xr-x1835/CH1/EX1.11/Ex1_11.sce29
-rwxr-xr-x1835/CH1/EX1.12/Ex1_12.sce29
-rwxr-xr-x1835/CH1/EX1.13/Ex1_13.sce26
-rwxr-xr-x1835/CH1/EX1.2/Ex1_2.sce12
-rwxr-xr-x1835/CH1/EX1.3/Ex1_3.sce14
-rwxr-xr-x1835/CH1/EX1.4/Ex1_4.sce34
-rwxr-xr-x1835/CH1/EX1.5/Ex1_5.sce21
-rwxr-xr-x1835/CH1/EX1.6/Ex1_6.sce29
-rwxr-xr-x1835/CH1/EX1.7/Ex1_7.sce24
-rwxr-xr-x1835/CH1/EX1.8/Ex1_8.sce20
-rwxr-xr-x1835/CH1/EX1.9/Ex1_9.sce27
-rwxr-xr-x1835/CH10/EX10.1/Ex10_1.sce17
-rwxr-xr-x1835/CH10/EX10.10/Ex10_10.sce26
-rwxr-xr-x1835/CH10/EX10.2/Ex10_2.sce18
-rwxr-xr-x1835/CH10/EX10.3/Ex10_3.sce18
-rwxr-xr-x1835/CH10/EX10.4/Ex10_4.sce19
-rwxr-xr-x1835/CH10/EX10.5/Ex10_5.sce19
-rwxr-xr-x1835/CH10/EX10.6/Ex10_6.sce27
-rwxr-xr-x1835/CH10/EX10.7/Ex10_7.sce26
-rwxr-xr-x1835/CH10/EX10.8/Ex10_8.sce26
-rwxr-xr-x1835/CH10/EX10.9/Ex10_9.sce28
-rwxr-xr-x1835/CH11/EX11.1/Ex11_1.sce24
-rwxr-xr-x1835/CH11/EX11.10/Ex11_10.sce25
-rwxr-xr-x1835/CH11/EX11.11/Ex11_11.sce32
-rwxr-xr-x1835/CH11/EX11.12/Ex11_12.sce29
-rwxr-xr-x1835/CH11/EX11.13/Ex11_13.sce28
-rwxr-xr-x1835/CH11/EX11.2/Ex11_2.sce23
-rwxr-xr-x1835/CH11/EX11.3/Ex11_3.sce33
-rwxr-xr-x1835/CH11/EX11.6/Ex11_6.sce26
-rwxr-xr-x1835/CH12/EX12.1/Ex12_1.sce18
-rwxr-xr-x1835/CH12/EX12.2/Ex12_2.sce24
-rwxr-xr-x1835/CH12/EX12.3/Ex12_3.sce23
-rwxr-xr-x1835/CH12/EX12.4/Ex12_4.sce10
-rwxr-xr-x1835/CH12/EX12.5/Ex12_5.sce17
-rwxr-xr-x1835/CH12/EX12.6/Ex12_6.sce20
-rwxr-xr-x1835/CH12/EX12.7/Ex12_7.sce19
-rwxr-xr-x1835/CH12/EX12.8/Ex12_8.sce15
-rwxr-xr-x1835/CH2/EX2.1/Ex2_1.sce21
-rwxr-xr-x1835/CH2/EX2.10/Ex2_10.sce39
-rwxr-xr-x1835/CH2/EX2.11/Ex2_11.sce37
-rwxr-xr-x1835/CH2/EX2.12/Ex2_12.sce39
-rwxr-xr-x1835/CH2/EX2.13/Ex2_13.sce39
-rwxr-xr-x1835/CH2/EX2.14/Ex2_14.sce31
-rwxr-xr-x1835/CH2/EX2.2/Ex2_2.sce20
-rwxr-xr-x1835/CH2/EX2.3/Ex2_3.sce18
-rwxr-xr-x1835/CH2/EX2.4/Ex2_4.sce28
-rwxr-xr-x1835/CH2/EX2.5/Ex2_5.sce44
-rwxr-xr-x1835/CH2/EX2.6/Ex2_6.sce29
-rwxr-xr-x1835/CH2/EX2.7/Ex2_7.sce25
-rwxr-xr-x1835/CH2/EX2.8/Ex2_8.sce31
-rwxr-xr-x1835/CH2/EX2.9/Ex2_9.sce31
-rwxr-xr-x1835/CH3/EX3.1/Ex3_1.sce29
-rwxr-xr-x1835/CH3/EX3.10/Ex3_10.sce30
-rwxr-xr-x1835/CH3/EX3.11/Ex3_11.sce17
-rwxr-xr-x1835/CH3/EX3.12/Ex3_12.sce29
-rwxr-xr-x1835/CH3/EX3.13/Ex3_13.sce25
-rwxr-xr-x1835/CH3/EX3.14/Ex3_14.sce21
-rwxr-xr-x1835/CH3/EX3.15/Ex3_15.sce27
-rwxr-xr-x1835/CH3/EX3.2/Ex3_2.sce28
-rwxr-xr-x1835/CH3/EX3.3/Ex3_3.sce18
-rwxr-xr-x1835/CH3/EX3.4/Ex3_4.sce34
-rwxr-xr-x1835/CH3/EX3.5/Ex3_5.sce21
-rwxr-xr-x1835/CH3/EX3.6/Ex3_6.sce23
-rwxr-xr-x1835/CH3/EX3.7/Ex3_7.sce26
-rwxr-xr-x1835/CH3/EX3.8/Ex3_8.sce30
-rwxr-xr-x1835/CH3/EX3.9/Ex3_9.sce25
-rwxr-xr-x1835/CH4/EX4.1/Ex4_1.sce32
-rwxr-xr-x1835/CH4/EX4.10/Ex4_10.sce29
-rwxr-xr-x1835/CH4/EX4.11/Ex4_11.sce31
-rwxr-xr-x1835/CH4/EX4.12/Ex4_12.sce26
-rwxr-xr-x1835/CH4/EX4.13/Ex4_13.sce21
-rwxr-xr-x1835/CH4/EX4.14/Ex4_14.sce20
-rwxr-xr-x1835/CH4/EX4.15/Ex4_15.sce20
-rwxr-xr-x1835/CH4/EX4.16/Ex4_16.sce19
-rwxr-xr-x1835/CH4/EX4.17/Ex4_17.sce39
-rwxr-xr-x1835/CH4/EX4.2/Ex4_2.sce35
-rwxr-xr-x1835/CH4/EX4.3/Ex4_3.sce35
-rwxr-xr-x1835/CH4/EX4.4/Ex4_4.sce35
-rwxr-xr-x1835/CH4/EX4.5/Ex4_5.sce40
-rwxr-xr-x1835/CH4/EX4.6/Ex4_6.sce35
-rwxr-xr-x1835/CH4/EX4.7/Ex4_7.sce29
-rwxr-xr-x1835/CH4/EX4.8/Ex4_8.sce30
-rwxr-xr-x1835/CH4/EX4.9/Ex4_9.sce30
-rwxr-xr-x1835/CH5/EX5.1/Ex5_1.sce14
-rwxr-xr-x1835/CH5/EX5.2/Ex5_2.sce18
-rwxr-xr-x1835/CH5/EX5.3/Ex5_3.sce21
-rwxr-xr-x1835/CH5/EX5.4/Ex5_4.sce26
-rwxr-xr-x1835/CH5/EX5.5/Ex5_5.sce25
-rwxr-xr-x1835/CH5/EX5.6/Ex5_6.sce25
-rwxr-xr-x1835/CH5/EX5.7/Ex5_7.sce22
-rwxr-xr-x1835/CH5/EX5.8/Ex5_8.sce35
-rwxr-xr-x1835/CH6/EX6.1/Ex6_1.sce16
-rwxr-xr-x1835/CH6/EX6.10/Ex6_10.sce25
-rwxr-xr-x1835/CH6/EX6.2/Ex6_2.sce18
-rwxr-xr-x1835/CH6/EX6.3/Ex6_3.sce23
-rwxr-xr-x1835/CH6/EX6.4/Ex6_4.sce21
-rwxr-xr-x1835/CH6/EX6.5/Ex6_5.sce27
-rwxr-xr-x1835/CH6/EX6.6/Ex6_6.sce26
-rwxr-xr-x1835/CH6/EX6.7/Ex6_7.sce17
-rwxr-xr-x1835/CH6/EX6.8/Ex6_8.sce22
-rwxr-xr-x1835/CH6/EX6.9/Ex6_9.sce18
-rwxr-xr-x1835/CH7/EX7.1/Ex7_1.sce17
-rwxr-xr-x1835/CH7/EX7.10/Ex7_10.sce20
-rwxr-xr-x1835/CH7/EX7.11/Ex7_11.sce25
-rwxr-xr-x1835/CH7/EX7.12/Ex7_12.sce44
-rwxr-xr-x1835/CH7/EX7.2/Ex7_2.sce19
-rwxr-xr-x1835/CH7/EX7.3/Ex7_3.sce29
-rwxr-xr-x1835/CH7/EX7.4/Ex7_4.sce29
-rwxr-xr-x1835/CH7/EX7.5/Ex7_5.sce27
-rwxr-xr-x1835/CH7/EX7.6/Ex7_6.sce23
-rwxr-xr-x1835/CH7/EX7.7/Ex7_7.sce21
-rwxr-xr-x1835/CH7/EX7.8/Ex7_8.sce21
-rwxr-xr-x1835/CH7/EX7.9/Ex7_9.sce38
-rwxr-xr-x1835/CH8/EX8.1/Ex8_1.sce25
-rwxr-xr-x1835/CH8/EX8.2/Ex8_2.sce17
-rwxr-xr-x1835/CH8/EX8.3/Ex8_3.sce20
-rwxr-xr-x1835/CH8/EX8.4/Ex8_4.sce17
-rwxr-xr-x1835/CH8/EX8.5/Ex8_5.sce18
-rwxr-xr-x1835/CH8/EX8.6/Ex8_6.sce16
-rwxr-xr-x1835/CH8/EX8.7/Ex8_7.sce22
-rwxr-xr-x1835/CH9/EX9.2/Ex9_2.sce19
-rwxr-xr-x1835/CH9/EX9.3/Ex9_3.sce19
-rwxr-xr-x1835/CH9/EX9.5/Ex9_5.sce15
125 files changed, 3114 insertions, 0 deletions
diff --git a/1835/CH1/EX1.1/Ex1_1.sce b/1835/CH1/EX1.1/Ex1_1.sce
new file mode 100755
index 000000000..3d966f78a
--- /dev/null
+++ b/1835/CH1/EX1.1/Ex1_1.sce
@@ -0,0 +1,16 @@
+//CHAPTER 1 ILLUSRTATION 1 PAGE NO 15
+//TITLE:Basic kinematics
+//Figure 1.14
+clc
+clear
+pi=3.141
+AO=200// distance between fixed centres in mm
+OB1=100// length of driving crank in mm
+AP=400// length of slotter bar in mm
+//====================================
+OAB1=asind(OB1/AO)// inclination of slotted bar with vertical in degrees
+beeta=(90-OAB1)*2// angle through which crank turns inreturn stroke in degrees
+A=(360-beeta)/beeta// ratio of time of cutting stroke to the time of return stroke
+L=2*AP*sind(90-(beeta)/2)// length of the stroke in mm
+printf('Inclination of slotted bar with vertical= %.3f degrees\n Length of the stroke= %.3f mm',OAB1,L)
+
diff --git a/1835/CH1/EX1.10/Ex1_10.sce b/1835/CH1/EX1.10/Ex1_10.sce
new file mode 100755
index 000000000..47d31439c
--- /dev/null
+++ b/1835/CH1/EX1.10/Ex1_10.sce
@@ -0,0 +1,22 @@
+//CHAPTER 1 ILLUSRTATION 10 PAGE NO 24
+//TITLE:Basic kinematics
+//Figure 1.30(a),1.30(b),1.30(c)
+clc
+clear
+pi=3.141
+Nao=300// speed of crank in rpm
+AO=.15// length of crank in m
+BA=.6// length of connecting rod in m
+//===================
+wAO=2*pi*Nao/60// angular velocity of link in rad/s
+Vao=wAO*AO// linear velocity of A with respect to 'o'
+ab=3.4// length of vector ab by measurement in m/s
+Vba=ab
+ob=4// length of vector ob by measurement in m/s
+oc=4.1// length of vector oc by measurement in m/s
+fRao=Vao^2/AO// radial component of acceleration of A with respect to O
+fRba=Vba^2/BA// radial component of acceleration of B with respect to A
+wBA=Vba/BA// angular velocity of connecting rod BA
+fTba=103// by measurement in m/s^2
+alphaBA=fTba/BA// angular acceleration of connecting rod BA
+printf('linear velocity of A with respect to O= %.3f m/s\n radial component of acceleration of A with respect to O= %.3f m/s^2\n radial component of acceleration of B with respect to A= %.3f m/s^2\n angular velocity of connecting rod B= %.3f rad/s\n angular acceleration of connecting rod BA= %.3f rad/s^2',Vao,fRao,fRba,wBA,alphaBA)
diff --git a/1835/CH1/EX1.11/Ex1_11.sce b/1835/CH1/EX1.11/Ex1_11.sce
new file mode 100755
index 000000000..98c48dc0a
--- /dev/null
+++ b/1835/CH1/EX1.11/Ex1_11.sce
@@ -0,0 +1,29 @@
+//CHAPTER 1 ILLUSRTATION 11 PAGE NO 26
+//TITLE:Basic kinematics
+//Figure 1.31(a),1.31(b),1.31(c)
+clc
+clear
+pi=3.141
+wAP=10// angular velocity of crank in rad/s
+P1A=30// length of link P1A in cm
+P2B=36// length of link P2B in cm
+AB=36// length of link AB in cm
+P1P2=60// length of link P1P2 in cm
+AP1P2=60// crank inclination in degrees
+alphaP1A=30// angulare acceleration of crank P1A in rad/s^2
+//=====================================
+Vap1=wAP*P1A/100// linear velocity of A with respect to P1 in m/s
+Vbp2=2.2// velocity of B with respect to P2 in m/s(measured from figure )
+Vba=2.06// velocity of B with respect to A in m/s(measured from figure )
+wBP2=Vbp2/(P2B*100)// angular velocity of P2B in rad/s
+wAB=Vba/(AB*100)// angular velocity of AB in rad/s
+fAB1=alphaP1A*P1A/100// tangential component of the acceleration of A with respect to P1 in m/s^2
+frAB1=Vap1^2/(P1A/100)// radial component of the acceleration of A with respect to P1 in m/s^2
+frBA=Vba^2/(AB/100)// radial component of the acceleration of B with respect to B in m/s^2
+frBP2=Vbp2^2/(P2B/100)// radial component of the acceleration of B with respect to P2 in m/s^2
+ftBA=13.62// tangential component of B with respect to A in m/s^2(measured from figure)
+ftBP2=26.62// tangential component of B with respect to P2 in m/s^2(measured from figure)
+alphaBP2=ftBP2/(P2B/100)// angular acceleration of P2B in m/s^2
+alphaBA=ftBA/(AB/100)// angular acceleration of AB in m/s^2
+//==========================
+printf('Angular acceleration of P2B=%.3f rad/s^2\n angular acceleration of AB =%.3f rad/s^2',alphaBP2,alphaBA)
diff --git a/1835/CH1/EX1.12/Ex1_12.sce b/1835/CH1/EX1.12/Ex1_12.sce
new file mode 100755
index 000000000..2a896c210
--- /dev/null
+++ b/1835/CH1/EX1.12/Ex1_12.sce
@@ -0,0 +1,29 @@
+//CHAPTER 1 ILLUSRTATION 12 PAGE NO 28
+//TITLE:Basic kinematics
+//Figure 1.32(a),1.32(b),1.32(c)
+clc
+clear
+PI=3.141
+AB=12// length of link AB in cm
+BC=48// length of link BC in cm
+CD=18// length of link CD in cm
+DE=36// length of link DE in cm
+EF=12// length of link EF in cm
+FP=36// length of link FP in cm
+Nba=200// roating speed of link BA IN rpm
+wBA=2*PI*200/60// Angular velocity of BA in rad/s
+Vba=wBA*AB/100// linear velocity of B with respect to A in m/s
+Vc=2.428// velocity of c in m/s from diagram 1.32(b)
+Vd=2.36// velocity of D in m/s from diagram 1.32(b)
+Ve=1// velocity of e in m/s from diagram 1.32(b)
+Vf=1.42// velocity of f in m/s from diagram 1.32(b)
+Vcb=1.3// velocity of c with respect to b in m/s from figure
+fBA=Vba^2*100/AB// radial component of acceleration of B with respect to A in m/s^2
+fCB=Vcb^2*100/BC// radial component of acceleration of C with respect to B in m/s^2
+fcb=3.52// radial component of acceleration of C with respect to B in m/s^2 from figure
+fC=19// acceleration of slider in m/s^2 from figure
+printf('velocity of c=%.3f m/s\n velocity of d=%.3f m/s\n velocity of e=%.3f m/s\n velocity of f=%.3f m/s\n Acceleration of slider=%f m/s^2',Vc,Vd,Ve,Vf,fC)
+
+
+
+
diff --git a/1835/CH1/EX1.13/Ex1_13.sce b/1835/CH1/EX1.13/Ex1_13.sce
new file mode 100755
index 000000000..577c49eba
--- /dev/null
+++ b/1835/CH1/EX1.13/Ex1_13.sce
@@ -0,0 +1,26 @@
+//CHAPTER 1 ILLUSRTATION 13 PAGE NO 30
+//TITLE:Basic kinematics
+//Figure 1.33(a),1.33(b),1.33(c)
+clc
+clear
+PI=3.141
+N=120// speed of the crank OC in rpm
+OC=5// length of link OC in cm
+cp=20// length of link CP in cm
+qa=10// length of link QA in cm
+pa=5// length of link PA in cm
+CP=46.9// velocity of link CP in cm/s
+QA=58.3// velocity of link QA in cm/s
+Pa=18.3// velocity of link PA in cm/s
+Vc=2*PI*N*OC/60// velocity of C in m/s
+Cco=Vc^2/OC// centripetal acceleration of C relative to O in cm/s^2
+Cpc=CP^2/cp// centripetal acceleration of P relative to C in cm/s^2
+Caq=QA^2/qa// centripetal acceleration of A relative to Q in cm/s^2
+Cap=Pa^2/pa// centripetal acceleration of A relative to P in cm/s^2
+pp1=530
+a1a=323
+a2a=207.5
+ACP=pp1/cp// angular acceleration of link CP in rad/s^2
+APA=a1a/qa// angular acceleration of link PA in rad/s^2
+AAQ=a2a/pa// angular acceleration of link AQ in rad/s^2
+printf('angular acceleration of link CP =%.3f rad/s^2\n angular acceleration of link CP=%.3f rad/s^2\n angular acceleration of link CP=%.3f rad/s^2',ACP,APA,AAQ)
diff --git a/1835/CH1/EX1.2/Ex1_2.sce b/1835/CH1/EX1.2/Ex1_2.sce
new file mode 100755
index 000000000..07778fbd2
--- /dev/null
+++ b/1835/CH1/EX1.2/Ex1_2.sce
@@ -0,0 +1,12 @@
+//CHAPTER 1 ILLUSRTATION 2 PAGE NO 16
+//TITLE:Basic kinematics
+//Figure 1.15
+clc
+clear
+OA=300// distance between the fixed centres in mm
+OB=150// length of driving crank in mm
+//================================
+OAB=asind(OB/OA)// inclination of slotted bar with vertical in degrees
+beeta=(90-OAB)*2// angle through which crank turns inreturn stroke in degrees
+A=(360-beeta)/beeta// ratio of time of cutting stroke to the time of return stroke
+printf('Ratio of time taken on the cutting to the return stroke= %.0f',A)
diff --git a/1835/CH1/EX1.3/Ex1_3.sce b/1835/CH1/EX1.3/Ex1_3.sce
new file mode 100755
index 000000000..fb82e7d12
--- /dev/null
+++ b/1835/CH1/EX1.3/Ex1_3.sce
@@ -0,0 +1,14 @@
+//CHAPTER 1 ILLUSRTATION 3 PAGE NO 16
+//TITLE:Basic kinematics
+//Figure 1.16
+clc
+clear
+OB=54.6// distance between the fixed centres in mm
+OA=85// length of driving crank in mm
+OA2=OA
+CA=160// length of slotted lever in mm
+CD=144// length of connectin rod in mm
+//================================
+beeta=2*(acosd(OB/OA2))// angle through which crank turns inreturn stroke in degrees
+A=(360-beeta)/beeta// ratio of time of cutting stroke to the time of return stroke
+printf('Ratio of time taken on the cutting to the return stroke= %.0f',A)
diff --git a/1835/CH1/EX1.4/Ex1_4.sce b/1835/CH1/EX1.4/Ex1_4.sce
new file mode 100755
index 000000000..3dc91d80a
--- /dev/null
+++ b/1835/CH1/EX1.4/Ex1_4.sce
@@ -0,0 +1,34 @@
+//CHAPTER 1 ILLUSRTATION 4 PAGE NO 17
+//TITLE:Basic kinematics
+//Figure 1.18,1.19
+clc
+clear
+pi=3.141
+Nao=180// speed of the crank in rpm
+wAO=2*pi*Nao/60// angular speed of the crank in rad/s
+AO=.5// crank length in m
+AE=.5
+Vao=wAO*AO// velocity of A in m/s
+//================================
+Vb1=8.15// velocity of piston B in m/s by measurment from figure 1.19
+Vba=6.8// velocity of B with respect to A in m/s
+AB=2// length of connecting rod in m
+wBA=Vba/AB// angular velocity of the connecting rod BA in rad/s
+ae=AE*Vba/AB// velocity of point e on the connecting rod
+oe=8.5// by measurement velocity of point E
+Do=.05// diameter of crank shaft in m
+Da=.06// diameter of crank pin in m
+Db=.03// diameter of cross head pin B m
+V1=wAO*Do/2// velocity of rubbing at the pin of the crankshaft in m/s
+V2=wBA*Da/2// velocity of rubbing at the pin of the crank in m/s
+Vb=(wAO+wBA)*Db/2// velocity of rubbing at the pin of cross head in m/s
+ag=5.1// by measurement
+AG=AB*ag/Vba// position and linear velocity of point G on the connecting rod in m
+//===============================
+printf('Velocity of piston B= %.3f m/s\n Angular velocity of connecting rod= %.3f rad/s\n velocity of point E=%.1f m/s\n velocity of rubbing at the pin of the crankshaft=%.3f m/s\n velocity of rubbing at the pin of the crank =%.3f m/s\n velocity of rubbing at the pin of cross head =%.3f m/s\n position and linear velocity of point G on the connecting rod=%.3f m',Vb1,wBA,oe,V1,V2,Vb,AG)
+
+
+
+
+
+
diff --git a/1835/CH1/EX1.5/Ex1_5.sce b/1835/CH1/EX1.5/Ex1_5.sce
new file mode 100755
index 000000000..444b15051
--- /dev/null
+++ b/1835/CH1/EX1.5/Ex1_5.sce
@@ -0,0 +1,21 @@
+//CHAPTER 1 ILLUSRTATION 5 PAGE NO 19
+//TITLE:Basic kinematics
+//Figure 1.20,1.21
+clc
+clear
+pi=3.141
+N=120// speed of crank in rpm
+OA=10// length of crank in cm
+BP=48// from figure 1.20 in cm
+BA=40// from figure 1.20 in cm
+//==============
+w=2*pi*N/60// angular velocity of the crank OA in rad/s
+Vao=w*OA// velocity of ao in cm/s
+ba=4.5// by measurement from 1.21 in cm
+Bp=BP*ba/BA
+op=6.8// by measurement in cm from figure 1.21
+s=20// scale of velocity diagram 1cm=20cm/s
+Vp=op*s// linear velocity of P in m/s
+ob=5.1// by measurement in cm from figure 1.21
+Vb=ob*s// linear velocity of slider B
+printf('Linear velocity of slider B= %.2f cm/s\n Linear velocity of point P= %.2f cm/s',Vb,Vp)
diff --git a/1835/CH1/EX1.6/Ex1_6.sce b/1835/CH1/EX1.6/Ex1_6.sce
new file mode 100755
index 000000000..62033320c
--- /dev/null
+++ b/1835/CH1/EX1.6/Ex1_6.sce
@@ -0,0 +1,29 @@
+
+//CHAPTER 1 ILLUSRTATION 6 PAGE NO 20
+//TITLE:Basic kinematics
+//Figure 1.22,1.23
+clc
+clear
+pi=3.141
+AB=6.25// length of link AB in cm
+BC=17.5// length of link BC in cm
+CD=11.25// length of link CD in cm
+DA=20// length of link DA in cm
+CE=10
+N=100// speed of crank in rpm
+//========================
+wAB=2*pi*N/60// angular velocity of AB in rad/s
+Vb=wAB*AB// linear velocity of B with respect to A
+s=15// scale for velocity diagram 1 cm= 15 cm/s
+dc=3// by measurement in cm
+Vcd=dc*s
+wCD=Vcd/CD// angular velocity of link CD in rad/s
+bc=2.5// by measurement in cm
+Vbc=bc*s
+wBC=Vbc/BC// angular velocity of link BC in rad/s
+ce=bc*CE/BC
+ae=3.66// by measurement in cm
+Ve=ae*s// velocity of point E 10 from c on the link BC
+af=2.94// by measurement in cm
+Vf=af*s// velocity of point F
+printf('The angular velocity of link CD= %.3f rad/s\n The angular velocity of link BC= %.3f rad/s\n velocity of point E 10 from c on the link BC= %.3f cm/s\n velocity of point F= %.3f cm/s',wCD,wBC,Ve,Vf)
diff --git a/1835/CH1/EX1.7/Ex1_7.sce b/1835/CH1/EX1.7/Ex1_7.sce
new file mode 100755
index 000000000..e8cc42b98
--- /dev/null
+++ b/1835/CH1/EX1.7/Ex1_7.sce
@@ -0,0 +1,24 @@
+//CHAPTER 1 ILLUSRTATION 7 PAGE NO 21
+//TITLE:Basic kinematics
+//Figure 1.24,1.25
+clc
+clear
+pi=3.141
+Noa=600// speed of the crank in rpm
+OA=2.8// length of link OA in cm
+AB=4.4// length of link AB in cm
+BC=4.9// length of link BC in cm
+BD=4.6// length of link BD in cm
+//=================
+wOA=2*pi*Noa/60// angular velocity of crank in rad/s
+Vao=wOA*OA// The linear velocity of point A with respect to oin m/s
+s=50// scale of velocity diagram in cm
+od=2.95// by measurement in cm from figure
+Vd=od*s/100// linear velocity slider in m/s
+bd=3.2// by measurement in cm from figure
+Vbd=bd*s
+wBD=Vbd/BD// angular velocity of link BD
+printf('linear velocity slider D= %.3f m/s\n angular velocity of link BD= %.1f rad/s',Vd,wBD)
+
+
+
diff --git a/1835/CH1/EX1.8/Ex1_8.sce b/1835/CH1/EX1.8/Ex1_8.sce
new file mode 100755
index 000000000..aefe6d139
--- /dev/null
+++ b/1835/CH1/EX1.8/Ex1_8.sce
@@ -0,0 +1,20 @@
+//CHAPTER 1 ILLUSRTATION 8 PAGE NO 22
+//TITLE:Basic kinematics
+//Figure 1.26,1.27
+clc
+clear
+pi=3.141
+Noa=60// speed of crank in rpm
+OA=30// length of link OA in cm
+AB=100// length of link AB in cm
+CD=80// length of link CD in cm
+//AC=CB
+//================
+wOA=2*pi*Noa/60// angular velocity of crank in rad/s
+Vao=wOA*OA/100// linear velocity of point A with respect to O
+s=50// scale for velocity diagram 1 cm= 50 cm/s
+ob=3.4// by measurement in cm from figure 1.27
+od=.9// by measurement in cm from figure 1.27
+Vcd=160// by measurement in cm/s from figure 1.27
+wCD=Vcd/CD// angular velocity of link in rad/s
+printf('Angular velocity of link CD= %d rad/s',wCD)
diff --git a/1835/CH1/EX1.9/Ex1_9.sce b/1835/CH1/EX1.9/Ex1_9.sce
new file mode 100755
index 000000000..b0e46a52a
--- /dev/null
+++ b/1835/CH1/EX1.9/Ex1_9.sce
@@ -0,0 +1,27 @@
+//CHAPTER 1 ILLUSRTATION 9 PAGE NO 23
+//TITLE:Basic kinematics
+//Figure 1.28,1.29
+clc
+clear
+pi=3.141
+Nao=120// speed of the crank in rpm
+OQ=10// length of link OQ in cm
+OA=20// length of link OA in cm
+QC=15// length of link QC in cm
+CD=50// length oflink CD in cm
+//=============
+wOA=2*pi*Nao/60// angular speed of crank in rad/s
+Vad=wOA*OA/100// velocity of pin A in m/s
+BQ=41// from figure 1.29
+BC=26// from firure 1.29
+bq=4.7// from figure 1.29
+bc=bq*BC/BQ// from figure 1.29 in cm
+s=50// scale for velocity diagram in cm/s
+od=1.525// velocity vector od in cm from figure 1.29
+Vd=od*s// velocity of ram D in cm/s
+dc=1.925// velocity vector dc in cm from figure 1.29
+Vdc=dc*s// velocity of link CD in cm/s
+wCD=Vdc/CD// angular velocity of link CD in cm/s
+ba=1.8// velocity vector of sliding of the block in cm
+Vab=ba*s// velocity of sliding of the block in cm/s
+printf('Velocity of RAM D= %.3f cm/s\n angular velocity of link CD= %.3f rad/s\n velocity of sliding of the block= %.3f cm/s',Vd,wCD,Vab)
diff --git a/1835/CH10/EX10.1/Ex10_1.sce b/1835/CH10/EX10.1/Ex10_1.sce
new file mode 100755
index 000000000..811ff0a24
--- /dev/null
+++ b/1835/CH10/EX10.1/Ex10_1.sce
@@ -0,0 +1,17 @@
+//CHAPTER 10 ILLUSRTATION 1 PAGE NO 268
+//TITLE:Brakes and Dynamometers
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+d=0.32;//Diameter of the drum in m
+qq=90;//Angle of contact in degree
+P=820;//Force applied in N
+U=0.35;//Coefficient of friction
+
+
+U1=((4*U*sind(qq/2))/((qq*(3.14/180))+sind(qq)));//Equivalent coefficient of friction
+F=((P*0.66)/((0.3/U1)-0.06));//Force value in N taking moments
+TB=(F*(d/2));//Torque transmitted in N.m
+
+printf('Torque transmitted by the block brake is %3.4f N.m',TB)
diff --git a/1835/CH10/EX10.10/Ex10_10.sce b/1835/CH10/EX10.10/Ex10_10.sce
new file mode 100755
index 000000000..47b0dd7f1
--- /dev/null
+++ b/1835/CH10/EX10.10/Ex10_10.sce
@@ -0,0 +1,26 @@
+//CHAPTER 10 ILLUSRTATION 10 PAGE NO 275
+//TITLE:Brakes and Dynamometers
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+n=12;// Number of blocks
+q=16;//Angle subtended in degrees
+d=0.9;//Effective diameter in m
+m=2000;//Mass in kg
+k=0.5;//Radius of gyration in m
+b1=0.7;//Distance in m
+b2=0.03;//Distance in m
+a=0.1;//Distance in m
+P=180;//Force in N
+N=360;//Speed in r.p.m
+U=0.25;//Coefficient of friction
+
+Tr=((1+(U*tand(q/2)))/(1-(U*tand(q/2))))^n;//Tensions ratio
+T2=(P*b1)/(a-(b2*Tr));//Tension in N
+T1=(Tr*T2);//Tension in N
+TB=(T1-T2)*(d/2);//Torque in N.m
+aa=(TB/(m*k^2));//Angular acceleration in rad/s^2
+t=((2*3.14*N)/60)/aa;//Time in seconds
+
+printf('(i) Maximum braking torque is %3.4f Nm \n(ii) Angular retardation of the drum is %3.4f rad/s^2 \n(iii) Time taken by the system to come to rest is %3.1f s',TB,aa,t)
diff --git a/1835/CH10/EX10.2/Ex10_2.sce b/1835/CH10/EX10.2/Ex10_2.sce
new file mode 100755
index 000000000..30781cc03
--- /dev/null
+++ b/1835/CH10/EX10.2/Ex10_2.sce
@@ -0,0 +1,18 @@
+//CHAPTER 10 ILLUSRTATION 2 PAGE NO 269
+//TITLE:Brakes and Dynamometers
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+m=120;//Mass of rider in kg
+v=16.2;//Speed of rider in km/hr
+d=0.9;//Diameter of the wheel in m
+P=120;//Pressure applied on the brake in N
+U=0.06;//Coefficient of friction
+
+F=(U*P);//Frictional force in N
+KE=((m*(v*(5/18))^2)/2);//Kinematic Energy in N.m
+S=(KE/F);//Distance travelled by the bicycle before it comes to rest in m
+N=(S/(d*3.14));//Required number of revolutions
+
+printf('The bicycle travels a distance of %3.2f m and makes %3.2f turns before it comes to rest',S,N)
diff --git a/1835/CH10/EX10.3/Ex10_3.sce b/1835/CH10/EX10.3/Ex10_3.sce
new file mode 100755
index 000000000..12f0f890d
--- /dev/null
+++ b/1835/CH10/EX10.3/Ex10_3.sce
@@ -0,0 +1,18 @@
+//CHAPTER 10 ILLUSRTATION 3 PAGE NO 270
+//TITLE:Brakes and Dynamometers
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+S=3500;//Force on each arm in N
+d=0.36;//Diamter of the wheel in m
+U=0.4;//Coefficient of friction
+qq=100;//Contact angle in degree
+
+qqr=(qq*(3.14/180));//Contact angle in radians
+UU=((4*U*sind(qq/2))/(qqr+(sind(qq))));//Equivalent coefficient of friction
+F1=(S*0.45)/((0.2/UU)+((d/2)-0.04));//Force on fulcrum in N
+F2=(S*0.45)/((0.2/UU)-((d/2)-0.04));//Force on fulcrum in N
+TB=(F1+F2)*(d/2);//Maximum torque absorbed in N.m
+
+printf('Maximum torque absorbed is %3.2f N.m',TB)
diff --git a/1835/CH10/EX10.4/Ex10_4.sce b/1835/CH10/EX10.4/Ex10_4.sce
new file mode 100755
index 000000000..d1d9361a1
--- /dev/null
+++ b/1835/CH10/EX10.4/Ex10_4.sce
@@ -0,0 +1,19 @@
+//CHAPTER 10 ILLUSRTATION 4 PAGE NO 271
+//TITLE:Brakes and Dynamometers
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+a=0.5;//Length of lever in m
+d=0.5;//Diameter of brake drum in m
+q=(5/8)*(2*3.14);//Angle made in radians
+b=0.1;//Distance between pin and fulcrum in m
+P=2000;//Effort applied in N
+U=0.25;//Coefficient of friction
+
+T=exp(U*q);//Ratios of tension
+T2=((P*a)/b);//Tension in N
+T1=(T*T2);//Tension in N
+TB=((T1-T2)*(d/2))/1000;//Maximum braking torque in kNm
+
+printf('The maximum braking torque on the drum is %3.3f kNm',TB)
diff --git a/1835/CH10/EX10.5/Ex10_5.sce b/1835/CH10/EX10.5/Ex10_5.sce
new file mode 100755
index 000000000..c2d25658c
--- /dev/null
+++ b/1835/CH10/EX10.5/Ex10_5.sce
@@ -0,0 +1,19 @@
+//CHAPTER 10 ILLUSRTATION 5 PAGE NO 271
+//TITLE:Brakes and Dynamometers
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+q=220;//Angle of contact in degree
+T=340;//Torque in Nm
+d=0.32;//Diameter of drum in m
+U=0.3;//Coefficient of friction
+
+Td=(T/(d/2));//Difference in tensions in N
+Tr=exp(U*(q*(3.14/180)));//Ratio of tensions
+T2=(Td/(Tr-1));//Tension in N
+T1=(Tr*T2);//Tension in N
+P=((T2*(d/2))-(T1*0.04))/0.5;//Force applied in N
+b=(T1/T2)*4;//Value of b in cm when the brake is self-locking
+
+printf('The value of b is %3.2f cm when the brake is self-locking \n Tensions in the sides are %3.3f N and %3.3f N',b,T1,T2)
diff --git a/1835/CH10/EX10.6/Ex10_6.sce b/1835/CH10/EX10.6/Ex10_6.sce
new file mode 100755
index 000000000..1015c4b08
--- /dev/null
+++ b/1835/CH10/EX10.6/Ex10_6.sce
@@ -0,0 +1,27 @@
+//CHAPTER 10 ILLUSRTATION 6 PAGE NO 272
+//TITLE:Brakes and Dynamometers
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+d=0.5;//Drum diamter in m
+U=0.3;//Coefficient of friction
+q=250;//Angle of contact in degree
+P=750;//Force in N
+a=0.1;//Band width in m
+b=0.8;//Distance in m
+ft=(70*10^6);//Tensile stress in Pa
+f=(60*10^6);//Stress in Pa
+b1=0.1;//Distance in m
+
+T=exp(U*(q*(3.14/180)));//Tensions ratio
+T2=(P*b*10)/(T+1);//Tension in N
+T1=(T*T2);//Tension in N
+TB=(T1-T2)*(d/2);//Torque in N.m
+t=(max(T1,T2)/(ft*a))*1000;//Thickness in mm
+M=(P*b);//bending moment at fulcrum in Nm
+X=(M/((1/6)*f));//Value of th^2
+//t varies from 10mm to 15 mm. Taking t=15mm,
+h=sqrt(X/(0.015))*1000;//Section of the lever in m
+
+printf('Torque required is %3.2f N.m \nThickness necessary to limit the tensile stress to 70 MPa is %3.3f mm \n Section of the lever taking stress to 60 MPa is %3.1f mm',TB,t,h)
diff --git a/1835/CH10/EX10.7/Ex10_7.sce b/1835/CH10/EX10.7/Ex10_7.sce
new file mode 100755
index 000000000..a143e2dd5
--- /dev/null
+++ b/1835/CH10/EX10.7/Ex10_7.sce
@@ -0,0 +1,26 @@
+//CHAPTER 10 ILLUSRTATION 7 PAGE NO 273
+//TITLE:Brakes and Dynamometers
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+P1=30;//Power in kW
+N=1250;//Speed in r.p.m
+P=60;//Applied force in N
+d=0.8;//Drum diameter in m
+q=310;//Contact angle in degree
+a=0.03;//Length of a in m
+b=0.12;//Length of b in m
+U=0.2;//Coefficient of friction
+B=10;//Band width in cm
+D=80;//Diameter in cm
+
+T=(P1*60000)/(2*3.14*N);//Torque in N.m
+Td=(T/(d/2));//Tension difference in N
+Tr=exp(U*(q*(3.14/180)));//Tensions ratio
+T2=(Td/(Tr-1));//Tension in N
+T1=(Tr*T2);//Tension in N
+x=((T2*b)-(T1*a))/P;//Distance in m;
+X=(P1/(B*D));//Ratio
+
+printf('Value of x is %3.4f m \n Value of (Power/bD) ratio is %3.4f',x,X)
diff --git a/1835/CH10/EX10.8/Ex10_8.sce b/1835/CH10/EX10.8/Ex10_8.sce
new file mode 100755
index 000000000..f39b7c7f6
--- /dev/null
+++ b/1835/CH10/EX10.8/Ex10_8.sce
@@ -0,0 +1,26 @@
+//CHAPTER 10 ILLUSRTATION 8 PAGE NO 274
+//TITLE:Brakes and Dynamometers
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+m=80;//Mass of flywheel in kg
+k=0.5;//Radius of gyration in m
+N=250;//Speed in r.p.m
+d=0.32;//Diamter of the drum in m
+b=0.05;//Distance of pin in m
+q=260;//Angle of contact in degree
+U=0.23;//Coefficient of friction
+P=20;//Force in N
+a=0.35;//Distance at which force is applied in m
+
+Tr=exp(U*q*(3.14/180));//Tensions ratio
+T2=(P*a)/b;//Tension in N
+T1=(Tr*T2);//Tension in N
+TB=(T1-T2)*(d/2);//Torque in N.m
+KE=((1/2)*(m*k^2)*((2*3.14*N)/60)^2);//Kinematic energy of the rotating drum in Nm
+N1=(KE/(TB*2*3.14));//Speed in rpm
+aa=((2*3.14*N)/60)^2/(4*3.14*N1);//Angular acceleration in rad/s^2
+t=((2*3.14*N)/60)/aa;//Time in seconds
+
+printf('Time required to bring the shaft to the rest from its running condition is %3.1f seconds',t)
diff --git a/1835/CH10/EX10.9/Ex10_9.sce b/1835/CH10/EX10.9/Ex10_9.sce
new file mode 100755
index 000000000..d2a8ba2e4
--- /dev/null
+++ b/1835/CH10/EX10.9/Ex10_9.sce
@@ -0,0 +1,28 @@
+//CHAPTER 10 ILLUSRTATION 9 PAGE NO 275
+//TITLE:Brakes and Dynamometers
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+n=12;//Number of blocks
+q=15;//Angle subtended in degree
+P=185;//Power in kW
+N=300;//Speed in r.p.m
+U=0.25;//Coefficient of friction
+d=1.25;//Diamter in m
+b1=0.04;//Distance in m
+b2=0.14;//Distance in m
+a=1;//Diatance in m
+m=2400;//Mass of rotor in kg
+k=0.5;//Radius of gyration in m
+
+Td=(P*60000)/(2*3.14*N*(d/2));//Tension difference in N
+T=Td*(d/2);//Torque in Nm
+Tr=((1+(U*tand(q/2)))/(1-(U*tand(q/2))))^n;//Tension ratio
+To=(Td/(Tr-1));//Tension in N
+Tn=(Tr*To);//Tension in N
+P=((To*b2)-(Tn*b1))/a;//Force in N
+aa=(T/(m*k^2));//Angular acceleration in rad/s^2
+t=((2*3.14*N)/60)/aa;//Time in seconds
+
+printf('Minimum force required is %3.0f N \nTime taken to bring to rest is %3.1f seconds',P,t)
diff --git a/1835/CH11/EX11.1/Ex11_1.sce b/1835/CH11/EX11.1/Ex11_1.sce
new file mode 100755
index 000000000..96bd36015
--- /dev/null
+++ b/1835/CH11/EX11.1/Ex11_1.sce
@@ -0,0 +1,24 @@
+//CHAPTER 11 ILLUSRTATION 1 PAGE NO 290
+//TITLE:VIBRATIONS
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+PI=3.147
+D=.1// DIAMETER OF SHAFT IN m
+L=1.10// LENGTH OF SHAFT IN m
+W=450// WEIGHT ON THE OTHER END OF SHAFT IN NEWTONS
+E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals
+// =========================================================================================
+A=PI*D^2/4// AREA OF SHAFT IN mm^2
+I=PI*D^4/64// MOMENT OF INERTIA
+delta=W*L/(A*E)// STATIC DEFLECTION IN LONGITUDINAL VIBRATION OF SHAFT IN m
+Fn=0.4985/(delta)^.5// FREQUENCY OF LONGITUDINAL VIBRATION IN Hz
+delta1=W*L^3/(3*E*I)// STATIC DEFLECTION IN TRANSVERSE VIBRATION IN m
+Fn1=0.4985/(delta1)^.5// FREQUENCY OF TRANSVERSE VIBRATION IN Hz
+//============================================================================================
+//OUTPUT
+printf('FREQUENCY OF LONGITUDINAL VIBRATION =%.3f Hz\n FREQUENCY OF TRANSVERSE VIBRATION =%.3f Hz',Fn,Fn1)
+
+
+
diff --git a/1835/CH11/EX11.10/Ex11_10.sce b/1835/CH11/EX11.10/Ex11_10.sce
new file mode 100755
index 000000000..1652ade03
--- /dev/null
+++ b/1835/CH11/EX11.10/Ex11_10.sce
@@ -0,0 +1,25 @@
+//CHAPTER 11 ILLUSRTATION 10 PAGE NO 296
+//TITLE:VIBRATIONS
+//FIGURE 11.18
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+PI=3.147
+g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2
+E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals
+D=.03// DIAMETER OF SHAFT IN m
+L=.8// LENGTH OF SHAFT IN m
+r=40000// DENSITY OF SHAFT MATERIAL IN Kg/m^3
+W=10// WEIGHT ACTING AT CENTRE IN N
+//===========================================================================================
+I=PI*D^4/64// MOMENT OF INERTIA OF SHAFT IN m^4
+m=PI*D^2/4*r// MASS PER UNIT LENGTH IN Kg/m
+w=m*g
+DELTA=W*L^3/(48*E*I)// STATIC DEFLECTION DUE TO W
+DELTA1=5*w*L^4/(384*E*I)// STATIC DEFLECTION DUE TO WEIGHT OF SHAFT
+Fn=.4985/(DELTA+DELTA1/1.27)^.5
+//==========================================================================================
+printf('FREQUENCY OF TRANSVERSE VIBRATION = %.3f Hz',Fn)
+
+
diff --git a/1835/CH11/EX11.11/Ex11_11.sce b/1835/CH11/EX11.11/Ex11_11.sce
new file mode 100755
index 000000000..ac8fe367e
--- /dev/null
+++ b/1835/CH11/EX11.11/Ex11_11.sce
@@ -0,0 +1,32 @@
+//CHAPTER 11 ILLUSRTATION 11 PAGE NO 297
+//TITLE:VIBRATIONS
+//FIGURE 11.19
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+PI=3.147
+g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2
+E=210*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals
+D=.18// DIAMETER OF SHAFT IN m
+L=2.5// LENGTH OF SHAFT IN m
+M1=25// MASS ACTING AT E IN Kg
+M2=50// MASS ACTING AT D IN Kg
+M3=20// MASS ACTING AT C IN Kg
+W1=M1*g
+W2=M2*g
+W3=M3*g
+L1=.6// LENGTH FROM A TO E IN m
+L2=1.5// LENGTH FROM A TO D IN m
+L3=2// LENGTH FROM A TO C IN m
+w=1962// SELF WEIGHT OF SHAFT IN N
+//==========================================================================================
+I=PI*D^4/64// MOMENT OF INERTIA OF SHAFT IN m^4
+DELTA1=W1*L1^2*(L-L1)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W1
+DELTA2=W2*L2^2*(L-L2)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W2
+DELTA3=W3*L3^2*(L-L3)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W3
+DELTA4=5*w*L^4/(384*E*I)// STATIC DEFLECTION DUE TO w
+Fn=.4985/(DELTA1+DELTA2+DELTA3+DELTA4/1.27)^.5
+Nc=Fn*60// CRITICAL SPEED OF SHAFT IN rpm
+//========================================================================================
+printf('CRITICAL SPEED OF SHAFT = %.3f rpm',Nc)
diff --git a/1835/CH11/EX11.12/Ex11_12.sce b/1835/CH11/EX11.12/Ex11_12.sce
new file mode 100755
index 000000000..12b0e656b
--- /dev/null
+++ b/1835/CH11/EX11.12/Ex11_12.sce
@@ -0,0 +1,29 @@
+//CHAPTER 11 ILLUSRTATION 12 PAGE NO 298
+//TITLE:VIBRATIONS
+//FIGURE 11.20
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+PI=3.147
+g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2
+Na=1500// SPEED OF SHAFT A IN rpm
+Nb=500// SPEED OF SHAFT B IN rpm
+G=Na/Nb// GERA RATIO
+L1=.18// LENGTH OF SHAFT 1 IN m
+L2=.45// LENGTH OF SHAFT 2 IN m
+D1=.045// DIAMETER OF SHAFT 1 IN m
+D2=.09// DIAMETER OF SHAFT 2 IN m
+C=84*10^9// MODUKUS OF RIDITY OF SHAFT MATERIAL IN Pascals
+Ib=1400// MOMENT OF INERTIA OF PUMP IN Kg-m^2
+Ia=400// MOMENT OF INERTIA OF MOTOR IN Kg-m^2
+
+//======================================================================================
+J=PI*D1^4/32// POLAR MOMENT OF INERTIA IN m^4
+Ib1=Ib/G^2// MASS MOMENT OF INERTIA OF EQUIVALENT ROTOR IN m^2
+L3=G^2*L2*(D1/D2)^4// ADDITIONAL LENGTH OF THE EQUIVALENT SHAFT
+L=L1+L3// TOTAL LENGTH OF EQUIVALENT SHAFT
+La=L*Ib1/(Ia+Ib1)
+Fn=(C*J/(La*Ia))^.5/(2*PI)// FREQUENCY OF FREE TORSIONAL VIBRATION IN Hz
+//===================================================================================
+printf('FREQUENCY OF FREE TORSIONAL VIBRATION = %.2f Hz',Fn)
diff --git a/1835/CH11/EX11.13/Ex11_13.sce b/1835/CH11/EX11.13/Ex11_13.sce
new file mode 100755
index 000000000..d2734d646
--- /dev/null
+++ b/1835/CH11/EX11.13/Ex11_13.sce
@@ -0,0 +1,28 @@
+//CHAPTER 11 ILLUSRTATION 13 PAGE NO 300
+//TITLE:VIBRATIONS
+//FIGURE 11.21
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+PI=3.147
+g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2
+D=.015// DIAMETER OF SHAFT IN m
+L=1.00// LENGTH OF SHAFT IN m
+M=15// MASS OF SHAFT IN Kg
+W=M*g
+e=.0003// ECCENTRICITY IN m
+E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals
+f=70*10^6// PERMISSIBLE STRESS IN N/m^2
+//============================================================================================
+I=PI*D^4/64// MOMENT OF INERTIA OF SHAFT IN m^4
+DELTA=W*L^3/(192*E*I)// STATIC DEFLECTION IN m
+Fn=.4985/(DELTA)^.5// NATURAL FREQUENCY OF TRANSVERSE VIBRATION
+Nc=Fn*60// CRITICAL SPEED OF SHAFT IN rpm
+M1=16*f*I/(D*g*L)
+W1=M1*g// ADDITIONAL LOAD ACTING
+y=W1/W*DELTA// ADDITIONAL DEFLECTION DUE TO W1
+N1=Nc/(1+e/y)^.5// MIN SPEED IN rpm
+N2=Nc/(1-e/y)^.5// MAX SPEED IN rpm
+//===========================================================================================
+printf('CRITICAL SPEED OF SHAFT = %.3f rpm\n THE RANGE OF SPEED IS FROM %.3f rpm TO %.3f rpm',Nc,N1,N2)
diff --git a/1835/CH11/EX11.2/Ex11_2.sce b/1835/CH11/EX11.2/Ex11_2.sce
new file mode 100755
index 000000000..dbb4c5b2b
--- /dev/null
+++ b/1835/CH11/EX11.2/Ex11_2.sce
@@ -0,0 +1,23 @@
+//CHAPTER 11 ILLUSRTATION 2 PAGE NO 290
+//TITLE:VIBRATIONS
+//FIGURE 11.10
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+PI=3.147
+L=.9// LENGTH OF THE SHAFT IN m
+m=100// MASS OF THE BODY IN Kg
+L2=.3// LENGTH WHERE THE WEIGHT IS ACTING IN m
+L1=L-L2// DISTANCE FROM THE OTHER END
+D=.06// DIAMETER OF SHAFT IN m
+W=9.81*m// WEGHT IN NEWTON
+E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals
+//==========================================================================================
+//CALCULATION
+I=PI*D^4/64// MOMENT OF INERTIA IN m^4
+delta=W*L1^2*L2^2/(3*E*I*L)// STATIC DEFLECTION
+Fn=.4985/(delta)^.5// NATURAL FREQUENCY OF TRANSVERSE VIBRATION
+//=========================================================================================
+//OUTPUT
+printf('NATURAL FREQUENCY OF TRANSVERSE VIBRATION=%.3f Hz',Fn)
diff --git a/1835/CH11/EX11.3/Ex11_3.sce b/1835/CH11/EX11.3/Ex11_3.sce
new file mode 100755
index 000000000..47a05323f
--- /dev/null
+++ b/1835/CH11/EX11.3/Ex11_3.sce
@@ -0,0 +1,33 @@
+//CHAPTER 11 ILLUSRTATION 3 PAGE NO 291
+//TITLE:VIBRATIONS
+//FIGURE 11.11
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+PI=3.147
+g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2
+D=.050// DIAMETER OF SHAFT IN m
+m=450// WEIGHT OF FLY WHEEL IN IN Kg
+K=.5// RADIUS OF GYRATION IN m
+L2=.6// FROM FIGURE IN m
+L1=.9// FROM FIGURE IN m
+L=L1+L2
+E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals
+C=84*10^9// MODUKUS OF RIDITY OF SHAFT MATERIAL IN Pascals
+//=========================================================================================
+A=PI*D^2/4// AREA OF SHAFT IN mm^2
+I=PI*D^4/64//
+m1=m*L2/(L1+L2)// MASS OF THE FLYWHEEL CARRIED BY THE LENGTH L1 IN Kg
+DELTA=m1*g*L1/(A*E)// EXTENSION OF LENGTH L1 IN m
+Fn=0.4985/(DELTA)^.5// FREQUENCY OF LONGITUDINAL VIBRATION IN Hz
+DELTA1=(m*g*L1^3*L2^3)/(3*E*I*L^3)// STATIC DEFLECTION IN TRANSVERSE VIBRATION IN m
+Fn1=0.4985/(DELTA1)^.5// FREQUENCY OF TRANSVERSE VIBRATION IN Hz
+J=PI*D^4/32// POLAR MOMENT OF INERTIA IN m^4
+Q1=C*J/L1// TORSIONAL STIFFNESS OF SHAFT DUE TO L1 IN N-m
+Q2=C*J/L2// TORSIONAL STIFFNESS OF SHAFT DUE TO L2 IN N-m
+Q=Q1+Q2// TORSIONAL STIFFNESS OF SHAFT IN Nm
+Fn2=(Q/(m*K^2))^.5/(2*PI)// FREQUENCY OF TORSIONAL VIBRATION IN Hz
+//=======================================================================================
+printf('FREQUENCY OF LONGITUDINAL VIBRATION = %.3f Hz\n FREQUENCY OF TRANSVERSE VIBRATION = %.3f Hz\n FREQUENCY OF TORSIONAL VIBRATION = %.3f Hz',Fn,Fn1,Fn2)
+
diff --git a/1835/CH11/EX11.6/Ex11_6.sce b/1835/CH11/EX11.6/Ex11_6.sce
new file mode 100755
index 000000000..fb6f9e84f
--- /dev/null
+++ b/1835/CH11/EX11.6/Ex11_6.sce
@@ -0,0 +1,26 @@
+//CHAPTER 11 ILLUSRTATION 6 PAGE NO 294
+//TITLE:VIBRATIONS
+//FIGURE 11.14
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+PI=3.147
+g=9.81// ACCELERATION DUE TO GRAVITY IN N /m^2
+D=.06// DIAMETER OF SHAFT IN m
+L=3// LENGTH OF SHAFT IN m
+W1=1500// WEIGHT ACTING AT C IN N
+W2=2000// WEIGHT ACTING AT D IN N
+W3=1000// WEIGHT ACTING AT E IN N
+L1=1// LENGTH FROM A TO C IN m
+L2=2// LENGTH FROM A TO D IN m
+L3=2.5// LENGTH FROM A TO E IN m
+I=PI*D^4/64
+E=200*10^9// YOUNGS MODUKUS OF SHAFT MATERIAL IN Pascals
+//===========================================================================================
+DELTA1=W1*L1^2*(L-L1)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W1
+DELTA2=W2*L2^2*(L-L2)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W2
+DELTA3=W2*L3^2*(L-L3)^2/(3*E*I*L)// STATIC DEFLECTION DUE TO W2
+Fn=.4985/(DELTA1+DELTA2+DELTA3)^.5// FREQUENCY OF TRANSVERSE VIBRATION IN Hz
+//==========================================================================================
+printf('FREQUENCY OF TRANSVERSE VIBRATION = %.3f Hz',Fn)
diff --git a/1835/CH12/EX12.1/Ex12_1.sce b/1835/CH12/EX12.1/Ex12_1.sce
new file mode 100755
index 000000000..cfaf5994f
--- /dev/null
+++ b/1835/CH12/EX12.1/Ex12_1.sce
@@ -0,0 +1,18 @@
+//CHAPTER 12 ILLUSRTATION 1 PAGE NO 310
+//TITLE:Balancing of reciprocating of masses
+clc
+clear
+pi=3.141
+N=250// speed of the reciprocating engine in rpm
+s=18// length of stroke in mm
+mR=120// mass of reciprocating parts in kg
+m=70// mass of revolving parts in kg
+r=.09// radius of revolution of revolving parts in m
+b=.15// distance at which balancing mass located in m
+c=2/3// portion of reciprocating mass balanced
+teeta=30// crank angle from inner dead centre in degrees
+//===============================
+B=r*(m+c*mR)/b// balance mass required in kg
+w=2*pi*N/60// angular speed in rad/s
+F=mR*w^2*r*(((1-c)^2*(cosd(teeta))^2)+(c^2*(sind(teeta))^2))^.5// residual unbalanced forces in N
+printf('Magnitude of balance mass required= %.0f kg\n Residual unbalanced forces= %.3f N',B,F)
diff --git a/1835/CH12/EX12.2/Ex12_2.sce b/1835/CH12/EX12.2/Ex12_2.sce
new file mode 100755
index 000000000..b78a9c2c8
--- /dev/null
+++ b/1835/CH12/EX12.2/Ex12_2.sce
@@ -0,0 +1,24 @@
+//CHAPTER 12 ILLUSRTATION 2 PAGE NO 310
+//TITLE:Balancing of reciprocating of masses
+clc
+clear
+pi=3.141
+g=10// acceleration due to gravity approximately in m/s^2
+mR=240// mass of reciprocating parts per cylinder in kg
+m=300// mass of rotating parts per cylinder in kg
+a=1.8//distance between cylinder centres in m
+c=.67// portion of reciprocating mass to be balanced
+b=.60// radius of balance masses in m
+r=24// crank radius in cm
+R=.8//radius of thread of wheels in m
+M=40
+//=======================================
+Ma=m+c*mR// total mass to be balanced in kg
+mD=211.9// mass of wheel D from figure in kg
+mC=211.9//..... mass of wheel C from figure in kg
+theta=171// angular position of balancing mass C in degrees
+Br=c*mR/Ma*mC// balancing mass for reciprocating parts in kg
+w=(M*g^3/Br/b)^.5// angular speed in rad/s
+v=w*R*3600/1000// speed in km/h
+S=a*(1-c)*mR*w^2*r/2^.5/100/1000// swaying couple in kNm
+printf('speed=%.3f kmph\n swaying couple=%.3f kNm',v,S)
diff --git a/1835/CH12/EX12.3/Ex12_3.sce b/1835/CH12/EX12.3/Ex12_3.sce
new file mode 100755
index 000000000..0b49ab73f
--- /dev/null
+++ b/1835/CH12/EX12.3/Ex12_3.sce
@@ -0,0 +1,23 @@
+//CHAPTER 12 ILLUSRTATION 3 PAGE NO 313
+//TITLE:Balancing of reciprocating of masses
+clc
+clear
+pi=3.141
+g=10// acceleration due to gravity approximately in m/s^2
+a=.70//distance between cylinder centres in m
+r=60// crank radius in cm
+m=130//mass of rotating parts per cylinder in kg
+mR=210// mass of reciprocating parts per cylinder in kg
+c=.67// portion of reciprocating mass to be balanced
+N=300//e2engine speed in rpm
+b=.64// radius of balance masses in m
+//============================
+Ma=m+c*mR// total mass to be balanced in kg
+mA=100.44// mass of wheel A from figure in kg
+Br=c*mR/Ma*mA// balancing mass for reciprocating parts in kg
+H=Br*(2*pi*N/60)^2*b// hammer blow in N
+w=(2*pi*N/60)// angular speed
+T=2^.5*(1-c)*mR*w^2*r/2/100//tractive effort in N
+S=a*(1-c)*mR*w^2*r/2/2^.5/100// swaying couple in Nm
+
+printf('Hammer blow=%.3f in N\n tractive effort= %.3f in N\n swaying couple= %.3f in Nm',H,T,S)
diff --git a/1835/CH12/EX12.4/Ex12_4.sce b/1835/CH12/EX12.4/Ex12_4.sce
new file mode 100755
index 000000000..4a7111cb6
--- /dev/null
+++ b/1835/CH12/EX12.4/Ex12_4.sce
@@ -0,0 +1,10 @@
+//CHAPTER 12 ILLUSRTATION 4 PAGE NO 314
+//TITLE:Balancing of reciprocating of masses
+clc
+clear
+pi=3.141
+mR=900// mass of reciprocating parts in kg
+N=90// speed of the engine in rpm
+r=.45//crank radius in m
+cP=.9*mR*(2*pi*N/60)^2*r*2^.5/1000// maximum unbalanced primary couple in kNm
+printf('maximum unbalanced primary couple=%.3f k Nm',cP)
diff --git a/1835/CH12/EX12.5/Ex12_5.sce b/1835/CH12/EX12.5/Ex12_5.sce
new file mode 100755
index 000000000..1812fc671
--- /dev/null
+++ b/1835/CH12/EX12.5/Ex12_5.sce
@@ -0,0 +1,17 @@
+//CHAPTER 12 ILLUSRTATION 5 PAGE NO 315
+//TITLE:Balancing of reciprocating of masses
+clc
+clear
+pi=3.141
+mRA=160// mass of reciprocating cylinder A in kg
+mRD=160// mass of reciprocating cylinder D in kg
+r=.05// stroke lenght in m
+l=.2// connecting rod length in m
+N=450// engine speed in rpm
+//===========================
+theta2=78.69// crank angle between A & B cylinders in degrees
+mRB=576.88// mass of cylinder B in kg
+n=l/r// ratio between connecting rod length and stroke length
+w=2*pi*N/60// angular speed in rad/s
+F=mRB*2*w^2*r*cosd(2*theta2)/n
+printf('Maximum unbalanced secondary force=%.3f N in anticlockwise direction thats why - sign',F)
diff --git a/1835/CH12/EX12.6/Ex12_6.sce b/1835/CH12/EX12.6/Ex12_6.sce
new file mode 100755
index 000000000..2a66bff1c
--- /dev/null
+++ b/1835/CH12/EX12.6/Ex12_6.sce
@@ -0,0 +1,20 @@
+//CHAPTER 12 ILLUSRTATION 6 PAGE NO 316
+//TITLE:Balancing of reciprocating of masses
+clc
+clear
+pi=3.141
+rA=.25// stroke length of A piston in m
+rB=.25// stroke length of B piston in m
+rC=.25// stroke length C piston in m
+N=300// engine speed in rpm
+mRL=280// mass of reciprocating parts in inside cylinder kg
+mRO=240// mass of reciprocating parts in outside cylinder kg
+c=.5// portion ofreciprocating masses to be balanced
+b1=.5// radius at which masses to be balanced in m
+//======================
+mA=c*mRO// mass of the reciprocating parts to be balanced foreach outside cylinder in kg
+mB=c*mRL// mass of the reciprocating parts to be balanced foreach inside cylinder in kg
+B1=79.4// balancing mass for reciprocating parts in kg
+w=2*pi*N/60// angular speed in rad/s
+H=B1*w^2*b1// hammer blow per wheel in N
+printf('Hammer blow per wheel= %.3f N',H)
diff --git a/1835/CH12/EX12.7/Ex12_7.sce b/1835/CH12/EX12.7/Ex12_7.sce
new file mode 100755
index 000000000..4ff17beca
--- /dev/null
+++ b/1835/CH12/EX12.7/Ex12_7.sce
@@ -0,0 +1,19 @@
+//CHAPTER 12 ILLUSRTATION 7 PAGE NO 318
+//TITLE:Balancing of reciprocating of masses
+clc
+clear
+pi=3.141
+mR=300// reciprocating mass per cylinder in kg
+r=.3// crank radius in m
+D=1.7// driving wheel diameter in m
+a=.7// distance between cylinder centre lines in m
+H=40// hammer blow in kN
+v=90// speed in kmph
+//=======================================
+R=D/2// radius of driving wheel in m
+w=90*1000/3600/R// angular velocity in rad/s
+//Br*b=69.625*c by mearument from diagram
+c=H*1000/(w^2)/69.625// portion of reciprocating mass to be balanced
+T=2^.5*(1-c)*mR*w^2*r// variation in tractive effort in N
+M=a*(1-c)*mR*w^2*r/2^.5// maximum swaying couple in N-m
+printf('portion of reciprocating mass to be balanced=%.3f\n variation in tractive effort=%.3f N\n maximum swaying couple=%.3f N-m',c,T,M)
diff --git a/1835/CH12/EX12.8/Ex12_8.sce b/1835/CH12/EX12.8/Ex12_8.sce
new file mode 100755
index 000000000..e6cfe18e3
--- /dev/null
+++ b/1835/CH12/EX12.8/Ex12_8.sce
@@ -0,0 +1,15 @@
+//CHAPTER 12 ILLUSRTATION 8 PAGE NO 320
+//TITLE:Balancing of reciprocating of masses
+clc
+clear
+pi=3.141
+N=1800// speed of the engine in rpm
+r=6// length of crank in cm
+l=24// length of connecting rod in cm
+m=1.5// mass of reciprocating cylinder in kg
+//====================
+w=2*pi*N/60// angular speed in rad/s
+UPC=.019*w^2// unbalanced primary couple in N-m
+n=l/r// ratio of length of crank to the connecting rod
+USC=.054*w^2/n// unbalanced secondary couple in N-m
+printf('unbalanced primary couple= %.3f N-m\n unbalanced secondary couple=%.3f N-m',UPC,USC)
diff --git a/1835/CH2/EX2.1/Ex2_1.sce b/1835/CH2/EX2.1/Ex2_1.sce
new file mode 100755
index 000000000..ae008ae25
--- /dev/null
+++ b/1835/CH2/EX2.1/Ex2_1.sce
@@ -0,0 +1,21 @@
+//CHAPTER 2 ILLUSRTATION 1 PAGE NO 57
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+Na=300;//driving shaft running speed in rpm
+Nb=400;//driven shaft running speed in rpm
+Da=60;//diameter of driving shaft in mm
+t=.8;//belt thickness in mm
+s=.05;//slip in percentage(5%)
+//==========================================================================================
+//calculation
+Db=(Da*Na)/Nb;//finding out the diameter of driven shaft without considering the thickness of belt
+Db1=(((Da+t)*Na)/Nb)-t///considering the thickness
+Db2=(1-s)*(Da+t)*(Na/Nb)-t//considering slip also
+//=========================================================================================
+//output
+printf('the value of Db is %3.0f cm',Db)
+printf('\nthe value of Db1 is %f cm',Db1)
+printf('\nthe value of Db2 is %f cm',Db2)
diff --git a/1835/CH2/EX2.10/Ex2_10.sce b/1835/CH2/EX2.10/Ex2_10.sce
new file mode 100755
index 000000000..d4a0f1f29
--- /dev/null
+++ b/1835/CH2/EX2.10/Ex2_10.sce
@@ -0,0 +1,39 @@
+//CHAPTER 2,ILLUSTRATION 10 PAGE 64
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//INPUT
+t=5//THICKNESS OF BELT IN m
+PI=3.141
+U=.3
+e=2.71
+THETA=155*PI/180//ANGLE OF CONTACT IN radians
+V=30//VELOCITY IN m/s
+density=1//in m/cm^3
+L=1//LENGTH
+
+//calculation
+Xb=80// (T1-T2)=80b;so let (T1-T2)/b=Xb
+Y=e^(U*THETA)// LET Y=T1/T2
+Zb=80*Y/(Y-1)// LET T1/b=Zb;BY SOLVING THE ABOVE 2 EQUATIONS WE WILL GET THIS EXPRESSION
+Mb=t*L*density*10^-2// m/b in N
+Tcb=Mb*V^2// centrifugal tension/b
+Tmaxb=Zb+Tcb// MAX TENSION/b
+Fb=Tmaxb/t//STRESS INDUCED IN TIGHT BELT
+
+//OUTPUT
+printf('THE STRESS DEVELOPED ON THE TIGHT SIDE OF BELT=%f N/cm^2',Fb)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/1835/CH2/EX2.11/Ex2_11.sce b/1835/CH2/EX2.11/Ex2_11.sce
new file mode 100755
index 000000000..0dfdb0e6b
--- /dev/null
+++ b/1835/CH2/EX2.11/Ex2_11.sce
@@ -0,0 +1,37 @@
+//CHAPTER 2,ILLUSTRATION 11 PAGE 65
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//INPUT
+C=4.5// CENTRE DISTANCE IN metres
+D1=1.35// DIAMETER OF LARGER PULLEY IN metres
+D2=.9// DIAMETER OF SMALLER PULLEY IN metres
+To=2100// INITIAL TENSION IN newtons
+b=12// WIDTH OF BELT IN cm
+t=12// THICKNESS OF BELT IN mm
+d=1// DENSITY IN gm/cm^3
+U=.3// COEFFICIENT OF FRICTION
+L=1// length in metres
+PI=3.141
+e=2.71
+
+//CALCULATION
+M=b*t*d*L*10^-2// mass of belt per metre length in KG
+V=(To/3/M)^.5// VELOCITY OF FOR MAX POWER TO BE TRANSMITTED IN m/s
+Tc=M*V^2// CENTRIFUGAL TENSION IN newtons
+// LET (T1+T2)=X
+X=2*To-2*Tc // THE VALUE OF (T1+T2)
+F=(D1-D2)/(2*C)
+ALPHA=asind(F)
+THETA=(180-(2*ALPHA))*PI/180// ANGLE OF CONTACT IN radians
+// LET T1/T2=Y
+Y=e^(U*THETA)// THE VALUE OF T1/T2
+T1=X*Y/(Y+1)// BY SOLVING X AND Y WE WILL GET THIS EQN
+T2=X-T1
+P=(T1-T2)*V/1000// MAX POWER TRANSMITTED IN kilowatts
+N1=V*60/(PI*D1)// SPEED OF LARGER PULLEY IN rpm
+N2=V*60/(PI*D2)// SPEED OF SMALLER PULLEY IN rpm
+//OUTPUT
+printf('\n MAX POWER TO BE TRANSMITTED =%f KW',P)
+printf('\n SPEED OF THE LARGER PULLEY =%f rpm',N1)
+printf('\n SPEED OF THE SMALLER PULLEY =%f rpm',N2)
diff --git a/1835/CH2/EX2.12/Ex2_12.sce b/1835/CH2/EX2.12/Ex2_12.sce
new file mode 100755
index 000000000..7ffba0a6e
--- /dev/null
+++ b/1835/CH2/EX2.12/Ex2_12.sce
@@ -0,0 +1,39 @@
+//CHAPTER 2,ILLUSTRATION 12 PAGE 66
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//============================================================================================================================
+//INPUT
+PI=3.141
+e=2.71
+D1=1.20// DIAMETER OF DRIVING SHAFT IN m
+D2=.50// DIAMETER OF DRIVEN SHAFT IN m
+C=4// CENTRE DISTANCE BETWEEN THE SHAFTS IN m
+M=.9// MASS OF BELT PER METRE LENGTH IN kg
+Tmax=2000// MAX TENSION IN N
+U=.3// COEFFICIENT OF FRICTION
+N1=200// SPEED OF DRIVING SHAFT IN rpm
+N2=450// SPEED OF DRIVEN SHAFT IN rpm
+//==============================================================================================================================
+//CALCULATION
+V=PI*D1*N1/60// VELOCITY OF BELT IN m/s
+Tc=M*V^2// CENTRIFUGAL TENSION IN N
+T1=Tmax-Tc// TENSION ON TIGHTSIDE IN N
+F=(D1-D2)/(2*C)
+ALPHA=asind(F)
+THETA=(180-(2*ALPHA))*PI/180// ANGLE OF CONTACT IN radians
+T2=T1/(e^(U*THETA))// TENSION ON SLACK SIDE IN N
+TL=(T1-T2)*D1/2// TORQUE ON THE SHAFT OF LARGER PULLEY IN N-m
+TS=(T1-T2)*D2/2// TORQUE ON THE SHAFT OF SMALLER PULLEY IN N-m
+P=(T1-T2)*V/1000// POWER TRANSMITTED IN kW
+Pi=2*PI*N1*TL/60000// INPUT POWER
+Po=2*PI*N2*TS/60000// OUTPUT POWER
+Pl=Pi-Po// POWER LOST DUE TO FRICTION IN kW
+n=Po/Pi*100// EFFICIENCY OF DRIVE IN %
+//==================================================================================================================================
+//OUTPUT
+printf('\nTORQUE ON LARGER SHAFT =%f N-m',TL)
+printf('\nTORQUE ON SMALLER SHAFT =%f N-m',TS)
+printf('\nPOWER TRANSMITTED =%f kW',P)
+printf('\nPOWER LOST DUE TO FRICTION =%f kW',Pl)
+printf('\nEFFICIENCY OF DRINE =%f percentage',n)
diff --git a/1835/CH2/EX2.13/Ex2_13.sce b/1835/CH2/EX2.13/Ex2_13.sce
new file mode 100755
index 000000000..78922be5e
--- /dev/null
+++ b/1835/CH2/EX2.13/Ex2_13.sce
@@ -0,0 +1,39 @@
+//CHAPTER 2,ILLUSTRATION 13 PAGE 67
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//============================================================================================================================
+//INPUT
+PI=3.141
+e=2.71
+P=90// POWER OF A COMPRESSOR IN kW
+N2=250// SPEED OF DRIVEN SHAFT IN rpm
+N1=750// SPEED OF DRIVER SHAFT IN rpm
+D2=1// DIAMETER OF DRIVEN SHAFT IN m
+C=1.75// CENTRE DISTANCE IN m
+V=1600/60// VELOCITY IN m/s
+a=375// CROSECTIONAL AREA IN mm^2
+density=1000// BELT DENSITY IN kg/m^3
+L=1// length to be considered
+Fb=2.5// STRESSS INDUCED IN MPa
+beeta=35/2// THE GROOVE ANGLE OF PULLEY
+U=.25// COEFFICIENT OF FRICTION
+//=================================================================================================================================
+//CALCULATION
+D1=N2*D2/N1// DIAMETER OF DRIVING SHAFT IN m
+m=a*density*10^-6*L// MASS OF THE BELT IN kg
+Tmax=a*Fb// MAX TENSION IN N
+Tc=m*V^2// CENTRIFUGAL TENSION IN N
+T1=Tmax-Tc// TENSION ON TIGHTSIDE OF BELT IN N
+F=(D2-D1)/(2*C)
+ALPHA=asind(F)
+THETA=(180-(2*ALPHA))*PI/180// ANGLE OF CONTACT IN radians
+T2=T1/(e^(U*THETA/sind(beeta)))//TENSION ON SLACKSIDE IN N
+P2=(T1-T2)*V/1000// POWER TRANSMITTED PER BELT kW
+N=P/P2// NO OF V-BELTS
+N3=N+1
+//======================================================================================================================================
+//OUTPUT
+printf('NO OF BELTS REQUIRED TO TRANSMIT POWER=%f APPROXIMATELY=%d\n',N,N3)
+
+
diff --git a/1835/CH2/EX2.14/Ex2_14.sce b/1835/CH2/EX2.14/Ex2_14.sce
new file mode 100755
index 000000000..0e0b98dd1
--- /dev/null
+++ b/1835/CH2/EX2.14/Ex2_14.sce
@@ -0,0 +1,31 @@
+//CHAPTER 2,ILLUSTRATION 14 PAGE 68
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+
+clc
+clear
+//============================================================================================================================
+//INPUT
+PI=3.141
+e=2.71
+P=75// POWER IN kW
+D=1.5// DIAMETER OF PULLEY IN m
+U=.3// COEFFICIENT OF FRICTION
+beeta=45/2// GROOVE ANGLE
+THETA=160*PI/180// ANGLE OF CONTACT IN radians
+m=.6// MASS OF BELT IN kg/m
+Tmax=800// MAX TENSION IN N
+N=200// SPEED OF SHAFT IN rpm
+//=============================================================================================================================
+//calculation
+V=PI*D*N/60// VELOCITY OF ROPE IN m/s
+Tc=m*V^2// CENTRIFUGAL TENSION IN N
+T1=Tmax-Tc// TENSION ON TIGHT SIDE IN N
+T2=T1/(e^(U*THETA/sind(beeta)))//TENSION ON SLACKSIDE IN N
+P2=(T1-T2)*V/1000// POWER TRANSMITTED PER BELT kW
+No=P/P2// NO OF V-BELTS
+N3=No+1// ROUNDING OFF
+To=(T1+T2+Tc*2)/2// INITIAL TENSION
+//================================================================================================================================
+//OUTPUT
+printf('NO OF BELTS REQUIRED TO TRANSMIT POWER=%f APPROXIMATELY=%d\n',No,N3)
+printf('INITIAL ROPE TENSION=%f N',To)
diff --git a/1835/CH2/EX2.2/Ex2_2.sce b/1835/CH2/EX2.2/Ex2_2.sce
new file mode 100755
index 000000000..ffaf942a5
--- /dev/null
+++ b/1835/CH2/EX2.2/Ex2_2.sce
@@ -0,0 +1,20 @@
+//CHAPTER 2,ILLUSRTATION 2 PAGE NO 57
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//====================================================================================
+//input
+n1=1200//rpm of motor shaft
+d1=40//diameter of motor pulley in cm
+d2=70//diameter of 1st pulley on the shaft in cm
+s=.03//percentage slip(3%)
+d3=45//diameter of 2nd pulley
+d4=65//diameter of the pulley on the counnter shaft
+//=========================================================================================
+//calculation
+n2=n1*d1*(1-s)/d2//rpm of driven shaft
+n3=n2//both the pulleys are mounted on the same shaft
+n4=n3*(1-s)*d3/d4//rpm of counter shaft
+
+//output
+printf('the speed of driven shaft is %f rpm\nthe speed of counter shaft is %f rpm',n2,n4)
diff --git a/1835/CH2/EX2.3/Ex2_3.sce b/1835/CH2/EX2.3/Ex2_3.sce
new file mode 100755
index 000000000..ef6795950
--- /dev/null
+++ b/1835/CH2/EX2.3/Ex2_3.sce
@@ -0,0 +1,18 @@
+//CHAPTER 2 ILLUSTRATION 3 PAGE NO:58
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//==============================================================================
+//input
+d1=30//diameter of 1st shaft in cm
+d2=50//diameter 2nd shaft in cm
+pi=3.141
+c=500//centre distance between the shafts in cm
+//==============================================================================
+//calculation
+L1=((d1+d2)*pi/2)+(2*c)+((d1+d2)^2)/(4*c)//lenth of cross belt
+L2=((d1+d2)*pi/2)+(2*c)+((d1-d2)^2)/(4*c)//lenth of open belt
+r=L1-L2//remedy
+//==============================================================================
+//OUTPUT
+printf('length of cross belt is %3.3fcm \n length of open belt is %3.3f cm \n the length of the belt to be shortened is %3.0f cm',L1,L2,r)
diff --git a/1835/CH2/EX2.4/Ex2_4.sce b/1835/CH2/EX2.4/Ex2_4.sce
new file mode 100755
index 000000000..9f166ee85
--- /dev/null
+++ b/1835/CH2/EX2.4/Ex2_4.sce
@@ -0,0 +1,28 @@
+//CHAPTER 2,ILLUSTRATION 4 PAGE 59
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//====================================================================================
+//INPUT
+D1=.5// DIAMETER OF 1ST SHAFT IN m
+D2=.25// DIAMETER OF 2nd SHAFT IN m
+C=2// CENTRE DISTANCE IN m
+N1=220// SPEED OF 1st SHAFT
+T1=1250// TENSION ON TIGHT SIDE IN N
+U=.25// COEFFICIENT OF FRICTION
+PI=3.141
+e=2.71
+//====================================================================================
+//CALCULATION
+L=(D1+D2)*PI/2+((D1+D2)^2/(4*C))+2*C
+F=(D1+D2)/(2*C)
+ALPHA=asind(F)
+THETA=(180+(2*ALPHA))*PI/180// ANGLE OF CONTACT IN radians
+T2=T1/(e^(U*THETA))// TENSION ON SLACK SIDE IN N
+V=PI*D1*N1/60// VELOCITY IN m/s
+P=(T1-T2)*V/1000// POWER IN kW
+//====================================================================================
+//OUTPUT
+printf('\nLENGTH OF BELT REQUIRED =%f m',L)
+printf('\nANGLE OF CONTACT =%f radians',THETA)
+printf('\nPOWER CAN BE TRANSMITTED=%f kW',P)
diff --git a/1835/CH2/EX2.5/Ex2_5.sce b/1835/CH2/EX2.5/Ex2_5.sce
new file mode 100755
index 000000000..d6661126f
--- /dev/null
+++ b/1835/CH2/EX2.5/Ex2_5.sce
@@ -0,0 +1,44 @@
+//CHAPTER 2,ILLUSTRATION 5 PAGE 5
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//=====================================================================================================
+//input
+n1=100// of driving shaft
+n2=240//speed of driven shaft
+p=11000//power to be transmitted in watts
+c=250//centre distance in cm
+d2=60//diameter in cm
+b=11.5*10^-2//width of belt in metres
+t=1.2*10^-2//thickness in metres
+u=.25//co-efficient of friction
+pi=3.141
+e=2.71
+//===================================================================================================
+//calculation for open bely drive
+d1=n2*d2/n1
+f=(d1-d2)/(2*c)//sin(alpha) for open bely drive
+//angle of arc of contact for open belt drive is,theta=180-2*alpha
+alpha=asind(f)
+teta=(180-(2*alpha))*3.147/180//pi/180 is used to convert into radians
+x=(e^(u*teta))//finding out the value of t1/t2
+v=pi*d2*10*n2/60//finding out the value of t1-t2
+y=p*1000/(v)
+t1=(y*x)/(x-1)
+Fb=t1/(t*b)/1000
+//=======================================================================================================
+//calculation for cross belt drive bely drive
+F=(d1+d2)/(2*c)//for cross belt drive bely drive
+ALPHA=asind(F)
+THETA=(180+(2*ALPHA))*pi/180//pi/180 is used to convert into radians
+X=(e^(u*THETA))//finding out the value of t1/t2
+V=pi*d2*10*n2/60//finding out the value of t1-t2
+Y=p*1000/(V)
+T1=(Y*X)/(X-1)
+Fb2=T1/(t*b)/1000
+//========================================================================================================
+//output
+printf('for a open belt drive:\n')
+printf('the tension in belt is %.3f N\nstress induced is %.3f kN/m^2\n',t1,Fb)
+printf('for a cross belt drive:\n')
+printf('the tension in belt is %.3f N\nstress induced is %.3f kN/m^2\n',T1,Fb2)
diff --git a/1835/CH2/EX2.6/Ex2_6.sce b/1835/CH2/EX2.6/Ex2_6.sce
new file mode 100755
index 000000000..6eb465cb4
--- /dev/null
+++ b/1835/CH2/EX2.6/Ex2_6.sce
@@ -0,0 +1,29 @@
+//CHAPTER 2,ILLUSTRATION 6 PAGE 61
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//========================================================================================
+//INPUT
+D1=80//DIAMETER OF SHAFT IN cm
+N1=160//SPEED OF 1ST SHAFT IN rpm
+N2=320//SPEED OF 2ND SHAFT IN rpm
+C=250//CENTRE DISTANCE IN CM
+U=.3//COEFFICIENT OF FRICTION
+P=4//POWER IN KILO WATTS
+e=2.71
+PI=3.141
+f=110//STRESS PER cm WIDTH OF BELT
+//========================================================================================
+//CALCULATION
+V=PI*D1*10^-2*N1/60//VELOCITY IN m/s
+Y=P*1000/V//Y=T1-T2
+D2=D1*N1/N2//DIAMETER OF DRIVEN SHAFT
+F=(D1-D2)/(2*C)
+ALPHA=asind(F)
+THETA=(180-(2*ALPHA))*PI/180//ANGLE OF CONTACT IN radians
+X=e^(U*THETA)//VALUE OF T1/T2
+T1=X*Y/(X-1)
+b=T1/f//WIDTH OF THE BELT REQUIRED
+//=======================================================================================
+//OUTPUT
+printf('THE WIDTH OF THE BELT IS %f cm',b)
diff --git a/1835/CH2/EX2.7/Ex2_7.sce b/1835/CH2/EX2.7/Ex2_7.sce
new file mode 100755
index 000000000..904659567
--- /dev/null
+++ b/1835/CH2/EX2.7/Ex2_7.sce
@@ -0,0 +1,25 @@
+//CHAPTER 2 ILLUSRTATION 7 PAGE NO 62
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+m=1000// MASS OF THE CASTING IN kg
+PI=3.141
+THETA=2.75*2*PI// ANGLE OF CONTACT IN radians
+D=.26// DIAMETER OF DRUM IN m
+N=24// SPEED OF THE DRUM IN rpm
+U=.25// COEFFICIENT OF FRICTION
+e=2.71
+T1=9810// TENSION ON TIGHTSIDE IN N
+//=============================================================================================
+//CALCULATION
+T2=T1/(e^(U*THETA))// tension on slack side of belt in N
+W=m*9.81// WEIGHT OF CASTING IN N
+R=D/2// RADIUS OF DRUM IN m
+P=2*PI*N*W*R/60000// POWER REQUIRED IN kW
+P2=(T1-T2)*PI*D*N/60000// POWER SUPPLIED BY DRUM IN kW
+//============================================================================================
+//OUTPUT
+printf('FORCE REQUIRED BY MAN=%f N\n POWER REQUIRED TO RAISE CASTING=%f kW\n POWER SUPPLIED BY DRUM=%f kW\n',T2,P,P2)
+
diff --git a/1835/CH2/EX2.8/Ex2_8.sce b/1835/CH2/EX2.8/Ex2_8.sce
new file mode 100755
index 000000000..7fd767360
--- /dev/null
+++ b/1835/CH2/EX2.8/Ex2_8.sce
@@ -0,0 +1,31 @@
+//CHAPTER 2,ILLUSTRATION 8 PAGE 62
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//INPUT
+t=9//THICKNESS IN mm
+b=250//WIDTH IN mm
+D=90//DIAMETER OF PULLEY IN cm
+N=336//SPEED IN rpm
+PI=3.141
+U=.35//COEFFICIENT FRICTION
+e=2.71
+THETA=120*PI/180
+Fb=2//STRESS IN MPa
+d=1000//DENSITY IN KG/M^3
+
+//CALCULATION
+M=b*10^-3*t*10^-3*d//MASS IN KG
+V=PI*D*10^-2*N/60//VELOCITY IN m/s
+Tc=M*V^2//CENTRIFUGAL TENSION
+Tmax=b*t*Fb//MAX TENSION IN N
+T1=Tmax-Tc
+T2=T1/(e^(U*THETA))
+P=(T1-T2)*V/1000
+
+//OUTPUT
+printf('THE TENSION ON TIGHT SIDE OF THE BELT IS %f N\n',T1)
+printf('THE TENSION ON SLACK SIDE OF THE BELT IS %f N\n',T2)
+printf('CENTRIFUGAL TENSION =%f N\n',Tc)
+printf('THE POWER CAPACITY OF BELT IS %f KW\n',P)
+
diff --git a/1835/CH2/EX2.9/Ex2_9.sce b/1835/CH2/EX2.9/Ex2_9.sce
new file mode 100755
index 000000000..b81cc280a
--- /dev/null
+++ b/1835/CH2/EX2.9/Ex2_9.sce
@@ -0,0 +1,31 @@
+//CHAPTER 2,ILLUSTRATION 9 PAGE 63
+//TITLE:TRANSMISSION OF MOTION AND POWER BY BELTS AND PULLEYS
+clc
+clear
+//INPUT
+P=35000//POWER TO BE TRANSMITTED IN WATTS
+D=1.5//EFFECTIVE DIAMETER OF PULLEY IN METRES
+N=300//SPEED IN rpm
+e=2.71
+U=.3//COEFFICIENT OF FRICTION
+PI=3.141
+THETA=(11/24)*360*PI/180//ANGLE OF CONTACT
+density=1.1//density of belt material in Mg/m^3
+L=1//in metre
+t=9.5//THICKNESS OF BELT IN mm
+Fb=2.5//PERMISSIBLE WORK STRESS IN N/mm^2
+
+//CALCULATION
+V=PI*D*N/60//VELOCITY IN m/s
+X=P/V//X=T1-T2
+Y=e^(U*THETA)//Y=T1/T2
+T1=X*Y/(Y-1)
+Mb=t*density*L/10^3//value of m/b
+Tc=Mb*V^2//centrifugal tension/b
+Tmaxb=t*Fb//max tension/b
+b=T1/(Tmaxb-Tc)//thickness in mm
+//output
+printf('\nTENSION IN TIGHT SIDE OF THE BELT =%f N',T1)
+printf('\nTHICKNESS OF THE BELT IS =%f mm',b)
+
+
diff --git a/1835/CH3/EX3.1/Ex3_1.sce b/1835/CH3/EX3.1/Ex3_1.sce
new file mode 100755
index 000000000..3d3d1d106
--- /dev/null
+++ b/1835/CH3/EX3.1/Ex3_1.sce
@@ -0,0 +1,29 @@
+//CHAPTER 3 ILLUSRTATION 1 PAGE NO 102
+//TITLE:FRICTION
+//FIRURE 3.16(a),3.16(b)
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+P1=180// PULL APPLIED TO THE BODY IN NEWTONS
+theta=30// ANGLE AT WHICH P IS ACTING IN DEGREES
+P2=220// PUSH APPLIED TO THE BODY IN NEWTONS
+//Rn= NORMAL REACTION
+//F= FORCE OF FRICTION IN NEWTONS
+//U= COEFFICIENT OF FRICTION
+//W= WEIGHT OF THE BODY IN NEWTON
+//==========================================================================================
+//CALCULATION
+F1=P1*cosd(theta)// RESOLVING FORCES HORIZONTALLY FROM 3.16(a)
+F2=P2*cosd(theta)// RESOLVING FORCES HORIZONTALLY FROM 3.16(b)
+// RESOLVING FORCES VERTICALLY Rn1=W-P1*sind(theta) from 3.16(a)
+// RESOLVING FORCES VERTICALLY Rn2=W+P1*sind(theta) from 3.16(b)
+// USING THE RELATION F1=U*Rn1 & F2=U*Rn2 AND SOLVING FOR W BY DIVIDING THESE TWO EQUATIONS
+X=F1/F2// THIS IS THE VALUE OF Rn1/Rn2
+Y1=P1*sind(theta)
+Y2=P2*sind(theta)
+W=(Y2*X+Y1)/(1-X)// BY SOLVING ABOVE 3 EQUATIONS
+U=F1/(W-P1*sind(theta))// COEFFICIENT OF FRICTION
+//=============================================================================================
+//OUTPUT
+printf('WEIGHT OF THE BODY =%.3fN\nTHE COEFFICIENT OF FRICTION =%.3f',W,U)
diff --git a/1835/CH3/EX3.10/Ex3_10.sce b/1835/CH3/EX3.10/Ex3_10.sce
new file mode 100755
index 000000000..6a936dd8d
--- /dev/null
+++ b/1835/CH3/EX3.10/Ex3_10.sce
@@ -0,0 +1,30 @@
+//CHAPTER 3 ILLUSRTATION 10 PAGE NO 108
+//TITLE:FRICTION
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+PI=3.147
+d=2.5// MEAN DIA OF BOLT IN cm
+p=.6// PITCH IN cm
+beeta=55/2// VEE ANGLE
+dc=4// DIA OF COLLAR IN cm
+U=.1// COEFFICIENT OF FRICTION OF BOLT
+Uc=.18// COEFFICIENT OF FRICTION OF COLLAR
+W=6500// LOAD ON BOLT IN NEWTONS
+L=38// LENGTH OF SPANNER
+//=============================================================================================
+//CALCULATION
+//LET X=tan(py)/tan(beeta)
+//y=tan(ALPHA)*X
+PY=atand(U)
+ALPHA=atand(p/(PI*d))
+X=tand(PY)/cosd(beeta)
+Y=tand(ALPHA)
+T1=W*d/2*10^-2*(X+Y)/(1-(X*Y))// TORQUE IN SCREW IN N-m
+Tc=Uc*W*dc/2*10^-2// TORQUE ON BEARING SERVICES IN N-m
+T=T1+Tc// TOTAL TORQUE
+P1=T/L*100// FORCE REQUIRED BY @ THE END OF SPANNER
+//=============================================================================================
+//OUTPUT
+printf('FORCE REQUIRED @ THE END OF SPANNER=%3.3f N',P1)
diff --git a/1835/CH3/EX3.11/Ex3_11.sce b/1835/CH3/EX3.11/Ex3_11.sce
new file mode 100755
index 000000000..433c2a313
--- /dev/null
+++ b/1835/CH3/EX3.11/Ex3_11.sce
@@ -0,0 +1,17 @@
+//CHAPTER 3 ILLUSRTATION 11 PAGE NO 109
+//TITLE:FRICTION
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+d1=15// DIAMETER OF VERTICAL SHAFT IN cm
+N=100// SPEED OF THE MOTOR rpm
+W=20000// LOAD AVILABLE IN N
+U=.05// COEFFICIENT OF FRICTION
+PI=3.147
+//==================================================================================
+T=2/3*U*W*d1/2// FRICTIONAL TORQUE IN N-m
+PL=2*PI*N*T/100/60// POWER LOST IN FRICTION IN WATTS
+//==================================================================================
+//OUTPUT
+printf('POWER LOST IN FRICTION=%3.3f watts',PL)
diff --git a/1835/CH3/EX3.12/Ex3_12.sce b/1835/CH3/EX3.12/Ex3_12.sce
new file mode 100755
index 000000000..0d754dbe6
--- /dev/null
+++ b/1835/CH3/EX3.12/Ex3_12.sce
@@ -0,0 +1,29 @@
+//CHAPTER 3 ILLUSRTATION 12 PAGE NO 109
+//TITLE:FRICTION
+clc
+clear
+//===================================================================================
+//INPUT DATA
+PI=3.147
+d2=.30// DIAMETER OF SHAFT IN m
+W=200000// LOAD AVAILABLE IN NEWTONS
+N=75// SPEED IN rpm
+U=.05// COEFFICIENT OF FRICTION
+p=300000// PRESSURE AVAILABLE IN N/m^2
+P=16200// POWER LOST DUE TO FRICTION IN WATTS
+//====================================================================================
+//CaLCULATION
+T=P*60/2/PI/N// TORQUE INDUCED IN THE SHFT IN N-m
+//LET X=(r1^3-r2^3)/(r1^2-r2^2)
+X=(3/2*T/U/W)
+r2=.15// SINCE d2=.30 m
+c=r2^2-(X*r2)
+b= r2-X
+a= 1
+r1=( -b+ sqrt (b^2 -4*a*c ))/(2* a);// VALUE OF r1 IN m
+d1=2*r1*100// d1 IN cm
+n=W/(PI*p*(r1^2-r2^2))
+//================================================================================
+//OUTPUT
+printf('\nEXTERNAL DIAMETER OF SHAFT =%3.3f cm\nNO OF COLLARS REQUIRED =%.3f or %.0f',d1,n,n+1)
+
diff --git a/1835/CH3/EX3.13/Ex3_13.sce b/1835/CH3/EX3.13/Ex3_13.sce
new file mode 100755
index 000000000..2a3eefb8e
--- /dev/null
+++ b/1835/CH3/EX3.13/Ex3_13.sce
@@ -0,0 +1,25 @@
+//CHAPTER 3 ILLUSRTATION 13 PAGE NO 111
+//TITLE:FRICTION
+clc
+clear
+//===================================================================================
+//INPUT DATA
+PI=3.147
+W=20000// LOAD IN NEWTONS
+ALPHA=120/2// CONE ANGLE IN DEGREES
+p=350000// INTENSITY OF PRESSURE
+U=.06
+N=120// SPEED OF THE SHAFT IN rpm
+//d1=3d2
+//r1=3r2
+//===================================================================================
+//CALCULATION
+//LET K=d1/d2
+k=3
+Z=W/((k^2-1)*PI*p)
+r2=Z^.5// INTERNAL RADIUS IN m
+r1=3*r2
+T=2*U*W*(r1^3-r2^3)/(3*sind(60)*(r1^2-r2^2))// total frictional torque in N
+P=2*PI*N*T/60000// power absorbed in friction in kW
+//================================================================================
+printf('\nTHE INTERNAL DIAMETER OF SHAFT =%3.3f cm\nTHE EXTERNAL DIAMETER OF SHAFT =%3.3f cm\nPOWER ABSORBED IN FRICTION =%.3f kW',r2*100,r1*100,P)
diff --git a/1835/CH3/EX3.14/Ex3_14.sce b/1835/CH3/EX3.14/Ex3_14.sce
new file mode 100755
index 000000000..48046e555
--- /dev/null
+++ b/1835/CH3/EX3.14/Ex3_14.sce
@@ -0,0 +1,21 @@
+//CHAPTER 3 ILLUSRTATION 14 PAGE NO 111
+//TITLE:FRICTION
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+PI=3.147
+P=10000// POWER TRRANSMITTED BY CLUTCH IN WATTS
+N=3000// SPEED IN rpm
+p=.09// AXIAL PRESSURE IN N/mm^2
+//d1=1.4d2 RELATION BETWEEN DIAMETERS
+K=1.4// D1/D2
+n=2
+U=.3// COEFFICIENT OF FRICTION
+//==========================================================================================
+T=P*60000/1000/(2*PI*N)// ASSUMING UNIFORM WEAR TORQUE IN N-m
+r2=(T*2/(n*U*2*PI*p*10^6*(K-1)*(K+1)))^(1/3)// INTERNAL RADIUS
+
+//===========================================================================================
+printf('THE INTERNAL RADIUS =%f cm\n THE EXTERNAL RADIUS =%f cm',r2*100,K*r2*100)
+
diff --git a/1835/CH3/EX3.15/Ex3_15.sce b/1835/CH3/EX3.15/Ex3_15.sce
new file mode 100755
index 000000000..b14a5427e
--- /dev/null
+++ b/1835/CH3/EX3.15/Ex3_15.sce
@@ -0,0 +1,27 @@
+//CHAPTER 3 ILLUSRTATION 14 PAGE NO 111
+//TITLE:FRICTION
+clc
+//βμαφɳρΠπ
+clear
+//===========================================================================================
+//INPUT DATA
+PI=3.147
+n1=3// NO OF DICS ON DRIVING SHAFTS
+n2=2// NO OF DICS ON DRIVEN SHAFTS
+d1=30// DIAMETER OF DRIVING SHAFT IN cm
+d2=15// DIAMETER OF DRIVEN SHAFT IN cm
+r1=d1/2
+r2=d2/2
+U=.3// COEFFICIENT FRICTION
+P=30000// TANSMITTING POWER IN WATTS
+N=1800// SPEED IN rpm
+//===========================================================================================
+//CALCULATION
+n=n1+n2-1// NO OF PAIRS OF CONTACT SURFACES
+T=P*60000/(2*PI*N)// TORQUE IN N-m
+W=2*T/(n*U*(r1+r2)*10)// LOAD IN N
+k=W/(2*PI*(r1-r2))
+p=k/r2/100// MAX AXIAL INTENSITY OF PRESSURE IN N/mm^2
+//===========================================================================================
+// OUTPUT
+printf('MAX AXIAL INTENSITY OF PRESSURE =%f N/mm^2',p)
diff --git a/1835/CH3/EX3.2/Ex3_2.sce b/1835/CH3/EX3.2/Ex3_2.sce
new file mode 100755
index 000000000..7ec2da671
--- /dev/null
+++ b/1835/CH3/EX3.2/Ex3_2.sce
@@ -0,0 +1,28 @@
+//CHAPTER 3 ILLUSRTATION 2 PAGE NO 103
+//TITLE:FRICTION
+//FIRURE 3.17
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+THETA=45// ANGLE OF INCLINATION IN DEGREES
+g=9.81// ACCELERATION DUE TO GRAVITY IN N/mm^2
+U=.1// COEFFICIENT FRICTION
+//Rn=NORMAL REACTION
+//M=MASS IN NEWTONS
+//f=ACCELERATION OF THE BODY
+u=0// INITIAL VELOCITY
+V=10// FINAL VELOCITY IN m/s^2
+//===========================================================================================
+//CALCULATION
+//CONSIDER THE EQUILIBRIUM OF FORCES PERPENDICULAR TO THE PLANE
+//Rn=Mgcos(THETA)
+//CONSIDER THE EQUILIBRIUM OF FORCES ALONG THE PLANE
+//Mgsin(THETA)-U*Rn=M*f.............BY SOLVING THESE 2 EQUATIONS
+f=g*sind(THETA)-U*g*cosd(THETA)
+s=(V^2-u^2)/(2*f)// DISTANCE ALONG THE PLANE IN metres
+//==============================================================================================
+//OUTPUT
+printf('DISTANCE ALONG THE INCLINED PLANE=%3.3f m',s)
+
+
diff --git a/1835/CH3/EX3.3/Ex3_3.sce b/1835/CH3/EX3.3/Ex3_3.sce
new file mode 100755
index 000000000..c971e4356
--- /dev/null
+++ b/1835/CH3/EX3.3/Ex3_3.sce
@@ -0,0 +1,18 @@
+//CHAPTER 3 ILLUSRTATION 3 PAGE NO 104
+//TITLE:FRICTION
+//FIRURE 3.18
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+W=500// WEGHT IN NEWTONS
+THETA=30// ANGLE OF INCLINATION IN DEGRESS
+U=0.2// COEFFICIENT FRICTION
+S=15// DISTANCE IN metres
+//============================================================================================
+Rn=W*cosd(THETA)// NORMAL REACTION IN NEWTONS
+P=W*sind(THETA)+U*Rn// PUSHING FORCE ALONG THE DIRECTION OF MOTION
+w=P*S
+//============================================================================================
+//OUTPUT
+printf('WORK DONE BY THE FORCE=%3.3f N-m',w)
diff --git a/1835/CH3/EX3.4/Ex3_4.sce b/1835/CH3/EX3.4/Ex3_4.sce
new file mode 100755
index 000000000..b63132c80
--- /dev/null
+++ b/1835/CH3/EX3.4/Ex3_4.sce
@@ -0,0 +1,34 @@
+//CHAPTER 3 ILLUSRTATION 4 PAGE NO 104
+//TITLE:FRICTION
+//FIRURE 3.19(a) & 3.19(b)
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+P1=2000// FORCE ACTING UPWARDS WHEN ANGLE=15 degrees IN NEWTONS
+P2=2300// FORCE ACTING UPWARDS WHEN ANGLE=20 degrees IN NEWTONS
+THETA1=15// ANGLE OF INCLINATION IN 3.19(a)
+THETA2=20// ANGLE OF INCLINATION IN 3.19(b)
+//F1= FORCE OF FRICTION IN 3.19(a)
+//Rn1= NORMAL REACTION IN 3.19(a)
+//F2= FORCE OF FRICTION IN 3.19(b)
+//Rn2= NORMAL REACTION IN 3.19(b)
+//U= COEFFICIENT OF FRICTION
+//===========================================================================================
+//CALCULATION
+//P1=F1+Rn1 RESOLVING THE FORCES ALONG THE PLANE
+//Rn1=W*cosd(THETA1)....NORMAL REACTION IN 3.19(a)
+//F1=U*Rn1
+//BY SOLVING ABOVE EQUATIONS P1=W(U*cosd(THETA1)+sind(THETA1))---------------------1
+//P2=F2+Rn2 RESOLVING THE FORCES PERPENDICULAR TO THE PLANE
+//Rn2=W*cosd(THETA2)....NORMAL REACTION IN 3.19(b)
+//F2=U*Rn2
+//BY SOLVING ABOVE EQUATIONS P2=W(U*cosd(THETA2)+sind(THETA2))----------------------2
+//BY SOLVING EQUATIONS 1 AND 2
+X=P2/P1
+U=(sind(THETA2)-(X*sind(THETA1)))/((X*cosd(THETA1)-cosd(THETA2)))// COEFFICIENT OF FRICTION
+W=P1/(U*cosd(THETA1)+sind(THETA1))
+//=============================================================================================
+//OUTPUT
+//printf('%f',X)
+printf('COEFFICIENT OF FRICTION=%3.3f\n WEIGHT OF THE BODY=%3.3f N',U,W)
diff --git a/1835/CH3/EX3.5/Ex3_5.sce b/1835/CH3/EX3.5/Ex3_5.sce
new file mode 100755
index 000000000..64f232c4c
--- /dev/null
+++ b/1835/CH3/EX3.5/Ex3_5.sce
@@ -0,0 +1,21 @@
+//CHAPTER 3 ILLUSRTATION 5 PAGE NO 105
+//TITLE:FRICTION
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+d=5// DIAMETER OF SCREW JACK IN cm
+p=1.25// PITCH IN cm
+l=50// LENGTH IN cm
+U=.1// COEFFICIENT OF FRICTION
+W=20000// LOAD IN NEWTONS
+PI=3.147
+//=============================================================================================
+//CALCULATION
+ALPHA=atand(p/(PI*d))
+PY=atand(U)
+P=W*tand(ALPHA+PY)
+P1=P*d/(2*l)
+//=============================================================================================
+//OUTPUT
+printf('THE AMOUNT OF EFFORT NEED TO APPLY =%3.3f N',P1)
diff --git a/1835/CH3/EX3.6/Ex3_6.sce b/1835/CH3/EX3.6/Ex3_6.sce
new file mode 100755
index 000000000..94547e90b
--- /dev/null
+++ b/1835/CH3/EX3.6/Ex3_6.sce
@@ -0,0 +1,23 @@
+//CHAPTER 3 ILLUSRTATION 6 PAGE NO 106
+//TITLE:FRICTION
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+d=50// DIAMETER OF SCREW IN mm
+p=12.5// PITCH IN mm
+U=0.13// COEFFICIENT OF FRICTION
+W=25000// LOAD IN mm
+PI=3.147
+//===========================================================================================
+//CALCULATION
+ALPHA=atand(p/(PI*d))
+PY=atand(U)
+P=W*tand(ALPHA+PY)// FORCE REQUIRED TO RAISE THE LOAD IN N
+T1=P*d/2// TORQUE REQUIRED IN Nm
+P1=W*tand(PY-ALPHA)// FORCE REQUIRED TO LOWER THE SCREW IN N
+T2=P1*d/2// TORQUE IN N
+X=T1/T2// RATIOS REQUIRED
+n=tand(ALPHA/(ALPHA+PY))// EFFICIENCY
+//============================================================================================
+printf('RATIO OF THE TORQUE REQUIRED TO RAISE THE LOAD,TO THE TORQUE REQUIRED TO LOWER THE LOAD =%.3f',X)
diff --git a/1835/CH3/EX3.7/Ex3_7.sce b/1835/CH3/EX3.7/Ex3_7.sce
new file mode 100755
index 000000000..8ecb31f5a
--- /dev/null
+++ b/1835/CH3/EX3.7/Ex3_7.sce
@@ -0,0 +1,26 @@
+//CHAPTER 3 ILLUSRTATION 7 PAGE NO 107
+//TITLE:FRICTION
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+d=39// DIAMETER OF THREAD IN mm
+p=13// PITCH IN mm
+U=0.1// COEFFICIENT OF FRICTION
+W=2500// LOAD IN mm
+PI=3.147
+//===========================================================================================
+//CALCULATION
+ALPHA=atand(p/(PI*d))
+PY=atand(U)
+P=W*tand(ALPHA+PY)// FORCE IN N
+T1=P*d/2// TORQUE REQUIRED IN Nm
+T=2*T1// TORQUE REQUIRED ON THE COUPLING ROD IN Nm
+K=2*p// DISTANCE TRAVELLED FOR ONE REVOLUTION
+N=20.8/K// NO OF REVOLUTIONS REQUIRED
+w=2*PI*N*T/100// WORKDONE BY TORQUE
+w1=w*(7500-2500)/2500// WORKDONE TO INCREASE THE LOAD FROM 2500N TO 7500N
+n=tand(ALPHA)/tand(ALPHA+PY)// EFFICIENCY
+//============================================================================================
+//OUTPUT
+printf('workdone against a steady load of 2500N=%3.3f N\n workdone if the load is increased from 2500N to 7500N=%3.3f N\n efficiency=%.3f',w,w1,n)
diff --git a/1835/CH3/EX3.8/Ex3_8.sce b/1835/CH3/EX3.8/Ex3_8.sce
new file mode 100755
index 000000000..93c916b1a
--- /dev/null
+++ b/1835/CH3/EX3.8/Ex3_8.sce
@@ -0,0 +1,30 @@
+//CHAPTER 3 ILLUSRTATION 8 PAGE NO 107
+//TITLE:FRICTION
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+W=50000// WEIGHT OF THE SLUICE GATE IN NEWTON
+P=40000// POWER IN WATTS
+N=580// MAX MOTOR RUNNING SPEEED IN rpm
+d=12.5// DIAMETER OF THE SCREW IN cm
+p=2.5// PITCH IN cm
+PI=3.147
+U1=.08// COEFFICIENT OF FRICTION for SCREW
+U2=.1// C.O.F BETWEEN GATES AND SCREW
+Np=2000000// NORMAL PRESSURE IN NEWTON
+Fl=.15// FRICTION LOSS
+n=1-Fl// EFFICIENCY
+ng=80// NO OF TEETH ON GEAR
+//===========================================================================================
+//CALCULATION
+TV=W+U2*Np// TOTAL VERTICAL HEAD IN NEWTON
+ALPHA=atand(p/(PI*d))//
+PY=atand(U1)//
+P1=TV*tand(ALPHA+PY)// FORCE IN N
+T=P1*d/2/100// TORQUE IN N-m
+Ng=60000*n*P*10^-3/(2*PI*T)// SPEED OF GEAR IN rpm
+np=Ng*ng/N// NO OF TEETH ON PINION
+//=========================================================================================
+//OUTPUT
+printf('NO OF TEETH ON PINION =%.2f say %d',np,np+1)
diff --git a/1835/CH3/EX3.9/Ex3_9.sce b/1835/CH3/EX3.9/Ex3_9.sce
new file mode 100755
index 000000000..d65d4b30e
--- /dev/null
+++ b/1835/CH3/EX3.9/Ex3_9.sce
@@ -0,0 +1,25 @@
+//CHAPTER 3 ILLUSRTATION 9 PAGE NO 108
+//TITLE:FRICTION
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+d=5// MEAN DIAMETER OF SCREW IN cm
+p=1.25// PITCH IN cm
+W=10000// LOAD AVAILABLE IN NEWTONS
+dc=6// MEAN DIAMETER OF COLLAR IN cm
+U=.15// COEFFICIENT OF FRICTION OF SCREW
+Uc=.18// COEFFICIENT OF FRICTION OF COLLAR
+P1=100// TANGENTIAL FORCE APPLIED IN NEWTON
+PI=3.147
+//============================================================================================
+//CALCULATION
+ALPHA=atand(p/(PI*d))//
+PY=atand(U)//
+T1=W*d/2*tand(ALPHA+PY)/100// TORQUE ON SCREW IN NEWTON
+Tc=Uc*W*dc/2/100// TORQUE ON COLLAR IN NEWTON
+T=T1+Tc// TOTAL TORQUE
+D=2*T/P1/2*100// DIAMETER OF HAND WHEEL IN cm
+//============================================================================================
+//OUTPUT
+printf('SUITABLE DIAMETER OF HAND WHEEL =%3.3f cm',D)
diff --git a/1835/CH4/EX4.1/Ex4_1.sce b/1835/CH4/EX4.1/Ex4_1.sce
new file mode 100755
index 000000000..bb98f952d
--- /dev/null
+++ b/1835/CH4/EX4.1/Ex4_1.sce
@@ -0,0 +1,32 @@
+//Chapter-4, Illustration 1, Page 133
+//Title: Gears and Gear Drivers
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+TA=48;//Wheel A teeth
+TB=30;//Wheel B teeth
+m=5;//Module pitch in mm
+phi=20;//Pressure angle in degrees
+add=m;//Addendum in mm
+
+//CALCULATIONS
+R=(m*TA)/2;//Pitch circle radius of wheel A in mm
+RA=R+add;//Radius of addendum circle of wheel A in mm
+r=(m*TB)/2;//Pitch circle radius of wheel B in mm
+rA=r+add;//Radius of addendum circle of wheel B in mm
+lp=(sqrt((RA^2)-((R^2)*(cosd(phi)^2))))+(sqrt((rA^2)-((r^2)*(cosd(phi)^2))))-((R+r)*sind(phi));//Length of path of contact in mm
+la=lp/cosd(phi);//Length of arc of contact in mm
+
+//OUTPUT
+mprintf('Length of arc of contact is %3.1f mm',la)
+
+
+
+
+
+
+
+
+//================================END OF PROGRAM=============================================
diff --git a/1835/CH4/EX4.10/Ex4_10.sce b/1835/CH4/EX4.10/Ex4_10.sce
new file mode 100755
index 000000000..e83645acf
--- /dev/null
+++ b/1835/CH4/EX4.10/Ex4_10.sce
@@ -0,0 +1,29 @@
+//Chapter-4, Illustration 10, Page 141
+//Title: Gears and Gear Drivers
+//=============================================================================
+clc
+clear
+
+//Input data
+Ta=96;//Teeth of wheel A
+Tc=48;//Teeth of wheel C
+y=-20;//Speed of arm C in rpm in clockwise
+
+//Calculations
+x=(y*Ta)/Tc
+Tb=(Ta-Tc)/2;//Teeth of wheel B
+Nb=(-Tc/Tb)*x+y;//Speed of wheel B in rpm
+Nc=x+y;//Speed of wheel C in rpm
+
+//Output
+mprintf('Speed of wheel B is %3.0f rpm \n Speed of wheel C is %3.0f rpm',Nb,Nc)
+
+
+
+
+
+
+
+
+
+//================================END OF PROGRAM=============================================
diff --git a/1835/CH4/EX4.11/Ex4_11.sce b/1835/CH4/EX4.11/Ex4_11.sce
new file mode 100755
index 000000000..8377b38b3
--- /dev/null
+++ b/1835/CH4/EX4.11/Ex4_11.sce
@@ -0,0 +1,31 @@
+//Chapter-4, Illustration 11, Page 142
+//Title: Gears and Gear Drivers
+//=============================================================================
+clc
+clear
+//Input data
+Ta=40// no of teeth on gear A
+Td=90// no of teeth on gear D
+
+//Calculations
+Tb=(Td-Ta)/2// no of teeth on gear B
+Tc=Tb// no of teeth on gear C
+//
+//x+y=-1
+//-40x+90y=45
+A=[1 1
+ -Ta Td]//Coefficient matrix
+B=[-1
+ (Td/2)]//Constant matrix
+X=inv(A)*B//Variable matrix
+//
+//x+y=-1
+//-40x+90y=0
+A1=[1 1
+ -Ta Td]//Coefficient matrix
+B1=[-1
+ 0]//Constant matrix
+X1=inv(A1)*B1//Variable matrix
+
+disp(X(2))
+printf('speed of the arm = %.3f revolution clockwise',X1(2))
diff --git a/1835/CH4/EX4.12/Ex4_12.sce b/1835/CH4/EX4.12/Ex4_12.sce
new file mode 100755
index 000000000..476d33e14
--- /dev/null
+++ b/1835/CH4/EX4.12/Ex4_12.sce
@@ -0,0 +1,26 @@
+//Chapter-4, Illustration 12, Page 144
+//Title: Gears and Gear Drivers
+//=============================================================================
+clc
+clear
+
+//Input data
+Te=30;//Teeth of wheel E
+Tb=24;//Teeth of wheel B
+Tc=22;//Teeth of wheel C
+Td=70;//Teeth of wheel D
+Th=15;//Teeth of wheel H
+Nv=100;//Speed of shaft V in rpm
+Nx=300;//Speed of spindle X in rpm
+
+//Calculations
+Nh=Nv;//Speed of wheel H in rpm
+Ne=(-Th/Te)*Nv;//Speed of wheel E in rpm
+Ta=(Tc+Td-Tb);//Teeth of wheel A
+//x+y=-50
+//y=300
+x=(Ne-Nx)
+Nz=(187/210)*x+Nx;//;//Speed of wheel Z in rpm
+
+//Output
+mprintf('Speed of wheel Z is %3.3f rpm \n Direction of wheel Z is opposite to that of X',Nz)
diff --git a/1835/CH4/EX4.13/Ex4_13.sce b/1835/CH4/EX4.13/Ex4_13.sce
new file mode 100755
index 000000000..ef3b1807b
--- /dev/null
+++ b/1835/CH4/EX4.13/Ex4_13.sce
@@ -0,0 +1,21 @@
+//Chapter-4, Illustration 13, Page 145
+//Title: Gears and Gear Drivers
+//=============================================================================
+clc
+clear
+
+//Input data
+Tp=20;//Teeth of wheel P
+Tq=30;//Teeth of wheel Q
+Tr=10;//Teeth of wheel R
+Nx=50;//Speed of shaft X in rpm
+Na=100;//Speed of arm A in rpm
+
+//Calculations
+//x+y=-50
+//y=100
+x=(-Nx-Na)
+y=(-2*x+Na);//Speed of Y in rpm
+
+//Output
+mprintf('Speed of driven shaft Y is %3.0f rpm \n Direction of driven shaft Y is anti-clockwise',y)
diff --git a/1835/CH4/EX4.14/Ex4_14.sce b/1835/CH4/EX4.14/Ex4_14.sce
new file mode 100755
index 000000000..7541eca36
--- /dev/null
+++ b/1835/CH4/EX4.14/Ex4_14.sce
@@ -0,0 +1,20 @@
+//Chapter-4, Illustration 14, Page 146
+//Title: Gears and Gear Drivers
+//=============================================================================
+clc
+clear
+
+//Input data
+d=216;//Ring diameter in mm
+m=4;//Module in mm
+
+//Calculations
+Td=(d/m);//Teeth of wheel D
+Tb=Td/4;//Teeth of wheel B
+Tb1=ceil(Tb);//Teeth of wheel B
+Td1=4*Tb1;//Teeth of wheel D
+Tc1=(Td1-Tb1)/2;//Teeth of wheel C
+d1=m*Td1;//Pitch circle diameter in mm
+
+//Output
+mprintf('Teeth of wheel B is %3.0f \n Teeth of wheel C is %3.0f \n Teeth of wheel D is %3.0f \n Exact pitch circle diameter is %3.0f mm',Tb1,Tc1,Td1,d1)
diff --git a/1835/CH4/EX4.15/Ex4_15.sce b/1835/CH4/EX4.15/Ex4_15.sce
new file mode 100755
index 000000000..f2e799cb4
--- /dev/null
+++ b/1835/CH4/EX4.15/Ex4_15.sce
@@ -0,0 +1,20 @@
+//Chapter-4, Illustration 15, Page 147
+//Title: Gears and Gear Drivers
+//=============================================================================
+clc
+clear
+
+//Input data
+Ta=100// no of teeth on gear A
+Tc=101// no of teeth on gear C
+Td=99// no of teeth on gear D
+Tp=20// no of teeth on planet gear
+y=1// from table 4.9(arm B makes one revolution)
+x=-y// as gear is fixed
+
+//Calculations
+Nc=(Ta*x)/Tc+y// Revolution of gear C
+Nd=(Ta*x)/Td+y// Revolution of gear D
+
+//Output
+printf('Revolution of gear C = %f\n Revolution of gear D = %f',Nc,Nd)
diff --git a/1835/CH4/EX4.16/Ex4_16.sce b/1835/CH4/EX4.16/Ex4_16.sce
new file mode 100755
index 000000000..92656221a
--- /dev/null
+++ b/1835/CH4/EX4.16/Ex4_16.sce
@@ -0,0 +1,19 @@
+//Chapter-4, Illustration 16, Page 148
+//Title: Gears and Gear Drivers
+//=============================================================================
+clc
+clear
+
+//Input data
+Ta=12// no of teeth on gear A
+Tb=60// no of teeth on gear B
+N=1000// speed of propeller shaft in rpm
+Nc=210// speed of gear C in rpm
+
+//Calculations
+Nb=(Ta*N)/Tb// speed of gear B in rpm
+x=(Nb-Nc)
+Nd=Nb+x// speed of road wheel driven by D
+
+//Output
+printf('speed of road wheel driven by D= %d rpm',Nd)
diff --git a/1835/CH4/EX4.17/Ex4_17.sce b/1835/CH4/EX4.17/Ex4_17.sce
new file mode 100755
index 000000000..892b2a0fc
--- /dev/null
+++ b/1835/CH4/EX4.17/Ex4_17.sce
@@ -0,0 +1,39 @@
+//Chapter-4, Illustration 17, Page 148
+//Title: Gears and Gear Drivers
+//=============================================================================
+clc
+clear
+//Input data
+Ta=20// no of teeth on pinion A
+Tb=25// no of teeth on wheel B
+Tc=50// no of teeth on gear C
+Td=60// no of teeth on gear D
+Te=60// no of teeth on gear E
+Na=200// SPEED of the gear A
+Nd=100// speed of the gear D
+
+//calculations
+//(i)
+//(5/6)x+y=0
+//(5/4)x+y=200
+A1=[(Tc/Td) 1
+ (Tb/Ta) 1]//Coefficient matrix
+B1=[0
+ Na]//Constant matrix
+X1=inv(A1)*B1//Variable matrix
+Ne1=X1(2)-(Tc/Td)*X1(1)//
+T1=(-Ne1/Na)// ratio of torques when D is fixed
+//(ii)
+//(5/4)x+y=200
+//(5/6)x+y=100
+A2=[(Tc/Td) 1
+ (Tb/Ta) 1]//Coefficient matrix
+B2=[Nd
+ Na]//Constant matrix
+X2=inv(A2)*B2//Variable matrix
+Ne2=X2(2)-(Tc/Td)*X2(1)
+T2=(-Ne2/Na)// ratio of torques when D ratates at 100 rpm
+
+//Output
+printf('speed of E= %.2f rpm in clockwise direction\n speed of E in 2nd case(when D rotates at 100 rpm)= %d rpm in clockwise direction\n ratio of torques when D is fixed= %d \n ratio of torques when D ratates at 100 rpm= %d',Ne1,Ne2,T1,T2)
+
diff --git a/1835/CH4/EX4.2/Ex4_2.sce b/1835/CH4/EX4.2/Ex4_2.sce
new file mode 100755
index 000000000..f76a53eb5
--- /dev/null
+++ b/1835/CH4/EX4.2/Ex4_2.sce
@@ -0,0 +1,35 @@
+//Chapter-4, Illustration 2, Page 133
+//Title: Gears and Gear Drivers
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+TA=40;//Wheel A teeth
+TB=TA;//Wheel B teeth
+m=6;//Module pitch in mm
+phi=20;//Pressure angle in degrees
+pi=3.141
+x=1.75;//Ratio of length of arc of contact to circular pitch
+
+//CALCULATIONS
+Cp=m*pi;//Circular pitch in mm
+R=(m*TA)/2;//Pitch circle radius of wheel A in mm
+r=R;//Pitch circle radius of wheel B in mm
+la=x*Cp;//Length of arc of contact in mm
+lp=la*cosd(phi);//Length of path of contact in mm
+RA=sqrt((((lp/2)+(R*sind(phi)))^2)+((R^2)*(cosd(phi))^2));//Radius of addendum circle of each wheel in mm
+add=RA-R;//Addendum in mm
+
+//OUTPUT
+mprintf('Addendum of wheel is %3.3f mm',add)
+
+
+
+
+
+
+
+
+
+//================================END OF PROGRAM=============================================
diff --git a/1835/CH4/EX4.3/Ex4_3.sce b/1835/CH4/EX4.3/Ex4_3.sce
new file mode 100755
index 000000000..61bc94d8c
--- /dev/null
+++ b/1835/CH4/EX4.3/Ex4_3.sce
@@ -0,0 +1,35 @@
+//Chapter-4, Illustration 3, Page 134
+//Title: Gears and Gear Drivers
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+TA=48;//Gear teeth
+TB=24;//Pinion teeth
+m=6;//Module in mm
+phi=20;//Pressure angle in degrees
+
+//CALCULATIONS
+r=(m*TB)/2;//Pitch circle radius of pinion in mm
+R=(m*TA)/2;//Pitch circle radius of gear in mm
+RA=sqrt(((((r*sind(phi))/2)+(R*sind(phi)))^2)+((R^2)*(cosd(phi))^2));//Radius of addendum circle of gear in mm
+rA=sqrt(((((R*sind(phi))/2)+(r*sind(phi)))^2)+((r^2)*(cosd(phi))^2));//Radius of addendum circle of pinion in mm
+addp=rA-r;//Addendum for pinion in mm
+addg=RA-R;//Addendum for gear in mm
+lp=((R+r)*sind(phi))/2;//Length of path of contact in mm
+la=lp/cosd(phi);//Length of arc of contact in mm
+
+//OUTPUT
+mprintf('Addendum for pinion is %3.3f mm \n Addendum for gear is %3.2f mm \n Length of arc of contact is %3.3f mm',addp,addg,la)
+
+
+
+
+
+
+
+
+
+
+//================================END OF PROGRAM=============================================
diff --git a/1835/CH4/EX4.4/Ex4_4.sce b/1835/CH4/EX4.4/Ex4_4.sce
new file mode 100755
index 000000000..e325d4a2f
--- /dev/null
+++ b/1835/CH4/EX4.4/Ex4_4.sce
@@ -0,0 +1,35 @@
+//Chapter-4, Illustration 4, Page 135
+//Title: Gears and Gear Drivers
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+x=3.5;//Ratio of teeth of wheels
+C=1.2;//Centre distance between axes in m
+DP=4.4;//Diametrical pitch in cm
+
+//CALCULATIONS
+D=2*C*100;//Sum of diameters of wheels in cm
+T=D*DP;//Sum of teeth of wheels
+TB1=T/(x+1);//Teeth of wheel B
+TB=floor(TB1);//Teeth of whhel B
+TA=x*TB;//Teeth of wheel A
+DA=TA/DP;//Diametral pitch of gear A in cm
+DB=TB/DP;//Diametral pitch of gear B in cm
+Ce=(DA+DB)/2;//Exact centre distance between shafts in cm
+TB2=ceil(TB1);//Teeth of wheel B
+TA2=T-TB2;//Teeth of wheel A
+VR=TA2/TB2;//Velocity ratio
+
+//OUTPUT
+mprintf('Number of teeth on wheel A is %3.0f \n Number of teeth on wheel B is %3.0f \n Exact centre distance is %3.3f cm \n If centre distance is %3.1f m then \n Velocity ratio is %3.4f',TA,TB,Ce,C,VR)
+
+
+
+
+
+
+
+
+//================================END OF PROGRAM=============================================
diff --git a/1835/CH4/EX4.5/Ex4_5.sce b/1835/CH4/EX4.5/Ex4_5.sce
new file mode 100755
index 000000000..d0d76ccfa
--- /dev/null
+++ b/1835/CH4/EX4.5/Ex4_5.sce
@@ -0,0 +1,40 @@
+//Chapter-4, Illustration 5, Page 136
+//Title: Gears and Gear Drivers
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+C=600;//Distance between shafts in mm
+Cp=30;//Circular pitch in mm
+NA=200;//Speed of wheel A in rpm
+NB=600;//Speed of wheel B in rpm
+F=18;//Tangential pressure in kN
+pi=3.141
+
+//CALCULATIONS
+a=Cp/(pi*10);//Ratio of pitch diameter of wheel A to teeth of wheel A in cm
+b=Cp/(pi*10);//Ratio of pitch diameter of wheel B to teeth of wheel B in cm
+T=(2*C)/(a*10);//Sum of teeth of wheels
+r=NB/NA;//Ratio of teeth of wheels
+TB=T/(r+1);//Teeth of wheel B
+TB1=ceil(TB);//Teeth of wheel B
+TA=TB1*r;//Teeth of wheel A
+DA=a*TA;//Pitch diameter of wheel A in cm
+DB=b*TB1;//Pitch diameter of wheel B in cm
+CPA=(pi*DA)/TA;//Circular pitch of gear A in cm
+CPB=(pi*DB)/TB1;//Circular pitch of gear B in cm
+C1=(DA+DB)*10/2;//Exact centre distance in mm
+P=(F*1000*pi*DA*NA)/(60*1000*100);//Power transmitted in kW
+
+//OUTPUT
+mprintf('Number of teeth on wheel A is %3.0f \n Number of teeth on wheel B is %3.0f \n Pitch diameter of wheel A is %3.2f cm \n Pitch diameter of wheel B is %3.3f cm \n Circular pitch of wheel A is %3.4f cm \n Circular pitch of wheel B is %3.4f cm \n Exact centre distance between shafts is %3.2f mm \n Power transmitted is %3.3f kW',TA,TB1,DA,DB,CPA,CPB,C1,P)
+
+
+
+
+
+
+
+
+//================================END OF PROGRAM=============================================
diff --git a/1835/CH4/EX4.6/Ex4_6.sce b/1835/CH4/EX4.6/Ex4_6.sce
new file mode 100755
index 000000000..da0304e0c
--- /dev/null
+++ b/1835/CH4/EX4.6/Ex4_6.sce
@@ -0,0 +1,35 @@
+//Chapter-4, Illustration 6, Page 137
+//Title: Gears and Gear Drivers
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+r=16;//Speed ratio
+mA=4;//Module of gear A in mm
+mB=mA;//Module of gear B in mm
+mC=2.5;//Mosule of gear C in mm
+mD=mC;//Module of gear D in mm
+C=150;//Distance between shafts in mm
+
+//CALCULATIONS
+t=sqrt(r);//Ratio of teeth
+T1=(C*2)/mA;//Sum of teeth of wheels A and B
+T2=(C*2)/mC;//Sum of teeth of wheels C and D
+TA=T1/(t+1);//Teeth of gear A
+TB=T1-TA;//Teeth of gear B
+TC=T2/(t+1);//Teeth of gear C
+TD=T2-TC;//Teeth of gear D
+
+//OUTPUT
+mprintf('Number of teeth on gear A is %3.0f \n Number of teeth on gear B is %3.0f \n Number of teeth on gear C is %3.0f \n Number of teeth on gear D is %3.0f',TA,TB,TC,TD)
+
+
+
+
+
+
+
+
+
+//================================END OF PROGRAM=============================================
diff --git a/1835/CH4/EX4.7/Ex4_7.sce b/1835/CH4/EX4.7/Ex4_7.sce
new file mode 100755
index 000000000..f69bbd1b3
--- /dev/null
+++ b/1835/CH4/EX4.7/Ex4_7.sce
@@ -0,0 +1,29 @@
+//Chapter-4, Illustration 7, Page 138
+//Title: Gears and Gear Drivers
+//=============================================================================
+clc
+clear
+
+//INPUT DATA
+N=4.5;//No. of turns
+
+//CALCULATIONS
+Vh=N/2;//Velocity ratio of main spring spindle to hour hand spindle
+Vm=12;//Velocity ratio of minute hand spindle to hour hand spindle
+T1=8// assumed no of teeth on gear 1
+T2=32// assumed no of teeth on gear 2
+T3=(T1+T2)/4// no of teeth on gear 3
+T4=(T1+T2)-T3// no of teeth on gear 4
+printf('no of teeth on gear 1=%d\n no of teeth on gear 2=%d\n no of teeth on gear 3=%d\n no of teeth on gear 4=%d',T1,T2,T3,T4)
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/1835/CH4/EX4.8/Ex4_8.sce b/1835/CH4/EX4.8/Ex4_8.sce
new file mode 100755
index 000000000..93d3ef382
--- /dev/null
+++ b/1835/CH4/EX4.8/Ex4_8.sce
@@ -0,0 +1,30 @@
+//Chapter-4, Illustration 8, Page 139
+//Title: Gears and Gear Drivers
+//=============================================================================
+clc
+clear
+
+//Input data
+Tb=70;//Teeth of wheel B
+Tc=25;//Teeth of wheel C
+Td=80;//Teeth of wheel D
+Na=-100;//Speed of arm A in clockwise in rpm
+y=-100//Arm A rotates at 100 rpm clockwise
+
+//Calculations
+Te=(Tc+Td-Tb);//Teeth of wheel E
+x=(y/0.5)
+Nc=(y-(Td*x)/Tc);//Speed of wheel C in rpm
+
+//Output
+mprintf('Speed of wheel C is %3.0f rpm \n Direction of wheel C is anti-clockwise',Nc)
+
+
+
+
+
+
+
+
+
+//================================END OF PROGRAM=============================================
diff --git a/1835/CH4/EX4.9/Ex4_9.sce b/1835/CH4/EX4.9/Ex4_9.sce
new file mode 100755
index 000000000..0f8b29c02
--- /dev/null
+++ b/1835/CH4/EX4.9/Ex4_9.sce
@@ -0,0 +1,30 @@
+//Chapter-4, Illustration 9, Page 140
+//Title: Gears and Gear Drivers
+//=============================================================================
+clc
+clear
+
+//Input data
+Tb=25;//Teeth of wheel B
+Tc=40;//Teeth of wheel C
+Td=10;//Teeth of wheel D
+Te=25;//Teeth of wheel E
+Tf=30;//Teeth of wheel F
+y=-120;//Speed of arm A in clockwise in rpm
+
+//Calculations
+x=(-y/4)
+Nb=x+y;//Speed of wheel B in rpm
+Nf=(-10/3)*x+y;//Speed of wheel F in rpm
+
+//Output
+mprintf('Speed of wheel B is %3.0f rpm \n Direction of wheel B is clockwise \n Speed of wheel F is %3.0f rpm \n Direction of wheel F is clockwise',Nb,Nf)
+
+
+
+
+
+
+
+
+//================================END OF PROGRAM=============================================
diff --git a/1835/CH5/EX5.1/Ex5_1.sce b/1835/CH5/EX5.1/Ex5_1.sce
new file mode 100755
index 000000000..d96d24e06
--- /dev/null
+++ b/1835/CH5/EX5.1/Ex5_1.sce
@@ -0,0 +1,14 @@
+//CHAPTER 5 ILLUSRTATION 1 PAGE NO 160
+//TITLE:Inertia Force Analysis in Machines
+clc
+clear
+pi=3.141
+r=.3// radius of crank in m
+l=1// length of connecting rod in m
+N=200// speed of the engine in rpm
+n=l/r
+//===================
+w=2*pi*N/60// angular speed in rad/s
+teeta=acosd((-n+((n^2)+4*2*1)^.5)/(2*2))// angle of inclination of crank in degrees
+Vp=w*r*(sind(teeta)+(sind(2*teeta))/n)// maximum velocity of the piston in m/s
+printf('Maximum velocity of the piston = %.3f m/s',Vp)
diff --git a/1835/CH5/EX5.2/Ex5_2.sce b/1835/CH5/EX5.2/Ex5_2.sce
new file mode 100755
index 000000000..1c739e36f
--- /dev/null
+++ b/1835/CH5/EX5.2/Ex5_2.sce
@@ -0,0 +1,18 @@
+//CHAPTER 5 ILLUSRTATION 2 PAGE NO 161
+//TITLE:Inertia Force Analysis in Machines
+clc
+clear
+PI=3.141
+r=.3// length of crank in metres
+l=1.5// length of connecting rod in metres
+N=180// speed of rotation in rpm
+teeta=40// angle of inclination of crank in degrees
+//============================
+n=l/r
+w=2*PI*N/60// angular speed in rad/s
+Vp=w*r*(sind(teeta)+sind(2*teeta)/(2*n))// velocity of piston in m/s
+fp=w^2*r*(cosd(teeta)+cosd(2*teeta)/(2*n))// acceleration of piston in m/s^2
+costeeta1=(-n+(n^2+4*2*1)^.5)/(2*2)
+teeta1=acosd(costeeta1)// position of crank from inner dead centre position for zero acceleration of piston
+//===========================
+printf('Velocity of Piston = %.3f m/s\n Acceleration of piston = %.3f m/s^2\n position of crank from inner dead centre position for zero acceleration of piston= %.3f degrees',Vp,fp,teeta1)
diff --git a/1835/CH5/EX5.3/Ex5_3.sce b/1835/CH5/EX5.3/Ex5_3.sce
new file mode 100755
index 000000000..d38835a9f
--- /dev/null
+++ b/1835/CH5/EX5.3/Ex5_3.sce
@@ -0,0 +1,21 @@
+//CHAPTER 5 ILLUSRTATION 3 PAGE NO 161
+//TITLE:Inertia Force Analysis in Machines
+clc
+clear
+pi=3.141
+D=.3// Diameter of steam engine in m
+L=.5// length of stroke in m
+r=L/2
+mR=100// equivalent of mass of reciprocating parts in kg
+N=200// speed of engine in rpm
+teeta=45// angle of inclination of crank in degrees
+p1=1*10^6// gas pressure in N/m^2
+p2=35*10^3// back pressure in N/m^2
+n=4// ratio of crank radius to the length of stroke
+//=================================
+w=2*pi*N/60// angular speed in rad/s
+Fl=pi/4*D^2*(p1-p2)// Net load on piston in N
+Fi=mR*w^2*r*(cosd(teeta)+cosd(2*teeta)/(2*n))// inertia force due to reciprocating parts
+Fp=Fl-Fi// Piston effort
+T=Fp*r*(sind(teeta)+(sind(2*teeta))/(2*(n^2-(sind(teeta))^2)^.5))
+printf('Piston effort = %.3f N\n Turning moment on the crank shaft = %.3f N-m',Fp,T)
diff --git a/1835/CH5/EX5.4/Ex5_4.sce b/1835/CH5/EX5.4/Ex5_4.sce
new file mode 100755
index 000000000..3545232ee
--- /dev/null
+++ b/1835/CH5/EX5.4/Ex5_4.sce
@@ -0,0 +1,26 @@
+//CHAPTER 5 ILLUSRTATION 4 PAGE NO 162
+//TITLE:Inertia Force Analysis in Machines
+clc
+clear
+pi=3.141
+D=.10// Diameter of petrol engine in m
+L=.12// Stroke length in m
+l=.25// length of connecting in m
+r=L/2
+mR=1.2// mass of piston in kg
+N=1800// speed in rpm
+teeta=25// angle of inclination of crank in degrees
+p=680*10^3// gas pressure in N/m^2
+n=l/r
+g=9.81// acceleration due to gravity
+//=======================================
+w=2*pi*N/60// angular speed in rpm
+Fl=pi/4*D^2*p// force due to gas pressure in N
+Fi=mR*w^2*r*(cosd(teeta)+cosd(2*teeta)/(n))// inertia force due to reciprocating parts in N
+Fp=Fl-Fi+mR*g// net force on piston in N
+Fq=n*Fp/((n^2-(sind(teeta))^2)^.5)// resultant load on gudgeon pin in N
+Fn=Fp*sind(teeta)/((n^2-(sind(teeta))^2)^.5)// thrust on cylinder walls in N
+fi=Fl+mR*g// inertia force of the reciprocating parts before the gudgeon pin load is reversed in N
+w1=(fi/mR/r/(cosd(teeta)+cosd(2*teeta)/(n)))^.5
+N1=60*w1/(2*pi)
+printf('Net force on piston = %.3f N\n Resultant load on gudgeon pin = %.3f N\n Thrust on cylinder walls = %.3f N\n speed at which other things remining same,the gudgeon pin load would be reversed in directionm= %.3f rpm',Fp,Fq,Fn,N1)
diff --git a/1835/CH5/EX5.5/Ex5_5.sce b/1835/CH5/EX5.5/Ex5_5.sce
new file mode 100755
index 000000000..b0d240b91
--- /dev/null
+++ b/1835/CH5/EX5.5/Ex5_5.sce
@@ -0,0 +1,25 @@
+//CHAPTER 5 ILLUSRTATION 5 PAGE NO 163
+//TITLE:Inertia Force Analysis in Machines
+//Figure 5.3
+clc
+clear
+pi=3.141
+N=1800// speed of the petrol engine in rpm
+r=.06// radius of crank in m
+l=.240// length of connecting rod in m
+D=.1// diameter of the piston in m
+mR=1// mass of piston in kg
+p=.8*10^6// gas pressure in N/m^2
+x=.012// distance moved by piston in m
+//===============================================
+w=2*pi*N/60// angular velocity of the engine in rad/s
+n=l/r
+Fl=pi/4*D^2*p// load on the piston in N
+teeta=32// by mearument from the figure 5.3
+Fi=mR*w^2*r*(cosd(teeta)+cosd(2*teeta)/(n))// inertia force due to reciprocating parts in N
+Fp=Fl-Fi// net load on the gudgeon pin in N
+Fq=n*Fp/((n^2-(sind(teeta))^2)^.5)// thrust in the connecting rod in N
+Fn=Fp*sind(teeta)/((n^2-(sind(teeta))^2)^.5)// reaction between the piston and cylinder in N
+w1=(Fl/mR/r/(cosd(teeta)+cosd(2*teeta)/(n)))^.5
+N1=60*w1/(2*pi)//
+printf('Net load on the gudgeon pin= %.3f N\n Thrust in the connecting rod= %.3f N\n Reaction between the cylinder and piston= %.3f N\n The engine speed at which the above values become zero= %.3f rpm',Fp,Fq,Fn,N1)
diff --git a/1835/CH5/EX5.6/Ex5_6.sce b/1835/CH5/EX5.6/Ex5_6.sce
new file mode 100755
index 000000000..66b8b9155
--- /dev/null
+++ b/1835/CH5/EX5.6/Ex5_6.sce
@@ -0,0 +1,25 @@
+//CHAPTER 5 ILLUSRTATION 6 PAGE NO 165
+//TITLE:Inertia Force Analysis in Machines
+clc
+clear
+pi=3.141
+D=.25// diameter of horizontal steam engine in m
+N=180// speed of the engine in rpm
+d=.05// diameter of piston in m
+P=36000// power of the engine in watts
+n=3// ration of length of connecting rod to the crank radius
+p1=5.8*10^5// pressure on cover end side in N/m^2
+p2=0.5*10^5// pressure on crank end side in N/m^2
+teeta=40// angle of inclination of crank in degrees
+m=45// mass of flywheel in kg
+k=.65// radius of gyration in m
+//==============================
+Fl=(pi/4*D^2*p1)-(pi/4*(D^2-d^2)*p2)// load on the piston in N
+phi=asind(sind(teeta)/n)// angle of inclination of the connecting rod to the line of stroke in degrees
+r=1.6*D/2
+T=Fl*sind(teeta+phi)/cosd(phi)*r// torque exerted on crank shaft in N-m
+Fb=Fl*cosd(teeta+phi)/cosd(phi)// thrust on the crank shaft bearing in N
+TR=P*60/(2*pi*N)// steady resisting torque in N-m
+Ts=T-TR// surplus torque available in N-m
+a=Ts/(m*k^2)// acceleration of the flywheel in rad/s^2
+printf('Torque exerted on the crank shaft= %.3f N-m\n Thrust on the crank shaft bearing= %.3f N\n Acceleration of the flywheel= %.3f rad/s^2',T,Fb,a)
diff --git a/1835/CH5/EX5.7/Ex5_7.sce b/1835/CH5/EX5.7/Ex5_7.sce
new file mode 100755
index 000000000..64b55e90e
--- /dev/null
+++ b/1835/CH5/EX5.7/Ex5_7.sce
@@ -0,0 +1,22 @@
+//CHAPTER 5 ILLUSRTATION 7 PAGE NO 166
+//TITLE:Inertia Force Analysis in Machines
+clc
+clear
+pi=3.141
+D=.25// diameter of vertical cylinder of steam engine in m
+L=.45// stroke length in m
+r=L/2
+n=4
+N=360// speed of the engine in rpm
+teeta=45// angle of inclination of crank in degrees
+p=1050000// net pressure in N/m^2
+mR=180// mass of reciprocating parts in kg
+g=9.81// acceleration due to gravity
+//========================
+Fl=p*pi*D^2/4// force on piston due to steam pressure in N
+w=2*pi*N/60// angular speed in rad/s
+Fi=mR*w^2*r*(cosd(teeta)+cosd(2*teeta)/(n))// inertia force due to reciprocating parts in N
+Fp=Fl-Fi+mR*g// piston effort in N
+phi=asind(sind(teeta)/n)// angle of inclination of the connecting rod to the line of stroke in degrees
+T=Fp*sind(teeta+phi)/cosd(phi)*r// torque exerted on crank shaft in N-m
+printf('Effective turning moment on the crank shaft= %.3f N-m',T)
diff --git a/1835/CH5/EX5.8/Ex5_8.sce b/1835/CH5/EX5.8/Ex5_8.sce
new file mode 100755
index 000000000..80c3c8fc8
--- /dev/null
+++ b/1835/CH5/EX5.8/Ex5_8.sce
@@ -0,0 +1,35 @@
+//CHAPTER 5 ILLUSRTATION 8 PAGE NO 166
+//TITLE:Inertia Force Analysis in Machines
+//figure 5.4
+clc
+clear
+pi=3.141
+D=.25// diameter of vertical cylinder of diesel engine in m
+L=.40// stroke length in m
+r=L/2
+n=4
+N=300// speed of the engine in rpm
+teeta=60// angle of inclination of crank in degrees
+mR=200// mass of reciprocating parts in kg
+g=9.81// acceleration due to gravity
+l=.8// length of connecting rod in m
+c=14// compression ratio=v1/v2
+p1=.1*10^6// suction pressure in n/m^2
+i=1.35// index of the law of expansion and compression
+//==============================================================
+Vs=pi/4*D^2*L// swept volume in m^3
+w=2*pi*N/60// angular speed in rad/s
+Vc=Vs/(c-1)
+V3=Vc+Vs/10// volume at the end of injection of fuel in m^3
+p2=p1*c^i// final pressure in N/m^2
+p3=p2// from figure
+x=r*((1-cosd(teeta)+(sind(teeta))^2/(2*n)))// the displacement of the piston when the crank makes an angle 60 degrees with T.D.C
+Va=Vc+pi*D^2*x/4
+pa=p3*(V3/Va)^i
+p=pa-p1// difference of pressues on 2 sides of piston in N/m^2
+Fl=p*pi*D^2/4// net load on piston in N
+Fi=mR*w^2*r*(cosd(teeta)+cosd(2*teeta)/(n))// inertia force due to reciprocating parts in N
+Fp=Fl-Fi+mR*g// piston effort in N
+phi=asind(sind(teeta)/n)// angle of inclination of the connecting rod to the line of stroke in degrees
+T=Fp*sind(teeta+phi)/cosd(phi)*r// torque exerted on crank shaft in N-m
+printf('Effective turning moment on the crank shaft= %.3f N-m',T)
diff --git a/1835/CH6/EX6.1/Ex6_1.sce b/1835/CH6/EX6.1/Ex6_1.sce
new file mode 100755
index 000000000..fcbac70bf
--- /dev/null
+++ b/1835/CH6/EX6.1/Ex6_1.sce
@@ -0,0 +1,16 @@
+//CHAPTER 6 ILLUSRTATION 1 PAGE NO 175
+//TITLE:Turning Moment Diagram and Flywheel
+clc
+clear
+k=1// radius of gyration of flywheel in m
+m=2000// mass of the flywheel in kg
+T=1000// torque of the engine in Nm
+w1=0// speedin the begining
+t=10// time duration
+//==============================
+I=m*k^2// mass moment of inertia in kg-m^2
+a=T/I// angular acceleration of flywheel in rad/s^2
+w2=w1+a*t// angular speed after time t in rad/s
+K=I*w2^2/2// kinetic energy of flywheel in Nm
+//==============================
+printf('Angular acceleration of the flywheel= %.3f rad/s^2\n Kinetic energy of flywheel= %.3f N-m',a,K)
diff --git a/1835/CH6/EX6.10/Ex6_10.sce b/1835/CH6/EX6.10/Ex6_10.sce
new file mode 100755
index 000000000..d83b1aac3
--- /dev/null
+++ b/1835/CH6/EX6.10/Ex6_10.sce
@@ -0,0 +1,25 @@
+
+
+//CHAPTER 6 ILLUSRTATION 10 PAGE NO 183
+//TITLE:Turning Moment Diagram and Flywheel
+clc
+clear
+pi=3.141
+Cs=.02// coefficient of fluctuation of speed
+N=200// speed of the engine in rpm
+//T2=15000-6000cosθ Torque required by the machine in Nm
+//T1=15000+8000sin2θ Torque supplied by the engine in Nm
+//T1-T2=8000sin2θ+6000cosθ Change in torque
+theta1=acosd(0)
+theta2=asind(-6000/16000)
+theta2=180-theta2
+//===============================================
+//largest area,representing fluctuation of energy lies between theta1 and theta2
+E=6000*sind(theta2)-8000/2*cosd(2*theta2)-(6000*sind(theta1)-8000/2*cosd(2*theta1))// total fluctuation of energy in Nm
+Theta=180// angle with which cycle will be repeated in degrees
+Theta1=0
+Tmean=1/pi*((15000*pi+(-8000*cosd(2*Theta))/2)-((15000*Theta1+(-8000*cosd(2*Theta1))/2)))// mean torque of engine in Nm
+P=2*pi*N*Tmean/60000// power of the engine in kw
+w=2*pi*N/60// angular speed of the engine in rad/s
+I=E/(w^2*Cs)// mass moment of inertia of flywheel in kg-m^2
+printf('Power of the engine= %.3f kw\n minimum mass moment of inertia of flywheel= %.3f kg-m^2\n E value calculated in the textbook is wrong. Its value is -15,124. In textbook it is given as -1370.28',P,-I)
diff --git a/1835/CH6/EX6.2/Ex6_2.sce b/1835/CH6/EX6.2/Ex6_2.sce
new file mode 100755
index 000000000..e495c5108
--- /dev/null
+++ b/1835/CH6/EX6.2/Ex6_2.sce
@@ -0,0 +1,18 @@
+//CHAPTER 6 ILLUSRTATION 2 PAGE NO 176
+//TITLE:Turning Moment Diagram and Flywheel
+clc
+clear
+pi=3.141
+N1=225// maximum speed of flywheel in rpm
+k=.5// radius of gyration of flywheel in m
+n=720// no of holes punched per hour
+E1=15000// energy required by flywheel in Nm
+N2=200// mimimum speedof flywheel in rpm
+t=2// time taking for punching a hole
+//==========================
+P=E1*n/3600// power required by motor per sec in watts
+E2=P*t// energy supplied by motor to punch a hole in N-m
+E=E1-E2// maximum fluctuation of energy in N-m
+N=(N1+N2)/2// mean speed of the flywheel in rpm
+m=E/(pi^2/900*k^2*N*(N1-N2))
+printf('Power of the motor= %.3f watts\n Mass of the flywheel required= %.3f kg',P,m)
diff --git a/1835/CH6/EX6.3/Ex6_3.sce b/1835/CH6/EX6.3/Ex6_3.sce
new file mode 100755
index 000000000..58fd20c1a
--- /dev/null
+++ b/1835/CH6/EX6.3/Ex6_3.sce
@@ -0,0 +1,23 @@
+//CHAPTER 6 ILLUSRTATION 3 PAGE NO 176
+//TITLE:Turning Moment Diagram and Flywheel
+clc
+clear
+pi=3.141
+d=38// diameter of hole in cm
+t=32// thickness of hole in cm
+e1=7// energy required to punch one square mm
+V=25// mean speed of the flywheel in m/s
+S=100// stroke of the punch in cm
+T=10// time required to punch a hole in s
+Cs=.03// coefficient of fluctuation of speed
+//===================
+A=pi*d*t// sheared area in mm^2
+E1=e1*A// energy required to punch entire area in Nm
+P=E1/T// power of motor required in watts
+T1=T/(2*S)*t// time required to punch a hole in 32 mm thick plate
+E2=P*T1// energy supplied by motor in T1 seconds
+E=E1-E2// maximum fluctuation of energy in Nm
+m=E/(V^2*Cs)// mass of the flywheel required
+printf('Mass of the flywheel required= %.0f kg',m)
+
+
diff --git a/1835/CH6/EX6.4/Ex6_4.sce b/1835/CH6/EX6.4/Ex6_4.sce
new file mode 100755
index 000000000..93e64dcec
--- /dev/null
+++ b/1835/CH6/EX6.4/Ex6_4.sce
@@ -0,0 +1,21 @@
+//CHAPTER 6 ILLUSRTATION 4 PAGE NO 177
+//TITLE:Turning Moment Diagram and Flywheel
+//figure 6.4
+clc
+clear
+//===================
+pi=3.141
+N=480// speed of the engine in rpm
+k=.6// radius of gyration in m
+Cs=.03// coefficient of fluctuaion of speed
+Ts=6000// turning moment scale in Nm per one cm
+C=30// crank angle scale in degrees per cm
+a=[0.5,-1.22,.9,-1.38,.83,-.7,1.07]// areas between the output torque and mean resistance line in sq.cm
+//======================
+w=2*pi*N/60// angular speed in rad/s
+A=Ts*C*pi/180// 1 cm^2 of turning moment diagram in Nm
+E1=a(1)// max energy at B refer figure
+E2=a(1)+a(2)+a(3)+a(4)
+E=(E1-E2)*A// fluctuation of energy in Nm
+m=E/(k^2*w^2*Cs)// mass of the flywheel in kg
+printf('Mass of the flywheel= %.3f kg',m)
diff --git a/1835/CH6/EX6.5/Ex6_5.sce b/1835/CH6/EX6.5/Ex6_5.sce
new file mode 100755
index 000000000..849057ced
--- /dev/null
+++ b/1835/CH6/EX6.5/Ex6_5.sce
@@ -0,0 +1,27 @@
+//CHAPTER 6 ILLUSRTATION 5 PAGE NO 178
+//TITLE:Turning Moment Diagram and Flywheel
+clc
+clear
+//==============
+pi=3.141
+P=500*10^3// power of the motor in N
+k=.6// radius of gyration in m
+Cs=.03// coefficient of fluctuation of spped
+OA=750// REFER FIGURE
+OF=6*pi// REFER FIGURE
+AG=pi// REFER FIGURE
+BG=3000-750// REFER FIGURE
+GH=2*pi// REFER FIGURE
+CH=3000-750// REFER FIGURE
+HD=pi// REFER FIGURE
+LM=2*pi// REFER FIGURE
+T=OA*OF+1/2*AG*BG+BG*GH+1/2*CH*HD// Torque required for one complete cycle in Nm
+Tmean=T/(6*pi)// mean torque in Nm
+w=P/Tmean// angular velocity required in rad/s
+BL=3000-1875// refer figure
+KL=BL*AG/BG// From similar trangles
+CM=3000-1875// refer figure
+MN=CM*HD/CH//from similar triangles
+E=1/2*KL*BL+BL*LM+1/2*CM*MN// Maximum fluctuaion of energy in Nm
+m=E*100/(k^2*w^2*Cs)// mass of flywheel in kg
+printf('Mass of the flywheel= %.3f kg',m)
diff --git a/1835/CH6/EX6.6/Ex6_6.sce b/1835/CH6/EX6.6/Ex6_6.sce
new file mode 100755
index 000000000..256eb4616
--- /dev/null
+++ b/1835/CH6/EX6.6/Ex6_6.sce
@@ -0,0 +1,26 @@
+//CHAPTER 6 ILLUSRTATION 6 PAGE NO 179
+//TITLE:Turning Moment Diagram and Flywheel
+clc
+clear
+pi=3.141
+PI=180//in degrees
+theta1=0
+theta2=PI
+m=400// mass of the flywheel in kg
+N=250// speed in rpm
+k=.4// radius of gyration in m
+n=2*250/60000// no of working strokes per minute
+W=1000*pi-150*cosd(2*theta2)-250*sind(2*theta2)-(1000*theta1-150*cosd(2*theta1)-250*sind(2*theta1))// workdone per stroke in Nm
+P=W*n// power in KW
+Tmean=W/pi// mean torque in Nm
+twotheta=atand(500/300)// angle at which T-Tmean becomes zero
+THETA1=twotheta/2
+THETA2=(180+twotheta)/2
+E=-150*cosd(2*THETA2)-250*sind(2*THETA2)-(-150*cosd(2*THETA1)-250*sind(2*THETA1))// FLUCTUATION OF ENERGY IN Nm
+w=2*pi*N/60// angular speed in rad/s
+Cs1=E*100/(k^2*w^2*m)// fluctuation range
+Cs=Cs1/2// tatal percentage of fluctuation of speed
+Theta=60
+T1=300*sind(2*Theta)-500*cosd(2*Theta)// Accelerating torque in Nm(T-Tmean)
+alpha=T1/(m*k^2)// angular acceleration in rad/s^2
+printf('Power delivered=%.3f kw\nTotal percentage of fluctuation speed= %.3f\nAngular acceleration= %.3f rad/s^2',P,Cs,alpha)
diff --git a/1835/CH6/EX6.7/Ex6_7.sce b/1835/CH6/EX6.7/Ex6_7.sce
new file mode 100755
index 000000000..25875be1b
--- /dev/null
+++ b/1835/CH6/EX6.7/Ex6_7.sce
@@ -0,0 +1,17 @@
+//CHAPTER 6 ILLUSRTATION 7 PAGE NO 181
+//TITLE:Turning Moment Diagram and Flywheel
+clc
+clear
+pi=3.141
+m=200// mass of the flywheel in kg
+k=.5// radius of gyration in m
+N1=360// upper limit of speed in rpm
+N2=240// lower limit of speed in rpm
+//==========
+I=m*k^2// mass moment of inertia in kg m^2
+w1=2*pi*N1/60
+w2=2*pi*N2/60
+E=1/2*I*(w1^2-w2^2)// fluctuation of energy in Nm
+Pmin=E/(4*1000)// power in kw
+Eex=Pmin*12*1000// Energy expended in performing each operation in N-m
+printf('Mimimum power required= %.3f kw\n Energy expended in performing each operation= %.3f N-m',Pmin,Eex)
diff --git a/1835/CH6/EX6.8/Ex6_8.sce b/1835/CH6/EX6.8/Ex6_8.sce
new file mode 100755
index 000000000..da2d1f4bd
--- /dev/null
+++ b/1835/CH6/EX6.8/Ex6_8.sce
@@ -0,0 +1,22 @@
+//CHAPTER 6 ILLUSRTATION 8 PAGE NO 182
+//TITLE:Turning Moment Diagram and Flywheel
+clc
+clear
+pi=3.141
+b=8// width of the strip in cm
+t=2// thickness of the strip in cm
+w=1.2*10^3// work required per square cm cut
+N1=200// maximum speed of the flywheel in rpm
+k=.80// radius of gyration in m
+N2=(1-.15)*N1// minimum speed of the flywheel in rpm
+T=3// time required to punch a hole
+//=======================
+A=b*t// area cut of each stroke in cm^2
+W=w*A// work required to cut a strip in Nm
+w1=2*pi*N1/60// speed before cut in rpm
+w2=2*pi*N2/60// speed after cut in rpm
+m=2*W/(k^2*(w1^2-w2^2))// mass of the flywheel required in kg
+a=(w1-w2)/T// angular acceleration in rad/s^2
+Ta=m*k^2*a// torque required in Nm
+printf('Mass of the flywheel= %.3f kg\n Amount of Torque required= %.3f Nm',m,Ta)
+
diff --git a/1835/CH6/EX6.9/Ex6_9.sce b/1835/CH6/EX6.9/Ex6_9.sce
new file mode 100755
index 000000000..6a212843b
--- /dev/null
+++ b/1835/CH6/EX6.9/Ex6_9.sce
@@ -0,0 +1,18 @@
+//CHAPTER 6 ILLUSRTATION 9 PAGE NO 182
+//TITLE:Turning Moment Diagram and Flywheel
+clc
+clear
+pi=3.141
+P=5*10^3// power delivered by motor in watts
+N1=360// speed of the flywheel in rpm
+I=60// mass moment of inertia in kg m^2
+E1=7500// energy required by pressing machine for 1 second in Nm
+//========================
+Ehr=P*60*60// energy sipplied per hour in Nm
+n=Ehr/E1
+E=E1-P// total fluctuation of energy in Nm
+w1=2*pi*N1/60// angular speed before pressing in rpm
+w2=((2*pi*N1/60)^2-(2*E/I))^.5// angular speed after pressing in rpm
+N2=w2*60/(2*pi)
+R=N1-N2// reduction in speed in rpm
+printf('No of pressings that can be made per hour= %.0f\n Reduction in speed after the pressing is over= %.2f rpm ',n,R)
diff --git a/1835/CH7/EX7.1/Ex7_1.sce b/1835/CH7/EX7.1/Ex7_1.sce
new file mode 100755
index 000000000..07f088fe9
--- /dev/null
+++ b/1835/CH7/EX7.1/Ex7_1.sce
@@ -0,0 +1,17 @@
+//CHAPTER 7 ILLUSRTATION 1 PAGE NO 196
+//TITLE:GOVERNORS
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+L=.4// LENGTH OF UPPER ARM IN m
+THETA=30// INCLINATION TO THE VERTICAL IN degrees
+K=.02// RISED LENGTH IN m
+//============================================================================================
+h2=L*cosd(THETA)// GOVERNOR HEIGHT IN m
+N2=(895/h2)^.5// SPEED AT h2 IN rpm
+h1=h2-K// LENGTH WHEN IT IS RAISED BY 2 cm
+N1=(895/h1)^.5// SPEED AT h1 IN rpm
+n=(N1-N2)/N2*100// PERCENTAGE CHANGE IN SPEED
+//==========================================================================================
+printf('PERCENTAGE CHANGE IN SPEED= %.f PERCENTAGE',n)
diff --git a/1835/CH7/EX7.10/Ex7_10.sce b/1835/CH7/EX7.10/Ex7_10.sce
new file mode 100755
index 000000000..671b58aec
--- /dev/null
+++ b/1835/CH7/EX7.10/Ex7_10.sce
@@ -0,0 +1,20 @@
+//CHAPTER 7 ILLUSRTATION 10 PAGE NO 206
+//TITLE:GOVERNORS
+//FIGURE 7.10
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+PI=3.147
+AE=.25// LENGTH OF UPPER ARM IN m
+CE=.25// LENGTH OF LOWER ARM IN m
+EH=.1// LENGTH OF EXTENDED ARM IN m
+EF=.15// RADIUS OF BALL PATH IN m
+m=5// MASS OF EACH BALL IN Kg
+M=40// MASS OF EACH BALL IN Kg
+//===================================================================
+h=(AE^2-EF^2)^.5// HEIGHT OF THE GOVERNOR IN m
+EM=h
+HM=EH+EM// FROM FIGURE 7.10
+N=((895/h)*(EM/HM)*((m+M)/m))^.5
+printf('EQUILIBRIUM SPEED OF GOVERNOR = %.3f rpm',N)
diff --git a/1835/CH7/EX7.11/Ex7_11.sce b/1835/CH7/EX7.11/Ex7_11.sce
new file mode 100755
index 000000000..6389c17a9
--- /dev/null
+++ b/1835/CH7/EX7.11/Ex7_11.sce
@@ -0,0 +1,25 @@
+//CHAPTER 7 ILLUSRTATION 11 PAGE NO 207
+//TITLE:GOVERNORS
+//FIGURE 7.11
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+PI=3.147
+g=9.81// ACCELERATION DUE TO GRAVITY IN N/mm^2
+AE=.25// LENGTH OF UPPER ARM IN m
+CE=.25// LENGTH OF LOWER ARM IN m
+ER=.175// FROM FIGURE 7.11
+AP=.025// FROM FIGURE 7.11
+FR=AP// FROM FIGURE 7.11
+CQ=FR// FROM FIGURE 7.11
+m=3.2// MASS OF BALL IN Kg
+M=25// MASS OF SLEEVE IN Kg
+h=.2// VERTICAL HEIGHT OF GOVERNOR IN m
+EM=h// FROM FIGURE 7.11
+AF=h// FROM FIGURE 7.11
+N=160// SPEED OF THE GOVERNOR IN rpm
+HM=(895*EM*(m+M)/(h*N^2*m))
+x=HM-EM// LENGTH OF EXTENDED LINK IN m
+T1=g*(m+M/2)*AE/AF// TENSION IN UPPER ARM IN N
+printf('LENGTH OF EXTENDED LINK = %.3f m\n TENSION IN UPPER ARM =%.3f N',x,T1)
diff --git a/1835/CH7/EX7.12/Ex7_12.sce b/1835/CH7/EX7.12/Ex7_12.sce
new file mode 100755
index 000000000..f9a2b2332
--- /dev/null
+++ b/1835/CH7/EX7.12/Ex7_12.sce
@@ -0,0 +1,44 @@
+//CHAPTER 7 ILLUSRTATION 12 PAGE NO 208
+//TITLE:GOVERNORS
+//FIGURE 7.12,7.13
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+PI=3.147
+EF=.20// MINIMUM RADIUS OF ROTATION IN m
+AE=.30// LENGTH OF EACH ARM IN m
+A1E1=AE// COMPARING FIRUES 7.12&7.13
+EC=.30// LENGTH OF EACH ARM IN m
+E1C1=EC// LENGTH OF EACH ARM IN m
+ED=.165// FROM FIGURE 7.12 IN m
+MC=ED// FROM FIGURE 7.12
+EH=.10// FROM FIGURE 7.12 IN m
+m=8// MASS OF BALL IN Kg
+M=60// MASS OF SLEEVE IN Kg
+DF=.035// SLEEVE DISTANCE FROM AXIS IN m
+E1F1=.25// MAX RADIUS OF ROTATION IN m
+g=9.81
+//=========================================================
+alpha=asind(EF/AE)// ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL IN DEGREES
+beeta=asind(ED/EC)// ANGLE OF INCLINATION OF THE ARM TO THE HORIZONTAL IN DEGREES
+k=tand(beeta)/tand(alpha)
+h=(AE^2-EF^2)^.5// HEIGHT OF GOVERNOR IN m
+EM=(EC^2-MC^2)^.5// FROM FIGURE 7.12 IN m
+HM=EM+EH
+N2=(895*EM*(m+(M/2*(1+k)))/(h*HM*m))^.5// EQUILIBRIUM SPEED AT MAX RADIUS
+HC=(HM^2+MC^2)^.5// FROM FIGURE 7.13 IN m
+H1C1=HC
+gama=atand(MC/HM)
+alpha1=asind(E1F1/A1E1)
+E1D1=E1F1-DF// FROM FIGURE 7.13 IN m
+beeta1=asind(E1D1/E1C1)
+gama1=gama-beeta+beeta1
+r=H1C1*sind(gama1)+DF// RADIUS OF ROTATION IN m
+H1M1=H1C1*cosd(gama1)
+I1C1=E1C1*cosd(beeta1)*(tand(alpha1)+tand(beeta1))// FROM FIGURE IN m
+M1C1=H1C1*sind(gama1)
+w1=(((m*g*(I1C1-M1C1))+(M*g*I1C1)/2)/(m*r*H1M1))^.5// ANGULAR SPEED IN rad/s
+N1=w1*60/(2*PI)// //SPEED IN m/s
+printf('MINIMUM SPEED OF ROTATION = %.3f rpm\n MAXIMUM SPEED OF ROTATION = %.3f rpm',N2,N1)
+
diff --git a/1835/CH7/EX7.2/Ex7_2.sce b/1835/CH7/EX7.2/Ex7_2.sce
new file mode 100755
index 000000000..c9a27a86c
--- /dev/null
+++ b/1835/CH7/EX7.2/Ex7_2.sce
@@ -0,0 +1,19 @@
+//CHAPTER 7 ILLUSRTATION 2 PAGE NO 197
+//TITLE:GOVERNORS
+//FIGURE 7.5(A),7.5(B)
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+OA=.3// LENGTH OF UPPER ARM IN m
+m=6// MASS OF EACH BALL IN Kg
+M=18// MASS OF SLEEVE IN Kg
+r2=.2// RADIUS OF ROTATION AT BEGINING IN m
+r1=.25// RADIUS OF ROTATION AT MAX SPEED IN m
+//===========================================================================================
+h1=(OA^2-r1^2)^.5// HIEGHT OF GOVERNOR AT MAX SPEED IN m
+N1=(895*(m+M)/(h1*m))^.5// MAX SPEED IN rpm
+h2=(OA^2-r2^2)^.5// HEIGHT OF GONERNOR AT BEGINING IN m
+N2=(895*(m+M)/(h2*m))^.5// MIN SPEED IN rpm
+//===========================================================================================
+printf('MAX SPEED = %.3f rpm\n MIN SPEED = %.3f rpm\n RANGE OF SPEED = %.3f rpm',N1,N2,N1-N2)
diff --git a/1835/CH7/EX7.3/Ex7_3.sce b/1835/CH7/EX7.3/Ex7_3.sce
new file mode 100755
index 000000000..3391a8d9b
--- /dev/null
+++ b/1835/CH7/EX7.3/Ex7_3.sce
@@ -0,0 +1,29 @@
+//CHAPTER 7 ILLUSRTATION 3 PAGE NO 197
+//TITLE:GOVERNORS
+//FIGURE 7.6
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+OA=.25// LENGHT OF UPPER ARM IN m
+CD=.03// DISTANCE BETWEEN LEEVE AND LOWER ARM IN m
+m=6// MASS OF BALL IN Kg
+M=48// MASS OF SLEEVE IN Kg
+AE=.17// FROM FIGURE 7.6
+AE1=.12// FROM FIGURE 7.6
+r1=.2// RADIUS OF ROTATION AT MAX SPEED IN m
+r2=.15// RADIUS OF ROTATION AT MIN SPEED IN m
+//============================================================================================
+h1=(OA^2-r1^2)^.5// HIEGHT OF GOVERNOR AT MIN SPEED IN m
+TANalpha=r1/h1
+TANbeeta=AE/(OA^2-AE^2)^.5
+k=TANbeeta/TANalpha
+N1=(895*(m+(M*(1+k)/2))/(h1*m))^.5// MIN SPEED IN rpm
+h2=(OA^2-r2^2)^.5// HIEGHT OF GOVERNOR AT MAX SPEED IN m
+CE=(OA^2-AE1^2)^.5
+TANalpha1=r2/h2
+TANbeeta1=(r2-CD)/CE
+k=TANbeeta1/TANalpha1
+N2=(895*(m+(M*(1+k)/2))/(h2*m))^.5// MIN SPEED IN rpm
+//========================================================================================================
+printf('MAX SPEED = %.3f rpm\n MIN SPEED = %.3f rpm\n RANGE OF SPEED = %.3f rpm',N1,N2,N1-N2)
diff --git a/1835/CH7/EX7.4/Ex7_4.sce b/1835/CH7/EX7.4/Ex7_4.sce
new file mode 100755
index 000000000..dadf3258c
--- /dev/null
+++ b/1835/CH7/EX7.4/Ex7_4.sce
@@ -0,0 +1,29 @@
+//CHAPTER 7 ILLUSRTATION 4 PAGE NO 199
+//TITLE:GOVERNORS
+//FIGURE 7.7
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+g=9.81// ACCELERATION DUE TO GRAVITY
+OA=.20// LENGHT OF UPPER ARM IN m
+AC=.20// LENGTH OF LOWER ARM IN m
+CD=.025// DISTANCE BETWEEN AXIS AND LOWER ARM IN m
+AB=.1// RADIUS OF ROTATION OF BALLS IN m
+N2=250// SPEED OF THE GOVERNOR IN rpm
+X=.05// SLEEVE LIFT IN m
+m=5// MASS OF BALL IN Kg
+M=20// MASS OF SLEEVE IN Kg
+//===========================================================
+h2=(OA^2-AB^2)^.5// OB DISTANCE IN m IN FIGURE
+h21=(AC^2-(AB-CD)^2)^.5// BD DISTANCE IN m IN FIGURE
+TANbeeta=(AB-CD)/h21// TAN OF ANGLE OF INCLINATION OF THE LINK TO THE VERTICAL
+TANalpha=AB/h2// TAN OF ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL
+k=TANbeeta/TANalpha
+c=X/(2*(h2*(1+k)-X))// PERCENTAGE INCREASE IN SPEED
+n=c*N2// INCREASE IN SPEED IN rpm
+N1=N2+n// SPEED AFTER LIFT OF SLEEVE
+E=c*g*((2*m/(1+k))+M)// GOVERNOR EFFORT IN N
+P=E*X// GOVERNOR POWER IN N-m
+
+printf('SPEED OF THE GOVERNOR WHEN SLEEVE IS LIFT BY 5 cm = %.3f rpm\n GOVERNOR EFFORT = %.3f N\n GOVERNOR POWER = %.3f N-m',N1,E,P)
diff --git a/1835/CH7/EX7.5/Ex7_5.sce b/1835/CH7/EX7.5/Ex7_5.sce
new file mode 100755
index 000000000..5802a4011
--- /dev/null
+++ b/1835/CH7/EX7.5/Ex7_5.sce
@@ -0,0 +1,27 @@
+//CHAPTER 7 ILLUSRTATION 5 PAGE NO 200
+//TITLE:GOVERNORS
+//FIGURE 7.8
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+g=9.81// ACCELERATION DUE TO GRAVITY
+OA=.30// LENGHT OF UPPER ARM IN m
+AC=.30// LENGTH OF LOWER ARM IN m
+m=10// MASS OF BALL IN Kg
+M=50// MASS OF SLEEVE IN Kg
+r=.2// RADIUS OF ROTATION IN m
+CD=.04// DISTANCE BETWEEN AXIS AND LOWER ARM IN m
+F=15// FRICTIONAL LOAD ACTING IN N
+//============================================================
+h=(OA^2-r^2)^.5// HIEGTH OF THE GOVERNOR IN m
+AE=r-CD// AE VALUE IN m
+CE=(AC^2-AE^2)^.5// BD DISTANCE IN m
+TANalpha=r/h// TAN OF ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL
+TANbeeta=AE/CE// TAN OF ANGLE OF INCLINATION OF THE LINK TO THE VERTICAL
+k=TANbeeta/TANalpha
+N=((895/h)*(m+(M*(1+k)/2))/m)^.5// EQULIBRIUM SPEED IN rpm
+N1=((895/h)*((m*g)+(M*g+F)/2)*(1+k)/(m*g))^.5// MAX SPEED IN rpm
+N2=((895/h)*((m*g)+(M*g-F)/2)*(1+k)/(m*g))^.5// MIN SPEED IN rpm
+R=N1-N2// RANGE OF SPEED
+printf('EQUILIBRIUM SPEED OF GOVERNOR = %.3f rpm\n RANGE OF SPEED OF GOVERNOR= %.3f rpm',N,R)
diff --git a/1835/CH7/EX7.6/Ex7_6.sce b/1835/CH7/EX7.6/Ex7_6.sce
new file mode 100755
index 000000000..5af78cbf3
--- /dev/null
+++ b/1835/CH7/EX7.6/Ex7_6.sce
@@ -0,0 +1,23 @@
+//CHAPTER 7 ILLUSRTATION 6 PAGE NO 202
+//TITLE:GOVERNORS
+//FIGURE 7.9
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+g=9.81// ACCELERATION DUE TO GRAVITY
+OA=.30// LENGHT OF UPPER ARM IN m
+AC=.30// LENGTH OF LOWER ARM IN m
+m=5// MASS OF BALL IN Kg
+M=25// MASS OF SLEEVE IN Kg
+X=.05// LIFT OF THE SLEEVE
+alpha=30// ANGLE OF INCLINATION OF THE ARM TO THE VERTICAL
+//==============================================
+h2=OA*cosd(alpha)// HEIGHT OF THE GOVERNOR AT LOWEST POSITION OF SLEEVE
+h1=h2-X/2// HEIGHT OF THE GOVERNOR AT HEIGHT POSITION OF SLEEVE
+F=((h2/h1)*(m*g+M*g)-(m*g+M*g))/(1+h2/h1)// FRICTION AT SLEEVE IN N
+N1=((m*g+M*g+F)*895/(h1*m*g))^.5// MAX SPEEED OF THE GOVVERNOR IN rpm
+N2=((m*g+M*g-F)*895/(h2*m*g))^.5// MIN SPEEED OF THE GOVVERNOR IN rpm
+R=N1-N2// RANGE OF SPEED IN rpm
+
+printf('THE VALUE OF FRICTIONAL FORCE= %.3f F\n RANGE OF SPEED OF THE GOVERNOR = %.0f rpm',F,R)
diff --git a/1835/CH7/EX7.7/Ex7_7.sce b/1835/CH7/EX7.7/Ex7_7.sce
new file mode 100755
index 000000000..0bda34a8f
--- /dev/null
+++ b/1835/CH7/EX7.7/Ex7_7.sce
@@ -0,0 +1,21 @@
+//CHAPTER 7 ILLUSRTATION 7 PAGE NO 203
+//TITLE:GOVERNORS
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+PI=3.147
+m=3// MASS OF EACH BALL IN Kg
+a=.12// LENGTH OF VERTICAL ARM OF BELL CRANK LEVER IN m
+b=.08// LENGTH OF HORIZONTAL ARM OF BELL CRANK LEVER IN m
+r2=.12// RADIUS OF ROTATION OF THE BALL FOR LOWEST POSITION IN m
+N2=320// SPEED OF GOVERNOR AT THE BEGINING IN rpm
+S=20000// STIFFNESS OF THE SPRING IN N/m
+h=.015// SLEEVE LIFT IN m
+//==================================================
+Fc2=m*(2*PI*N2/60)^2*r2// CENTRIFUGAL FORCE ACTING AT MIN SPEED OF ROTATION IN N
+L=2*a*Fc2/b// INITIAL LOAD ON SPRING IN N
+r1=a/b*h+r2// MAX RADIUS OF ROTATION IN m
+Fc1=(S*(r1-r2)*(b/a)^2/2)+Fc2// CENTRIFUGAL FORCE ACTING AT MAX SPEED OF ROTATION IN N
+N1=(Fc1/(m*r1)*(60/2/PI)^2)^.5
+printf('INITIAL LOAD ON SPRING =%.3f N\n EQUILIBRIUM SPEED CORRESPONDING TO LIFT OF 15 cm =%.0f rpm',L,N1)
diff --git a/1835/CH7/EX7.8/Ex7_8.sce b/1835/CH7/EX7.8/Ex7_8.sce
new file mode 100755
index 000000000..a67afd9b9
--- /dev/null
+++ b/1835/CH7/EX7.8/Ex7_8.sce
@@ -0,0 +1,21 @@
+//CHAPTER 7 ILLUSRTATION 8 PAGE NO 204
+//TITLE:GOVERNORS
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+PI=3.147
+m=3// MASS OF BALL IN Kg
+r2=.2// INITIAL RADIUS OF ROTATION IN m
+a=.11// LENGTH OF VERTICAL ARM OF BELL CRANK LEVER IN m
+b=.15// LENGTH OF HORIZONTAL ARM OF BELL CRANK LEVER IN m
+h=.004// SLEEVE LIFT IN m
+N2=240// INITIAL SPEED IN rpm
+n=7.5// FLUCTUATION OF SPEED IN %
+//===================================
+w2=2*PI*N2/60// INITIAL ANGULAR SPEED IN rad/s
+w1=(100+n)*w2/100// FINAL ANGULAR SPEED IN rad/s
+F=2*a/b*m*w2^2*r2// INITIAL COMPRESSIVE FORCE IN N
+r1=r2+a/b*h// MAX RDIUS OF ROTATION IN m
+S=2*((m*w1^2*r1)-(m*w2^2*r2))/(r1-r2)*(a/b)^2
+printf('INITIAL COMPRESSIVE FPRCE = %.3f N\n STIFFNESS OF THE SPRING = %.3f N/m',F,S/1000)
diff --git a/1835/CH7/EX7.9/Ex7_9.sce b/1835/CH7/EX7.9/Ex7_9.sce
new file mode 100755
index 000000000..183476fbf
--- /dev/null
+++ b/1835/CH7/EX7.9/Ex7_9.sce
@@ -0,0 +1,38 @@
+//CHAPTER 7 ILLUSRTATION 9 PAGE NO 204
+//TITLE:GOVERNORS
+//FIGURE 7.3(C)
+clc
+clear
+//===========================================================================================
+//INPUT DATA
+g=9.81// ACCELERATION DUE TO GRAVITY
+PI=3.147
+r=.14// DISTANCE BETWEEN THE CENTRE OF PIVOT OF BELL CRANK LEVER AND AXIS OF GOVERNOR SPINDLE IN m
+r2=.11// INITIAL RADIUS OF ROTATION IN m
+a=.12// LENGTH OF VERTICAL ARM OF BELL CRANK LEVER IN m
+b=.10// LENGTH OF HORIZONTAL ARM OF BELL CRANK LEVER IN m
+h=.05// SLEEVE LIFT IN m
+N2=240// INITIAL SPEED IN rpm
+F=30// FRICTIONAL FORCE ACTING IN N
+m=5// MASS OF EACH BALL IN Kg
+//==========================================
+r1=r2+a/b*h// MAX RADIUS OF ROTATION IN m
+N1=41*N2/39// MAX SPEED OF ROTATION IN rpm
+N=(N1+N2)/2// MEAN SPEED IN rpm
+Fc1=m*(2*PI*N1/60)^2*r1// CENTRIFUGAL FORCE ACTING AT MAX SPEED OF ROTATION IN N
+Fc2=m*(2*PI*N2/60)^2*r2// CENTRIFUGAL FORCE ACTING AT MIN SPEED OF ROTATION IN N
+c1=r1-r// FROM FIGURE 7.3(C) IN m
+a1=(a^2-c1^2)^.5// FROM FIGURE 7.3(C) IN m
+b1=(b^2-(h/2)^2)^.5// FROM FIGURE 7.3(C) IN m
+c2=r-r2// FROM FIGURE 7.3(C) IN m
+a2=a1// FROM FIGURE 7.3(C) IN m
+b2=b1// FROM FIGURE 7.3(C) IN m
+S1=2*((Fc1*a1)-(m*g*c1))/b1// SPRING FORCE EXERTED ON THE SLEEVE AT MAXIMUM SPEED IN NEWTONS
+S2=2*((Fc2*a2)-(m*g*c2))/b2// SPRING FORCE EXERTED ON THE SLEEVE AT MAXIMUM SPEED IN NEWTONS
+S=(S1-S2)/h// STIFFNESS OF THE SPRING IN N/m
+Is=S2/S// INITIAL COMPRESSION OF SPRING IN m
+P=S2+(h/2*S)// SPRING FORCE OF MID PORTION IN N
+n1=N*((P+F)/P)^.5// SPEED,WHEN THE SLEEVE BEGINS TO MOVE UPWARDS FROM MID POSITION IN rpm
+n2=N*((P-F)/P)^.5// SPEED,WHEN THE SLEEVE BEGINS TO MOVE DOWNWARDS FROM MID POSITION IN rpm
+A=n1-n2// ALTERATION IN SPEED IN rpm
+printf('INTIAL COMPRESSION OF SPRING= %.3f cm\n ALTERATION IN SPEED = %.3f rpm',Is*100,A)
diff --git a/1835/CH8/EX8.1/Ex8_1.sce b/1835/CH8/EX8.1/Ex8_1.sce
new file mode 100755
index 000000000..7930b8cca
--- /dev/null
+++ b/1835/CH8/EX8.1/Ex8_1.sce
@@ -0,0 +1,25 @@
+//CHAPTER 8 ILLUSRTATION 1 PAGE NO 221
+//TITLE:BALANCING OF ROTATING MASSES
+pi=3.141
+clc
+clear
+mA=12// mass of A in kg
+mB=10// mass of B in kg
+mC=18// mass of C in kg
+mD=15// mass of D in kg
+rA=40// radius of A in mm
+rB=50// radius of B in mm
+rC=60// radius of C in mm
+rD=30// radius of D in mm
+theta1=0// angle between A-A in degrees
+theta2=60// angle between A-B in degrees
+theta3=130// angle between A-C in degrees
+theta4=270// angle between A-D in degrees
+R=100// radius at which mass to be determined in mm
+//====================================================
+Fh=(mA*rA*cosd(theta1)+mB*rB*cosd(theta2)+mC*rC*cosd(theta3)+mD*rD*cosd(theta4))/10// vertical component value in kg cm
+Fv=(mA*rA*sind(theta1)+mB*rB*sind(theta2)+mC*rC*sind(theta3)+mD*rD*sind(theta4))/10// horizontal component value in kg cm
+mb=(Fh^2+Fv^2)^.5/R*10// unbalanced mass in kg
+theta=atand(Fv/Fh)// position in degrees
+THETA=180+theta// angle with mA
+printf('magnitude of unbalaced mass=%.3f kg\n angle with mA= %.3f degrees',mb,THETA)
diff --git a/1835/CH8/EX8.2/Ex8_2.sce b/1835/CH8/EX8.2/Ex8_2.sce
new file mode 100755
index 000000000..71b88b9fe
--- /dev/null
+++ b/1835/CH8/EX8.2/Ex8_2.sce
@@ -0,0 +1,17 @@
+//CHAPTER 8 ILLUSRTATION 2 PAGE NO 222
+//TITLE:BALANCING OF ROTATING MASSES
+pi=3.141
+clc
+clear
+mA=5// mass of A in kg
+mB=10// mass of B in kg
+mC=8// mass of C in kg
+rA=10// radius of A in cm
+rB=15// radius of B in cm
+rC=10// radius of C in cm
+rD=10// radius of D in cm
+rE=15// radius of E in cm
+//============================
+mD=182/rD// mass of D in kg by mearument
+mE=80/rE// mass of E in kg by mearument
+printf('mass of D= %.3f kg\nmass of E= %.3f kg',mD,mE)
diff --git a/1835/CH8/EX8.3/Ex8_3.sce b/1835/CH8/EX8.3/Ex8_3.sce
new file mode 100755
index 000000000..a5e5bf4ea
--- /dev/null
+++ b/1835/CH8/EX8.3/Ex8_3.sce
@@ -0,0 +1,20 @@
+//CHAPTER 8 ILLUSRTATION 3 PAGE NO 223
+//TITLE:BALANCING OF ROTATING MASSES
+pi=3.141
+clc
+clear
+mA=200// mass of A in kg
+mB=300// mass of B in kg
+mC=400// mass of C in kg
+mD=200// mass of D in kg
+rA=80// radius of A in mm
+rB=70// radius of B in mm
+rC=60// radius of C in mm
+rD=80// radius of D in mm
+rX=100// radius of X in mm
+rY=100// radius of Y in mm
+//=====================
+mY=7.3/.04// mass of Y in kg by mearurement
+mX=35/.1// mass of X in kg by mearurement
+thetaX=146// in degrees by mesurement
+printf('mass of X=%.3f kg\n mass of Y=%.3f kg\n angle with mA=%.0f degrees',mX,mY,thetaX)
diff --git a/1835/CH8/EX8.4/Ex8_4.sce b/1835/CH8/EX8.4/Ex8_4.sce
new file mode 100755
index 000000000..69e41ed5d
--- /dev/null
+++ b/1835/CH8/EX8.4/Ex8_4.sce
@@ -0,0 +1,17 @@
+//CHAPTER 8 ILLUSRTATION 4 PAGE NO 225
+//TITLE:BALANCING OF ROTATING MASSES
+pi=3.141
+clc
+clear
+mB=30// mass of B in kg
+mC=50// mass of C in kg
+mD=40// mass of D in kg
+rA=18// radius of A in cm
+rB=24// radius of B in cm
+rC=12// radius of C in cm
+rD=15// radius of D in cm
+//=============================
+mA=3.6/.18// mass of A by measurement in kg
+theta=124// angle with mass B in degrees by measurement in degrees
+y=3.6/(.18*20)// position of A from B
+printf('mass of A=%i kg\n angle with mass B=%i degrees\n position of A from B=%i m towards right of plane B',mA,theta,y)
diff --git a/1835/CH8/EX8.5/Ex8_5.sce b/1835/CH8/EX8.5/Ex8_5.sce
new file mode 100755
index 000000000..898ac764a
--- /dev/null
+++ b/1835/CH8/EX8.5/Ex8_5.sce
@@ -0,0 +1,18 @@
+//CHAPTER 8 ILLUSRTATION 5 PAGE NO 226
+//TITLE:BALANCING OF ROTATING MASSES
+pi=3.141
+clc
+clear
+mB=10// mass of B in kg
+mC=5// mass of C in kg
+mD=4// mass of D in kg
+rA=10// radius of A in cm
+rB=12.5// radius of B in cm
+rC=20// radius of C in cm
+rD=15// radius of D in cm
+//=====================================
+mA=7// mass of A in kg by mesurement
+BC=118// angle between B and C in degrees by mesurement
+BA=203.5// angle between B and A in degrees by mesurement
+BD=260// angle between B and D in degrees by mesurement
+printf('Mass of A=%i kg\n angle between B and C=%i degrees\nangle between B and A= %.1f degrees\n angle between B and D= %i degrees',mA,BC,BA,BD)
diff --git a/1835/CH8/EX8.6/Ex8_6.sce b/1835/CH8/EX8.6/Ex8_6.sce
new file mode 100755
index 000000000..44903ab01
--- /dev/null
+++ b/1835/CH8/EX8.6/Ex8_6.sce
@@ -0,0 +1,16 @@
+//CHAPTER 8 ILLUSRTATION 6 PAGE NO 228
+//TITLE:BALANCING OF ROTATING MASSES
+pi=3.141
+clc
+clear
+mB=36// mass of B in kg
+mC=25// mass of C in kg
+rA=20// radius of A in cm
+rB=15// radius of B in cm
+rC=15// radius of C in cm
+rD=20// radius of D in cm
+//==================================
+mA=3.9/.2// mass of A in kg by measurement
+mD=16.5// mass of D in kg by measurement
+theta=252// angular position of D from B by measurement in degrees
+printf('Mass of A= %.1f kg\n Mass od D= %.1f kg\n Angular position of D from B= %i degrees',mA,mD,theta)
diff --git a/1835/CH8/EX8.7/Ex8_7.sce b/1835/CH8/EX8.7/Ex8_7.sce
new file mode 100755
index 000000000..a3864251d
--- /dev/null
+++ b/1835/CH8/EX8.7/Ex8_7.sce
@@ -0,0 +1,22 @@
+//CHAPTER 8 ILLUSRTATION 7 PAGE NO 229
+//TITLE:BALANCING OF ROTATING MASSES
+
+clc
+clear
+pi=3.141
+mA=48// mass of A in kg
+mB=56// mass of B in kg
+mC=20// mass of C in kg
+rA=1.5// radius of A in cm
+rB=1.5// radius of B in cm
+rC=1.25// radius of C in cm
+N=300// speed in rpm
+d=1.8// distance between bearing in cm
+//================================
+w=2*pi*N/60// angular speed in rad/s
+BA=164// angle between pulleys B&A in degrees by measurement
+BC=129// angle between pulleys B&C in degrees by measurement
+AC=67// angle between pulleys A&C in degrees by measurement
+C=.88*w^2// out of balance couple in N
+L=C/d// load on each bearing in N
+printf('angle between pulleys B&A=%i degrees\n angle between pulleys B&C= %i degrees\n angle between pulleys A&C= %i degrees\n out of balance couple= %.3f N\n load on each bearing= %.3f N',BA,BC,AC,C,L)
diff --git a/1835/CH9/EX9.2/Ex9_2.sce b/1835/CH9/EX9.2/Ex9_2.sce
new file mode 100755
index 000000000..375d2b2b6
--- /dev/null
+++ b/1835/CH9/EX9.2/Ex9_2.sce
@@ -0,0 +1,19 @@
+//CHAPTER 9 ILLUSRTATION 2 PAGE NO 247
+//TITLE:CAMS AND FOLLOWERS
+clc
+clear
+pi=3.141
+s=4// follower movement in cm
+theta=60// cam rotation in degrees
+THETA=60*pi/180// cam rotation in rad
+thetaD=45// after outstroke in degrees
+thetaR=90//....angle with which it reaches its original position in degrees
+THETAR=90*pi/180// angle with which it reaches its original position in rad
+THETAd=360-theta-thetaD-thetaR// angle after return stroke in degrees
+N=300// speed in rpm
+w=2*pi*N/60// speed in rad/s
+Vo=pi*w*s/2/THETA// Maximum velocity of follower during outstroke in cm/s
+Vr=pi*w*s/2/THETAR// Maximum velocity of follower during return stroke in cm/s
+Fo=pi^2*w^2*s/2/THETA^2/100//Maximum acceleration of follower during outstroke in m/s^2
+Fr=pi^2*w^2*s/2/THETAR^2/100//Maximum acceleration of follower during return stroke in m/s^2
+printf('Maximum acceleration of follower during outstroke =%.3f m/s^2\nMaximum acceleration of follower during return stroke= %.3f m/s^2',Fo,Fr)
diff --git a/1835/CH9/EX9.3/Ex9_3.sce b/1835/CH9/EX9.3/Ex9_3.sce
new file mode 100755
index 000000000..8e45da18a
--- /dev/null
+++ b/1835/CH9/EX9.3/Ex9_3.sce
@@ -0,0 +1,19 @@
+//CHAPTER 9 ILLUSRTATION 3 PAGE NO 249
+//TITLE:CAMS AND FOLLOWERS
+clc
+clear
+pi=3.141
+s=5// follower movement in cm
+theta=120// cam rotation in degrees
+THETA=theta*pi/180// cam rotation in rad
+thetaD=30// after outstroke in degrees
+thetaR=60//....angle with which it reaches its original position in degrees
+THETAR=60*pi/180// angle with which it reaches its original position in rad
+THETAd=360-theta-thetaD-thetaR// angle after return stroke in degrees
+N=100// speed in rpm
+w=2*pi*N/60// speed in rad/s
+Vo=pi*w*s/2/THETA// Maximum velocity of follower during outstroke in cm/s
+Vr=pi*w*s/2/THETAR// Maximum velocity of follower during return stroke in cm/s
+Fo=pi^2*w^2*s/2/THETA^2/100//Maximum acceleration of follower during outstroke in m/s^2
+Fr=pi^2*w^2*s/2/THETAR^2/100//Maximum acceleration of follower during return stroke in m/s^2
+printf('Maximum acceleration of follower during outstroke =%.3f m/s^2\nMaximum acceleration of follower during return stroke= %.3f m/s^2',Fo,Fr)
diff --git a/1835/CH9/EX9.5/Ex9_5.sce b/1835/CH9/EX9.5/Ex9_5.sce
new file mode 100755
index 000000000..ff79e984e
--- /dev/null
+++ b/1835/CH9/EX9.5/Ex9_5.sce
@@ -0,0 +1,15 @@
+//CHAPTER 9 ILLUSRTATION 5 PAGE NO 252
+//TITLE:CAMS AND FOLLOWERS
+clc
+clear
+pi=3.141
+N=1000// speed of cam in rpm
+w=2*pi*N/60// angular speed in rad/s
+s=2.5// stroke of the follower in cm
+THETA=120*pi/180// ANGULAR DISPLACEMENT OF CAM DURING OUTSTROKE IN RAD
+THETAR=90*pi/180//ANGULAR DISPLACEMENT OF CAM DURING DWELL IN RAD
+Vo=2*w*s/THETA// Maximum velocity of follower during outstroke in cm/s
+Vr=2*w*s/THETAR//Maximum velocity of follower during return stroke in cm/s
+Fo=4*w^2*s/THETA^2//Maximum acceleration of follower during outstroke in m/s^2
+Fr=4*w^2*s/THETAR^2//Maximum acceleration of follower during return stroke in m/s^2
+printf('Maximum acceleration of follower during outstroke =%.3f m/s^2\nMaximum acceleration of follower during return stroke= %.3f m/s^2',Fo,Fr)