summaryrefslogtreecommitdiff
path: root/1445/CH8
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:38:01 +0530
committerprashantsinalkar2017-10-10 12:38:01 +0530
commitf35ea80659b6a49d1bb2ce1d7d002583f3f40947 (patch)
treeeb72842d800ac1233e9d890e020eac5fd41b0b1b /1445/CH8
parent7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (diff)
downloadScilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.gz
Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.tar.bz2
Scilab-TBC-Uploads-f35ea80659b6a49d1bb2ce1d7d002583f3f40947.zip
updated the code
Diffstat (limited to '1445/CH8')
-rw-r--r--1445/CH8/EX8.1/Ex8_1.sce8
-rw-r--r--1445/CH8/EX8.10/Ex8_10.sce32
-rw-r--r--1445/CH8/EX8.11/Ex8_11.sce10
-rw-r--r--1445/CH8/EX8.12/Ex8_12.sce8
-rw-r--r--1445/CH8/EX8.13/Ex8_13.sce8
-rw-r--r--1445/CH8/EX8.14/Ex8_14.sce12
-rw-r--r--1445/CH8/EX8.15/Ex8_15.sce10
-rw-r--r--1445/CH8/EX8.16/Ex8_16.sce35
-rw-r--r--1445/CH8/EX8.17/Ex8_17.sce37
-rw-r--r--1445/CH8/EX8.18/Ex8_18.sce16
-rw-r--r--1445/CH8/EX8.19/Ex8_19.sce10
-rw-r--r--1445/CH8/EX8.2/Ex8_2.sce14
-rw-r--r--1445/CH8/EX8.20/Ex8_20.sce36
-rw-r--r--1445/CH8/EX8.21/Ex8_21.sce25
-rw-r--r--1445/CH8/EX8.22/Ex8_22.sce15
-rw-r--r--1445/CH8/EX8.23/Ex8_23.sce20
-rw-r--r--1445/CH8/EX8.24/Ex8_24.sce1
-rw-r--r--1445/CH8/EX8.25/Ex8_25.sce23
-rw-r--r--1445/CH8/EX8.27/Ex8_27.sce10
-rw-r--r--1445/CH8/EX8.28/Ex8_28.sce5
-rw-r--r--1445/CH8/EX8.29/Ex8_29.sce6
-rw-r--r--1445/CH8/EX8.3/Ex8_3.sce14
-rw-r--r--1445/CH8/EX8.30/Ex8_30.sce13
-rw-r--r--1445/CH8/EX8.31/Ex8_31.sce9
-rw-r--r--1445/CH8/EX8.32/Ex8_32.sce50
-rw-r--r--1445/CH8/EX8.33/Ex8_33.sce27
-rw-r--r--1445/CH8/EX8.34/Ex8_34.sce12
-rw-r--r--1445/CH8/EX8.35/Ex8_35.sce12
-rw-r--r--1445/CH8/EX8.36/Ex8_36.sce18
-rw-r--r--1445/CH8/EX8.37/Ex8_37.sce2
-rw-r--r--1445/CH8/EX8.38/Ex8_38.sce12
-rw-r--r--1445/CH8/EX8.4/Ex8_4.sce14
-rw-r--r--1445/CH8/EX8.5/Ex8_5.sce28
-rw-r--r--1445/CH8/EX8.6/Ex8_6.sce21
-rw-r--r--1445/CH8/EX8.7/Ex8_7.sce7
-rw-r--r--1445/CH8/EX8.8/Ex8_8.sce33
-rw-r--r--1445/CH8/EX8.9/Ex8_9.sce11
37 files changed, 251 insertions, 373 deletions
diff --git a/1445/CH8/EX8.1/Ex8_1.sce b/1445/CH8/EX8.1/Ex8_1.sce
index 05b16b236..ed8d63fa5 100644
--- a/1445/CH8/EX8.1/Ex8_1.sce
+++ b/1445/CH8/EX8.1/Ex8_1.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 1
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 1");
-//shunt generator
//VARIABLE INITIALIZATION
v_t=250; //terminal voltage in Volts
I_l=500; //load current in Amperes
@@ -12,10 +12,10 @@ r_a=0.04; //armature resistance in Ohms
r_f=50; //shunt field resistance in Ohms
//SOLUTION
-I_f=v_t/r_f; // current through the shunt field winding
-I_a=I_l+I_f; //Armature Current
+I_f=v_t/r_f;
+I_a=I_l+I_f;
E_a=v_t+(I_a*r_a); //E_a=emf of generator
-disp(sprintf("The generated emf is %.1f V",E_a));
+disp(sprintf("The generated emf is %f V",E_a));
//END
diff --git a/1445/CH8/EX8.10/Ex8_10.sce b/1445/CH8/EX8.10/Ex8_10.sce
index 0189c399a..4c286878c 100644
--- a/1445/CH8/EX8.10/Ex8_10.sce
+++ b/1445/CH8/EX8.10/Ex8_10.sce
@@ -1,14 +1,14 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 10
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 10");
-//6 pole DC machine with 400 conductors
//VARIABLE INITIALIZATION
P=6; //number of poles
I=80; //current per conductor in Amperes
-Z=400; //total number of conductors
+Z=400; //tottal number of conductors
phi=0.020; //flux per pole in Wb
N=1800; //in rpm
@@ -18,39 +18,39 @@ N=1800; //in rpm
disp("(a) For Wave connected");
//(i)
-A=2; //A=number of parallel paths =2 for wave connected conductors
+A=2; //A=number of parallel paths
I_a=I*A;
-disp(sprintf("(i) The total current is %.0f A",I_a));
+disp(sprintf("(i) The total current is %f A",I_a));
//(ii)
E_a=(phi*Z*N*P)/(60*A);
-disp(sprintf("(ii) The emf is %.0f V",E_a));
+disp(sprintf("(ii) The emf is %f V",E_a));
//(iii)
p=E_a*I_a;
-disp(sprintf("(iii) The power developed in armature is %.3f kW",p/1000));
+disp(sprintf("(iii) The power developed in armature is %f kW",p/1000));
w=(2*%pi*N)/60;
T_e=p/w;
-disp(sprintf("The electromagnetic torque is %.2f N-m",T_e));
+disp(sprintf("The electromagnetic torque is %f N-m",T_e));
//soluion (b): for lap connected
disp("(b) For Lap connected");
//(i)
-A=P; //P=6 is given
+A=P;
I_a=I*A;
-disp(sprintf("(i) The total current is %.0f A",I_a));
+disp(sprintf("(i) The total current is %f A",I_a));
//(ii)
-E_a=(phi*Z*N*P)/(60*A); // induced emf
-disp(sprintf("(ii) The emf is %.0f V",E_a));
+E_a=(phi*Z*N*P)/(60*A);
+disp(sprintf("(ii) The emf is %f V",E_a));
//(iii)
-p=E_a*I_a; //power developed in armature
-disp(sprintf("(iii) The power developed in armature is %.1f kW",p/1000));
-w=(2*%pi*N)/60; //armature rotation in RPS
-T_e=p/w; //Torque
-disp(sprintf("The electromagnetic torque is %.2f N-m",T_e));
+p=E_a*I_a;
+disp(sprintf("(iii) The power developed in armature is %f kW",p/1000));
+w=(2*%pi*N)/60;
+T_e=p/w;
+disp(sprintf("The electromagnetic torque is %f N-m",T_e));
//END
diff --git a/1445/CH8/EX8.11/Ex8_11.sce b/1445/CH8/EX8.11/Ex8_11.sce
index 839d676d0..09adc0d30 100644
--- a/1445/CH8/EX8.11/Ex8_11.sce
+++ b/1445/CH8/EX8.11/Ex8_11.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 11
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 11");
-//20 kW compound generator
//VARIABLE INITIALIZATION
p_o=20*1000; //output in W
v_t=250; //in Volts
@@ -16,10 +16,10 @@ r_sh=100; //shunt resistance in Ohms
I_t=p_o/v_t;
v_se=I_t*r_se; //for series winding
v_sh=v_t+v_se; //for shunt winding
-I_sh=v_sh/r_sh; //shunt curent
-I_a=I_sh+I_t; //armature current
-E_a=v_t+(I_a*r_a)+v_se; //induced emf
-disp(sprintf("The total emf generated is %.3f V",E_a));
+I_sh=v_sh/r_sh;
+I_a=I_sh+I_t;
+E_a=v_t+(I_a*r_a)+v_se;
+disp(sprintf("The total emf generated is %f V",E_a));
//END
diff --git a/1445/CH8/EX8.12/Ex8_12.sce b/1445/CH8/EX8.12/Ex8_12.sce
index 364e96eaf..11e8f4315 100644
--- a/1445/CH8/EX8.12/Ex8_12.sce
+++ b/1445/CH8/EX8.12/Ex8_12.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 12
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 12");
-//4 pole wave wound 750 RPM shunt generator
//VARIABLE INITIALIZATION
P=4; //number of poles
N=750; //in rpm
@@ -16,13 +16,13 @@ r_l=10; //load resistance in Ohms
A=2; //for wave winding
//SOLUTION
-E_a=(phi*Z*N*P)/(60*A); //induced emf
-disp(sprintf("The induced emf is %.0f V",E_a));
+E_a=(phi*Z*N*P)/(60*A);
+disp(sprintf("The induced emf is %f V",E_a));
// E_a=v+(I_a*r_a) but I_a=I_l+I_f and I_l=v/r_l, I_f=v/r_f =>I_a=(v/r_l) + (v/r_f)
// =>E_a=v+(((v/r_l) + (v/r_f))*r_a)
// taking v common, the following equation is obtained
v=E_a/(1+(r_a/r_f)+(r_a/r_l));
-disp(sprintf("The terminal voltage of the machine is %.0f V",v));
+disp(sprintf("The terminal voltage of the machine is %f V",v));
//The answer is slightly different due to the precision of floating point numbers
diff --git a/1445/CH8/EX8.13/Ex8_13.sce b/1445/CH8/EX8.13/Ex8_13.sce
index 2e1e3d493..8512b6a9e 100644
--- a/1445/CH8/EX8.13/Ex8_13.sce
+++ b/1445/CH8/EX8.13/Ex8_13.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 13
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 13");
-//4 pole shunt generator
//VARIABLE INITIALIZATION
P=4; //number of poles
v_t=220; //in Volts
@@ -17,15 +17,15 @@ drop=1; //contact drop per brush
//solution (i)
A=P; //for lap winding
I_f=v_t/r_f; //I_f is same as I_sh
-I_a=I_l+I_f; //induced emf
+I_a=I_l+I_f;
I_c=I_a/A; //conductor current
disp(sprintf("The current in each conductor of the armature is %d A",I_c));
//solution (ii)
v_a=I_a*r_a; //armature voltage drop
v_b=2*drop; //brush drop
-emf=v_t+v_a+v_b; //total emf generated
-disp(sprintf("The total emf generated is %.1f V",emf));
+emf=v_t+v_a+v_b;
+disp(sprintf("The total emf generated is %f V",emf));
//END
diff --git a/1445/CH8/EX8.14/Ex8_14.sce b/1445/CH8/EX8.14/Ex8_14.sce
index f5d54ad55..f058c8954 100644
--- a/1445/CH8/EX8.14/Ex8_14.sce
+++ b/1445/CH8/EX8.14/Ex8_14.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 14
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 14");
-//shunt generator
//VARIABLE INITIALIZATION
v_t=220; //in Volts
I_l=196; //in Amperes
@@ -13,20 +13,20 @@ r_f=55; //shunt field ressitance in Ohms
eff=88/100; //efficiency
//SOLUTION
-p_o=v_t*I_l; //output power
+p_o=v_t*I_l;
p_i=p_o/eff; //electrical input
tot_loss=p_i-p_o;
-I_f=v_t/r_f; //field current
-I_a=I_l+I_f; //armature current
+I_f=v_t/r_f;
+I_a=I_l+I_f;
cu_loss=v_t*I_f; //shunt field copper loss
c_loss=cu_loss+s_loss; //constant loss
arm_loss=tot_loss-c_loss; //armature copper loss
-r_a=arm_loss/(I_a^2); //armature resistance
+r_a=arm_loss/(I_a^2);
disp(sprintf("The armature resistance is %f Ω",r_a));
//for maximum efficiency, armature loss = constant loss =>(I_a^2)*r_a=c_loss
I_a=sqrt(c_loss/r_a);
-disp(sprintf("The load current corresponding to maximum efficiency is %.1f A",I_a));
+disp(sprintf("The load current corresponding to maximum efficiency is %f A",I_a));
//END
diff --git a/1445/CH8/EX8.15/Ex8_15.sce b/1445/CH8/EX8.15/Ex8_15.sce
index f14132a94..e85f70db9 100644
--- a/1445/CH8/EX8.15/Ex8_15.sce
+++ b/1445/CH8/EX8.15/Ex8_15.sce
@@ -1,25 +1,25 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 15
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 15");
-//230 V DC shunt motor
//VARIABLE INITIALIZATION
v_t=230; //in Volts
I_a1=3.33; //in Amperes
N1=1000; //in rpm
r_a=0.3; //armature resistance in Ohms
r_f=160; //field resistance in Ohms
-I_l=40; //line current in Amperes
+I_l=40; //in Amperes
phi1=1; //in Wb (phi=1 is an assumption)
-phi2=(1-(4/100)); //in Wb (phi2=0.96 of phi1), as armature reaction reduces no load flux by 4%
+phi2=(1-(4/100)); //in Wb (phi2=0.96 of phi1)
//SOLUTION
//At no load
-E_a1=v_t-(I_a1*r_a); //counter emf
-I_f=v_t/r_f; //field current
+E_a1=v_t-(I_a1*r_a);
+I_f=v_t/r_f;
//At full load
I_a2=I_l-I_f;
diff --git a/1445/CH8/EX8.16/Ex8_16.sce b/1445/CH8/EX8.16/Ex8_16.sce
index 4ba0fd577..e21ca661a 100644
--- a/1445/CH8/EX8.16/Ex8_16.sce
+++ b/1445/CH8/EX8.16/Ex8_16.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 16
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 16");
-//4 pole 250 V shunt motor
//VARIABLE INITIALIZATION
v_t=250; //in Volts
P=4; //number of poles
@@ -19,26 +19,25 @@ rot_loss=300; //rotational loss in Watts
//SOLUTION
//solution (i)
-I_f=v_t/r_f; // field current
-I_a=I_l-I_f; //armature current
-E_a=v_t-(I_a*r_a); // induced emf
-N=(E_a*A*60)/(phi*Z*P); //RPM
-N=round(N); //to round off the value of N
+I_f=v_t/r_f;
+I_a=I_l-I_f;
+E_a=v_t-(I_a*r_a);
+N=(E_a*A*60)/(phi*Z*P);
+N=round(N); //to round off the value of N
disp(sprintf("(i) The speed is %d rpm",N));
-p_e=E_a*I_a; //electromagnetic power
-w=(2*%pi*N)/60; //speed in RPS
-T1=p_e/w; // Internal torque
-disp(sprintf("The internal torque developed is %.3f N-m",T1));
+p_e=E_a*I_a;
+w=(2*%pi*N)/60;
+T1=p_e/w;
+disp(sprintf("The internal torque developed is %f N-m",T1));
//solution (ii)
-//shaft power
-p_o=p_e-rot_loss; //power output
-disp(sprintf("(ii)The shaft power is %.0f W",p_o));
-T2=p_o/w; //shaft torque
-disp(sprintf("The shaft torque is %.2f N-m",T2));
-p_i=v_t*I_l; // power input
-eff=(p_o/p_i)*100; //efficiency
-disp(sprintf("The efficiency is %.2f %%",eff));
+p_o=p_e-rot_loss;
+disp(sprintf("(ii)The shaft power is %f W",p_o));
+T2=p_o/w;
+disp(sprintf("The shaft torque is %f N-m",T2));
+p_i=v_t*I_l;
+eff=(p_o/p_i)*100;
+disp(sprintf("The efficiency is %f %%",eff));
//END
diff --git a/1445/CH8/EX8.17/Ex8_17.sce b/1445/CH8/EX8.17/Ex8_17.sce
index 6e4141500..0ca2818cc 100644
--- a/1445/CH8/EX8.17/Ex8_17.sce
+++ b/1445/CH8/EX8.17/Ex8_17.sce
@@ -1,58 +1,45 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 17
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 17");
-//200 V DC shunt motor of 1000 rpm
//VARIABLE INITIALIZATION
v_t=200; //in Volts
-I_l=22; //line current in Amperes
+I_l=22; //in Amperes
N1=1000; //in rpm
-r_a=0.1; //armature resistancein Ohms
-r_f=100; //field resistance in Ohms
-N2=800; //new speed in rpm
+r_a=0.1; //in Ohms
+r_f=100; //in Ohms
+N2=800; //in rpm
//SOLUTION
//solution (i)
-//load torque is independent of speed, the torque is constant at both speeds
-//T dir prop phi1.Ia1 dir prop phi2.Ia2
-//Therefore we get
-//phi1.Ia1=phi2.Ia2 (since phi1=phi2)
-// or Ia1=Ia2
-I_f=v_t/r_f; // field current
-I_a1=I_l-I_f; // armature current
-E_a1=v_t-(I_a1*r_a); // counter emf
+I_f=v_t/r_f;
+I_a1=I_l-I_f;
+E_a1=v_t-(I_a1*r_a);
//on rearranging the equation E_a2:E_a1=N2:N1, where E_a2=v_t-I_a1*(r_a+r_s) and E_a1=v_t-(I_a1*r_a), we get,
r_s1=((v_t - ((N2*E_a1)/N1))/I_a1)-r_a;
-disp(sprintf("(i) When the load torque is independent of speed, the additional resistance is %.2f Ω",r_s1));
+disp(sprintf("(i) When the load torque is independent of speed, the additional resistance is %f Ω",r_s1));
//solution (ii)
-//Load torque Tl is proportional to N
-//But electromagnetic torque Te=k.phi.Ia
-//therefore,
-//k.phi1.Ia1 dir prop N1
-//k.phi2.Ia2 dir prop n2
-//hence we get (as phi1=phi2)
I_a2=(N2/N1)*I_a1;
//on rearranging the equation E_a2:E_a1=N2:N1, where E_a2=v_t-I_a2*(r_a+r_s) and E_a1=v_t-(I_a1*r_a), we get,
r_s2=((v_t - ((N2*E_a1)/N1))/I_a2)-r_a;
-disp(sprintf("(ii)When the load torque is proportional to speed, the additional resistance is %.1f Ω",r_s2));
+disp(sprintf("(ii)When the load torque is proportional to speed, the additional resistance is %f Ω",r_s2));
//solution (iii)
-//The load Torque Tl dir prop N^2 dir prop phi.Ia
I_a2=(N2^2/N1^2)*I_a1;
//on rearranging the equation E_a2:E_a1=N2:N1, where E_a2=v_t-I_a2*(r_a+r_s) and E_a1=v_t-(I_a1*r_a), we get,
r_s3=((v_t - ((N2*E_a1)/N1))/I_a2)-r_a;
-disp(sprintf("(iii)When the load torque varies as the square of speed, the additional resistance is %.2f Ω",r_s3));
+disp(sprintf("(iii)When the load torque varies as the square of speed, the additional resistance is %f Ω",r_s3));
//solution (iv)
-//The load Torque Tl dir prop N^3 dir prop phi.Ia
I_a2=(N2^3/N1^3)*I_a1;
//on rearranging the equation E_a2:E_a1=N2:N1, where E_a2=v_t-I_a2*(r_a+r_s) and E_a1=v_t-(I_a1*r_a), we get,
r_s4=((v_t - ((N2*E_a1)/N1))/I_a2)-r_a;
-disp(sprintf("(iv)When the load torque varies as the cube of speed, the additional resistance is %.2f Ω",r_s4));
+disp(sprintf("(iv)When the load torque varies as the cube of speed, the additional resistance is %f Ω",r_s4));
//END
diff --git a/1445/CH8/EX8.18/Ex8_18.sce b/1445/CH8/EX8.18/Ex8_18.sce
index 10b37b947..fb5a399e9 100644
--- a/1445/CH8/EX8.18/Ex8_18.sce
+++ b/1445/CH8/EX8.18/Ex8_18.sce
@@ -1,27 +1,27 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 18
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 18");
-//460 V 10 HP motor
//VARIABLE INITIALIZATION
v_t=460; //in Volts
p_o=10*736; //in Watts (1 metric H.P=735.5 W)
ratio=85/100; //as given in the question
-eff=84/100; // efficiency
+eff=84/100;
I_f=1.1; //in Amperes
r_a=0.2; //in Ohms
//SOLUTION
-p_i=p_o/eff; //power input
-I_l=p_i/v_t; //line current
-I_a=I_l-I_f; // armature current
-E1=v_t-(I_a*r_a); //back emf
+p_i=p_o/eff;
+I_l=p_i/v_t;
+I_a=I_l-I_f;
+E1=v_t-(I_a*r_a);
E2=E1*ratio; //E2:E1=N2:N1=ratio
v=v_t-E2; //voltage drop across r_a and r_s (r_s is the series resistance to be inserted)
-r_s=(v/I_a)-r_a; // series resistance
-disp(sprintf("The resistance required is %.2f Ω",r_s));
+r_s=(v/I_a)-r_a;
+disp(sprintf("The resistance required is %f Ω",r_s));
//The answer is different because ratio equals 85/100 and not 75/100
diff --git a/1445/CH8/EX8.19/Ex8_19.sce b/1445/CH8/EX8.19/Ex8_19.sce
index a7376d7e8..7d0ae5ed0 100644
--- a/1445/CH8/EX8.19/Ex8_19.sce
+++ b/1445/CH8/EX8.19/Ex8_19.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 19
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 19");
-//250 V DC shunt motor
//VARIABLE INITIALIZATION
v_t=250; //in Volts
r_a=0.5; //in Ohms
@@ -14,11 +14,7 @@ I=21; //in Amperes
r_s=250; //in Ohms
//SOLUTION
-//when torque is constant T dir prop phi.Ia = constant
-//assuming field is unsaturated , therefore,
-//If dir prop phi
-//therefore, If1.Ia1=If2.Ia2
-I_f1=v_t/r_f; //
+I_f1=v_t/r_f;
I_f2=v_t/(r_f+r_s);
I_a1=I-I_f1;
// T is directly proportional to (Φ*I_a)
@@ -32,6 +28,6 @@ E_b2=v_t-(I_a2*r_a);
// =>E_b1:E_b2=(I_f1:I_f2)*(N1:N2)
N2=(I_f1/I_f2)*(E_b2/E_b1)*N1;
N2=round(N2); //to round off the value
-disp(sprintf("The new speed of the motor is %.d rpm",N2));
+disp(sprintf("The new speed of the motor is %d rpm",N2));
//END
diff --git a/1445/CH8/EX8.2/Ex8_2.sce b/1445/CH8/EX8.2/Ex8_2.sce
index 0046becf5..199e2e038 100644
--- a/1445/CH8/EX8.2/Ex8_2.sce
+++ b/1445/CH8/EX8.2/Ex8_2.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 2
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 2");
-// 230 V DC shunt machine
//VARIABLE INITIALZATION
v_t=230; //terminal voltage in Volts
r_a=0.5; //armature resistance in Ohms
@@ -14,17 +14,17 @@ I_l=40; //line current in Amperes
//SOLUTION
//for generator
-I_f=v_t/r_f; //current through the shunt field winding
-I_a=I_l+I_f; //Armature Current
-E_a=v_t+(I_a*r_a); //E_a=emf of generator
+I_f=v_t/r_f;
+I_a=I_l+I_f;
+E_a=v_t+(I_a*r_a); //here E_a=emf of generator
//for motor
I_f=v_t/r_f;
I_a=I_l-I_f;
-E_b=v_t-(I_a*r_a); //E_b=emf of motor
-//ratio of speed as generator to speed as motor
+E_b=v_t-(I_a*r_a); //here E_b=emf of motor
+
ratio=E_a/E_b; //E_a:E_b=(k_a*flux*N_g):(k_a*flux*N_m) =>E_a:E_b=N_g:N_m (as flux is constant)
-disp(sprintf("The ratio of speed as a generator to the speed as a motor is %.3f",ratio));
+disp(sprintf("The ratio of speed as a generator to the speed as a motor i.e. N_g:N_m is %f",ratio));
//END
diff --git a/1445/CH8/EX8.20/Ex8_20.sce b/1445/CH8/EX8.20/Ex8_20.sce
index a81f6f77c..f3dd44d86 100644
--- a/1445/CH8/EX8.20/Ex8_20.sce
+++ b/1445/CH8/EX8.20/Ex8_20.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 20
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 20");
-//250 V DC shunt motor
//VARIABLE INITIALIZATION
v_t=250; //in Volts
I_a1=20; //in Amperes
@@ -15,35 +15,11 @@ ratio=1.5; //N2:N1=1.5
phi1=1; //it is an assumption
//SOLUTION
-// equations have been renumbered differently than in the text book for better clarity
-// Torque is constant
-// T dir prop phi.Ia
-// phi1.ia1=phi2.Ia2 (eq 1)
-//similarly, E dir prop phi.N
-//E1/E2 = phi1.n1/phi2.n2
E_1=v_t-(I_a1*r_a)-(2*drop);
-//speed raised by 50%. new speed 1.5 times the old one i.e n2=1.5N1
-//
-//E1/E2 = Phi1.N1/phi2.N2 (eq 2)
-//from eq 2
-//=>E1/E2=Phi1/1.5.phi2 (substituting N2=1.5N1) (eq 3)
-//=>phi2/phi1=E2/1.5.E1 (eq 4)
-//from eq 1
-//phi2/ph1=Ia2/Ia2=20/Ia2 -------------------(eq 5)
-//substituting value of phi2/phi1 in eq 4 we get
-//20/Ia2=E2/1.5E1
-//=>E1/E2=Ia2/30 (eq 6)
-//further we know that
-//E2=V-Ia2.Ra -2.drop where V=v_t=250, ra=R_a=0.5 and drop=1
-//=>E2=(V-2.drop) -Ra.Ia2 (eq 7)
-//substituting value of E2 in eq 6, we get
-//E1/[(V-2.drop)-ra.Ia2] = Ia2/30 (eq 8)
-// we get quadratic equation
-//Setting in an quadratic equation of type a.X^2 + b.X + c = 0
-//The constants are as given below:
-a=1; // coefficient of Ia2^2
-b=-496; //coefficient of Ia2, = (V-2.drop).Ra=(v_t-2.drop).R_a
-c=14280; // constant = E_1*30
+//solving the quadratic equation directly,
+a=1;
+b=-496;
+c=14280;
D=b^2-(4*a*c);
x1=(-b+sqrt(D))/(2*a);
x2=(-b-sqrt(D))/(2*a);
@@ -54,6 +30,6 @@ I_a2=x2;
end;
phi2=(I_a1/I_a2)*phi1;
phi=(1-phi2)*100;
-disp(sprintf("The flux to be reduced is %.1f %% of the main flux",phi));
+disp(sprintf("The flux to be reduced is %f %% of the main flux",phi));
//END
diff --git a/1445/CH8/EX8.21/Ex8_21.sce b/1445/CH8/EX8.21/Ex8_21.sce
index cd3275d33..c4e839f94 100644
--- a/1445/CH8/EX8.21/Ex8_21.sce
+++ b/1445/CH8/EX8.21/Ex8_21.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 21
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 21");
-//10kW 6 pole DC generator
//VARIABLE INITIALIZATION
p_o=10*1000; //in Watts
P=6; //number of poles
@@ -16,25 +16,22 @@ l=0.25; //length of armature in m
dia=0.2; //diameter of armature in m
//SOLUTION
+
//solution (a)
-//pole pitch is defined as the periphery of armature divided by the number of poles or the area of armature between two adjacent poles
-//area of armature = 2.pi. dia of armature. length of armature
-area=2*%pi*(dia/2)*l; //area of armature
-phi=B*area; //flux density over one pitch pole= flux per pole/area of armature between poles
-disp(sprintf("(a) The flux per pole is %.4f Wb",phi));
+area=2*%pi*(dia/2)*l;
+phi=B*area;
+disp(sprintf("(a) The flux per pole is %f Wb",phi));
//solution (b)
-Z=(60*E_g)/(phi*N); // no of conductors in the armature
- //induced emf = phi.Z.N.P/60.A
- // = phi.Z.N/60 ( as A=P)
+Z=(60*E_g)/(phi*N);
disp(sprintf("(b) The total number of active conductors is %d",Z));
//solution (c)
-I_a=50; // armature current
-p=E_g*I_a; //power developed
-w=(2*%pi*N)/60; //speed in RPS
-T=p/w; //Torque
-disp(sprintf("(c) The torque developed when armature current is 50 A is %.2f N-m",T));
+I_a=50;
+p=E_g*I_a;
+w=(2*%pi*N)/60;
+T=p/w;
+disp(sprintf("(c) The torque developed when armature current is 50 A is %f N-m",T));
//END
diff --git a/1445/CH8/EX8.22/Ex8_22.sce b/1445/CH8/EX8.22/Ex8_22.sce
index 7a554a6c8..5adaef446 100644
--- a/1445/CH8/EX8.22/Ex8_22.sce
+++ b/1445/CH8/EX8.22/Ex8_22.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 22
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 22");
-//230 V 600 rpm shunt motor
//VARIABLE INITIALIZATION
N1=600; //in rpm
v=230; //in Volts
@@ -16,12 +16,12 @@ drop=2; //brush drop in Volts
//SOLUTION
//solution (i)
-I_l2=5; // no load current
-I_a1=I_l1-(v/r_f); // armature current
-E_b1=v-(I_a1*r_a)-drop; // back emf
+I_l2=5;
+I_a1=I_l1-(v/r_f);
+E_b1=v-(I_a1*r_a)-drop;
I_a2=I_l2-(v/r_f);
E_b2=v-(I_a2*r_a)-drop;
-N2=(E_b2/E_b1)*N1; // speed at no load
+N2=(E_b2/E_b1)*N1;
N2=round(N2);
disp(sprintf("(i) The speed at no load is %d rpm",N2));
@@ -32,17 +32,16 @@ E_b2=(N2/N1)*E_b1;
dif=v-drop; //difference
I_a2=I_l2-(v/r_f);
r_se=((dif-E_b2)/I_a2)-r_a;
-disp(sprintf("(ii) The additional resistance is %.3f Ω",r_se));
+disp(sprintf("(ii) The additional resistance is %f Ω",r_se));
//solution (iii)
-//Eb1/Eb2 = phi2.N2/Phi1.N1
phi1=1; //it is an assumption
I_a3=30;
N2=750;
E_b3=v-(I_a3*r_a)-drop;
phi2=(E_b3/E_b1)*(N1/N2)*phi1;
red=((1-phi2)*100*phi1)/phi1;
-disp(sprintf("(iii) The percentage reduction of flux per pole is %.1f %%",red));
+disp(sprintf("(iii) The percentage reduction of flux per pole is %f %%",red));
//END
diff --git a/1445/CH8/EX8.23/Ex8_23.sce b/1445/CH8/EX8.23/Ex8_23.sce
index 0f93e5d8a..d2b3190a8 100644
--- a/1445/CH8/EX8.23/Ex8_23.sce
+++ b/1445/CH8/EX8.23/Ex8_23.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 23
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 23");
-//230 V DC shunt motor
//VARIABLE INITIALIZATION
v=230; //in Volts
r_a=0.4; //in Ohms
@@ -14,23 +14,13 @@ N1=800; //in rpm
N2=1000; //in rpm
//SOLUTION
-//Eb1/Eb2 = phi1.N1/phi2.N2 (eq 1)
-//Eb=Vt - Ia.Ra (eq 2)
-//=> (Vt-Ia1.Ra)/(Vt-Ia2.Ra) = phi1.N1/phi2.N2 (eq 3)
-I_f1=v/r_f1; //redundant step
-E_b1=v-(I_a*r_a); // back emf
-//Since terminal voltage Vt is constant, if dir prop phi dir prop 1/r_f
-//=> phi1/phi2 = r_f2/r_f1 (eq 4) [r_f2 = field resistance at 10000 rpm]
- //[r_f1 = field resistance at 800 rpm]
-//Load torque is constant, so T dir prop phi.Ia
-//=> phi1.Ia1=phi2.Ia2
-//=> Ia2=(phi1/phi2). Ia1 (eq 5)
-//putting the value of Ia2 in eq 3 and
+I_f1=v/r_f1;
+E_b1=v-(I_a*r_a);
//rearranging the equation, we get,
r_f2=((E_b1*N2)/((v*N1)-(N1*I_a*r_a)))*r_f1;
r_f2_dash=r_f2-r_f1;
-disp(sprintf("The external resistance is %.2f Ω",r_f2_dash));//text book answer is 29.93 ohm
+disp(sprintf("The external resistance is %f Ω",r_f2_dash));
//The answer is slightly different due to the precision of floating point numbers
-//END
+//END \ No newline at end of file
diff --git a/1445/CH8/EX8.24/Ex8_24.sce b/1445/CH8/EX8.24/Ex8_24.sce
index e330f4a03..9d32d73c5 100644
--- a/1445/CH8/EX8.24/Ex8_24.sce
+++ b/1445/CH8/EX8.24/Ex8_24.sce
@@ -1,6 +1,7 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 24
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 24");
diff --git a/1445/CH8/EX8.25/Ex8_25.sce b/1445/CH8/EX8.25/Ex8_25.sce
index a9088f41b..adf7f1898 100644
--- a/1445/CH8/EX8.25/Ex8_25.sce
+++ b/1445/CH8/EX8.25/Ex8_25.sce
@@ -1,10 +1,11 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 25
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 25");
-//24 slot 2 pole DC machine with 18 turns per coil
+
//VARIABLE INITIALIZATION
slot=24; //number of slots
P=2; //number of poles
@@ -15,28 +16,28 @@ rad=10/100; //radius in meters
w=183.2; //angular velocity in rad/s
//SOLUTION
-A=2; // number of parallel paths
+A=2;
Z=slot*P*N; //total number of conductors
-ar1=(2*%pi*rad*l)/P; // actual pole area
+ar1=(2*%pi*rad*l)/P;
ar2=ar1*0.8; //since the magnetic poles 80% of the armature periphery
phi=B*ar2; //effective flux per pole
//solution (a)
E_a=(P*Z*phi*w)/(2*%pi*A);
-disp(sprintf("(a) The induced emf is %.1f V",E_a));
+disp(sprintf("(a) The induced emf is %f V",E_a));
//solution (b)
-coil=slot/P; //number of coils in each path = slots/path
-E_coil=E_a/coil; //induced emf per coil
-disp(sprintf("(b) The induced emf per coil is %.2f V",E_coil));
+coil=slot/P; //number of coils in each path
+E_coil=E_a/coil;
+disp(sprintf("(b) The induced emf per coil is %f V",E_coil));
//solution (c)
-E_turn=E_coil/N; //emf induced per turn
-disp(sprintf("(c) The induced emf per turn is %.2f V",E_turn));
+E_turn=E_coil/N;
+disp(sprintf("(c) The induced emf per turn is %f V",E_turn));
//solution (d)
-E_cond=E_turn/A; // emf induced per conductor
-disp(sprintf("(d) The induced emf per conductor is %.3f V",E_cond));
+E_cond=E_turn/A;
+disp(sprintf("(d) The induced emf per conductor is %f V",E_cond));
//The answers are slightly different due to the precision of floating point numbers
diff --git a/1445/CH8/EX8.27/Ex8_27.sce b/1445/CH8/EX8.27/Ex8_27.sce
index e6422663f..7dbf5ed65 100644
--- a/1445/CH8/EX8.27/Ex8_27.sce
+++ b/1445/CH8/EX8.27/Ex8_27.sce
@@ -1,10 +1,11 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 27
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 27");
-//DC series motor, 200V DC motor
+
//VARIABLE INITIALIZATION
v_t=200; //in volts
r_a=0.06; //in Ohms
@@ -14,13 +15,12 @@ p_i=20*1000; //in Watts
//SOLUTION
//solution (a)
-//Il=Ia=Ise= Pinput/Vt
-I_a=p_i/v_t; // armature current
-E_b=v_t-I_a*(r_a+r_se); // back emf
+I_a=p_i/v_t;
+E_b=v_t-I_a*(r_a+r_se);
disp(sprintf("(a) The counter emf of the motor is %d V",E_b));
//solution (b)
-p_a=E_b*I_a; // power developed in armature
+p_a=E_b*I_a;
p_a=p_a/1000; //from W to kW
disp(sprintf("(b) The power developed in the armature is %d kW",p_a));
diff --git a/1445/CH8/EX8.28/Ex8_28.sce b/1445/CH8/EX8.28/Ex8_28.sce
index 8cc1c1c85..8c16f6f17 100644
--- a/1445/CH8/EX8.28/Ex8_28.sce
+++ b/1445/CH8/EX8.28/Ex8_28.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 28
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 28");
-//series generator
//VARIABLE INITIALIZATION
E_a=120; //in Volts
r_se=0.03; //in Ohms
@@ -14,9 +14,8 @@ r=0.25; //in Ohms
I=300; //in Amperes
//SOLUTION
-v=I*(r_se+r_a+r); // voltage drop across Rse and ra and feeder
+v=I*(r_se+r_a+r);
disp(sprintf("The voltage drop across the three resistances is %d V",v));
-//hence the voltage between far end and bus bar is:
v_t=v1+E_a-v;
disp(sprintf("The voltage between far end and the bus bar is %d V",v_t));
disp(sprintf("The net increase of %d V may be beyond the desired limit",v_t-v1));
diff --git a/1445/CH8/EX8.29/Ex8_29.sce b/1445/CH8/EX8.29/Ex8_29.sce
index 06477777a..c3d90c0d3 100644
--- a/1445/CH8/EX8.29/Ex8_29.sce
+++ b/1445/CH8/EX8.29/Ex8_29.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 29
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 29");
-//DC series motor
//VARIABLE INITIALIZATION
r_a=1; //in Ohms
N1=800; //in rpm
@@ -13,9 +13,9 @@ I_a=15; //in Amperes
r_s=5; //series resistance in Ohms
//SOLUTION
-E_b1=v_t-(I_a*r_a); // back emf
+E_b1=v_t-(I_a*r_a);
E_b2=v_t-I_a*(r_a+r_s);
-N2=(E_b2/E_b1)*N1; //RPM
+N2=(E_b2/E_b1)*N1;
N2=round(N2); //to round off the value
disp(sprintf("The speed attained after connecting the series resistance is %d rpm",N2));
diff --git a/1445/CH8/EX8.3/Ex8_3.sce b/1445/CH8/EX8.3/Ex8_3.sce
index b08092d94..9793e5176 100644
--- a/1445/CH8/EX8.3/Ex8_3.sce
+++ b/1445/CH8/EX8.3/Ex8_3.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 3
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 3");
-//10 kW 250 V DC shunt generator
//VARIABLE INITIALIZATION
p_o=10*1000; //output of generator in Watts
v_t=250; //terminal voltage in Volts
@@ -16,15 +16,15 @@ rot_loss=540; //rotational loss in Watts
//SOLUTION
//solution (i)
-I_l=p_o/v_t; //line current
-I_a=I_l+I_f; // armature current
-E_a=v_t+(I_a*r_a); //E_a=emf of generator
-disp(sprintf("(i) The armature induced emf is %.2f V",E_a));
+I_l=p_o/v_t;
+I_a=I_l+I_f;
+E_a=v_t+(I_a*r_a);
+disp(sprintf("(i) The armature induced emf is %f V",E_a));
//solution (ii)
w=(2*%pi*N)/60; //in radian/sec
T_e=(E_a*I_a)/w;
-disp(sprintf("(ii) The torque developed is %.2f N-m",T_e));
+disp(sprintf("(ii) The torque developed is %f N-m",T_e));
//solution (iii)
arm_loss=(I_a^2)*r_a; //armature loss
@@ -32,7 +32,7 @@ fld_loss=v_t*I_f; //field loss
tot_loss=rot_loss+arm_loss+fld_loss;
p_i=p_o+tot_loss;
eff=(p_o/p_i)*100;
-disp(sprintf("(iii) The efficiency is %.3f %%",eff));
+disp(sprintf("(iii) The efficiency is %f %%",eff));
//END
diff --git a/1445/CH8/EX8.30/Ex8_30.sce b/1445/CH8/EX8.30/Ex8_30.sce
index 782ad08af..caf18e709 100644
--- a/1445/CH8/EX8.30/Ex8_30.sce
+++ b/1445/CH8/EX8.30/Ex8_30.sce
@@ -1,25 +1,20 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 30
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 30");
-//Series DC motor 5 HP with 100 rpm
//VARIABLE INITIALIZATION
p=5*735.5; //in Watts (1 metric H.P.=735.5 W)
-N=1000; //in rpm, given as 100 rpm but solved as 1000 rpm in the text book
- //hence taken 1000 rpm
+N=1000; //in rpm
I=30; //in Amperes
I_s=45; //starting current in Amperes
//SOLUTION
-T=(p*60)/(2*%pi*1000); // Torque
-//Torque dir prop phi.Ia
-//=> since phi dir prop Ia
-//=> torque dir prop Ia^2
-// starting torque T_s / T = Starting current Ia ^2 / I^2
+T=(p*60)/(2*%pi*1000);
T_s=(T*(I_s^2))/(I^2);
-disp(sprintf("The starting torque is %.0f N-m",T_s));
+disp(sprintf("The starting torque is %f N-m",T_s));
//The answer is slightly different due to precision of floating point numbers
diff --git a/1445/CH8/EX8.31/Ex8_31.sce b/1445/CH8/EX8.31/Ex8_31.sce
index 5e8349ca2..39123e25d 100644
--- a/1445/CH8/EX8.31/Ex8_31.sce
+++ b/1445/CH8/EX8.31/Ex8_31.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 31
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 31");
-//series motor
//VARIABLE INITIALIZATION
r_a=0.1; //combined resistance of armature & field resistance in Ohms
v_t=230; //in Volts
@@ -14,13 +14,6 @@ I_a2=200; //in Amperes
ratio=1.2; //ratio of Φ2:Φ1=1.2
//SOLUTION
-//Eb1 dir prop phi1.N1
-//Eb1=Vt-Ia1.Ra
-//=> (Vt-Ia1.Ra) dir prop ph1.N1
-//and
-//=> (Vt-Ia2.Ra) dir prop ph1.N2
-//=> (Vt-Ia1.Ra)/ (Vt-Ia1.Ra) = phi1.N1/phi2.N2
-//given Phi2=1.2 Phi1 as flux is increased by 20%
E_b1=v_t-(I_a1*r_a); //numerator of LHS according to the book
E_b2=v_t-(I_a2*r_a); //denominator of LHS according to the book
N2=(E_b2/E_b1)*(1/ratio)*N1;
diff --git a/1445/CH8/EX8.32/Ex8_32.sce b/1445/CH8/EX8.32/Ex8_32.sce
index ff37b6767..957557827 100644
--- a/1445/CH8/EX8.32/Ex8_32.sce
+++ b/1445/CH8/EX8.32/Ex8_32.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 32
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 32");
-//250 V series motor at 1000 rpm
//VARIABLE INITIALIZATION
v_t=250; //in Volts
I=20; //in Amperes
@@ -15,36 +15,17 @@ r_a=0.2; //in Ohms
//SOLUTION
-r_se=P*r_p; // series field resistance
+r_se=P*r_p;
r_m=r_a+r_se; //resistance of motor
-E_b1=v_t-(I*r_m); // back emf
-//Torque t1 dir prop phi1.Ia
-//=> since phi dir prop Ia
-//=> torque dir prop Ia^2
-T1=I^2; // torque
+E_b1=v_t-(I*r_m);
+T1=I^2;
//solution (a)
-//10 ohm resistance in parallel with armature
-//let I be input currnet then, drop in series field = r_a.I
-//Voltage across the terminals = V = Vt-r_a.I
-//=> current in 10 ohm resistance (=r) = (Vt-r_a.I)/r (eq 1)
-// now, Armature current Ia
-// Ia= I - (Vt-r_a.I)/r (eq 2)
-//Torque developed t2 dir prop phi2.Ia
-//=> since phi dir prop I
-//=> torque dir prop I.Ia
-//However, T2=T1, as torque developed in two cases is equal
-//=> I.Ia = T1
-//substituting value of Ia from eq 2, we get
-//I.(I - (Vt-r_a.I)/r) =T1
-//=>I. (I.r+r_a.I -Vt)/r = T1
-//=> (r+r_a).I^2 -Vt.I =T1.r
-//=> (r+r_a).I^2 -Vt.I - T1.r =0
//solving the quadratic equation directly,
r=10; //in Ohms
-a=10.2; //(r+r_a). value 1.02 in text book, as it was divided by r=10
-b=-250; //Vt ; -25 in text book, as it was divided by r=10
-c=-4000; // T1.r; 400 in text book, as it was not multiplied by r=10
+a=1.02;
+b=-25;
+c=-400;
D=b^2-(4*a*c);
x1=(-b+sqrt(D))/(2*a);
x2=(-b-sqrt(D))/(2*a);
@@ -54,23 +35,14 @@ I1=x1;
else (x1<0 & x2>0)
I1=x2;
end;
-I_a=((10.2*I1)-v_t)/r; // armature current
-E_b2=v_t-(I_a*r_a); // back emf
+I_a=((10.2*I1)-v_t)/r;
+E_b2=v_t-(I_a*r_a);
N2=((E_b2/E_b1)*I*N1)/I1;
N2=round(N2); //to round off the value
disp(sprintf("(a) The speed with 10 Ω resistance in parallel with the armature is %d rpm",N2));
//solution (b)
-//0.5 ohmic diverter resistance
-//resistance in the field winding = 0.5/(0.5+r_a)
-// since r_a=0.2,the value becomes 0.5/0.7 = 5/7
-//Torque T3 dir prop phi3.Ia
-// => dir prop 5/7 . I. I.
-//=> dir prop 5/7 I^2
-//since T3=T1
-//=> 5/7 I^2= T1
-//=> 5/7. I^2 - T1=0
-//solving the quadratic equation directly,with new values
+//solving the quadratic equation directly,
a=5/7;
b=0;
c=-400;
@@ -83,7 +55,7 @@ I2=y1;
else (y1<0 & y2>0)
I2=y2;
end;
-E_b3=v_t-(I2*r_a); // back emf
+E_b3=v_t-(I2*r_a);
N3=((E_b3/E_b1)*I*N1)/(I2*a);
N3=round(N3); //to round off the value
disp(sprintf("(b) The speed with 0.5 Ω resistance in parallel with series field is %d rpm",N3));
diff --git a/1445/CH8/EX8.33/Ex8_33.sce b/1445/CH8/EX8.33/Ex8_33.sce
index aaf8cdd40..9e16a1081 100644
--- a/1445/CH8/EX8.33/Ex8_33.sce
+++ b/1445/CH8/EX8.33/Ex8_33.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 33
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 33");
-//230 V DC series motor
//VARIABLE INITIALIZATION
v_t=230; //in Volts
N1=1500; //in rpm
@@ -15,34 +15,17 @@ r_se=0.2; //series field resistance in Ohms
//SOLUTION
//solution (a)
-//for series motors, phi dir prop Ia
-// therefore, Te dir prop Ia^2
-// at starting Eb=0 and Vt= Ia1.(r_a+r_se+r_ext)
-//rearranging for r_ext, we get
-// r_ext = (Vt-Ia1.(r_a+r_se))/ Ia1
-E_b=0; //back emf at starting
-nr1=v_t-I_a1*(r_a+r_se); //value of numerator in the expression for r_ext
+E_b=0; //at starting
+nr1=v_t-I_a1*(r_a+r_se); //value of numerator
r_ext=nr1/I_a1;
-disp(sprintf("(a) At starting, the resistance that must be added is %.0f Ω",r_ext));
+disp(sprintf("(a) At starting, the resistance that must be added is %f Ω",r_ext));
//solution (b)
-//Ia2=Ia1=20 A
-//as phi dir prop Ia, we get
-//Eb2/Eb1 = phi2.n2/ phi1. N1 = Ia2.N2/Ia1.N1
-//=> Eb2/Eb1=N2/N1 as Ia2=Ia1 (eq 1)
I_a2=I_a1;
N2=1000;
ratio=N2/N1;
-// now, we know that Eb1=Vt-Ia1.(r_a+r_se) and
-// Eb2 = Vt - Ia2.(r_a+r_se+r_ext)
-//substituting values of Eb1 and Eb2 in eq 1 above, we get
-//n2/n1 = (Vt - Ia2.(r_a+r_se+r_ext))/ (Vt-Ia1.(r_a+r_se))
-//since ia1=Ia2 (rated torque)
-//we get
-//r_ext = (N2/N1).(v_t-I_a1*(r_a+r_se))/Ia2 -(v_t-I_a2*(r_a+r_se))/Ia2
-//
nr2=v_t-I_a2*(r_a+r_se);
r_ext=((ratio*nr1)-nr2)/(-I_a2);
-disp(sprintf("(b) At 1000 rpm, the resistance that must be added is %.3f Ω",r_ext));
+disp(sprintf("(b) At 1000 rpm, the resistance that must be added is %f Ω",r_ext));
//END
diff --git a/1445/CH8/EX8.34/Ex8_34.sce b/1445/CH8/EX8.34/Ex8_34.sce
index 00c7d76f7..da2ba5873 100644
--- a/1445/CH8/EX8.34/Ex8_34.sce
+++ b/1445/CH8/EX8.34/Ex8_34.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 34
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 34");
-//COMPOUND MACHINE
//VARIABLE INITIALIZATION
r_a=0.06; //armature resistance in Ohms
r_se=0.04; //series resistance in Ohms
@@ -15,17 +15,17 @@ I_l=100; //in Amperes
//SOLUTION
//solution (a)
-I_sh=v_t/r_sh; // shunt current
-I_a=I_sh+I_l; // armature current
-E_g=v_t+I_a*(r_a+r_se); // emf generated
+I_sh=v_t/r_sh;
+I_a=I_sh+I_l;
+E_g=v_t+I_a*(r_a+r_se);
disp("(a) When the machine is connected as long shunt compound generator-");
-disp(sprintf("The armature current is %f A and the total emf is %.2f V",I_a,E_g));
+disp(sprintf("The armature current is %f A and the total emf is %f V",I_a,E_g));
//solution (b)
I_sh=(v_t/r_sh)+(I_l*r_se/r_sh);
I_a=I_sh+I_l;
E_g=v_t+(I_a*r_a)+(I_l*r_se);
disp("(b) When the machine is connected as short shunt compound generator-");
-disp(sprintf("The armature current is %f A and the total emf is %.1f V",I_a,E_g));
+disp(sprintf("The armature current is %f A and the total emf is %f V",I_a,E_g));
//END
diff --git a/1445/CH8/EX8.35/Ex8_35.sce b/1445/CH8/EX8.35/Ex8_35.sce
index fcf1b5461..4fd8470a8 100644
--- a/1445/CH8/EX8.35/Ex8_35.sce
+++ b/1445/CH8/EX8.35/Ex8_35.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 35
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 35");
-//Exercise 34, motor working as DC motor
//VARIABLE INITIALIZATION
r_a=0.06; //armature resistance in Ohms
r_se=0.04; //series resistance in Ohms
@@ -15,17 +15,17 @@ I_l=100; //in Amperes
//SOLUTION
//solution (a)
-I_sh=v_t/r_sh; // shunt current
-I_a=I_l-I_sh; // armature current
-E_g=v_t-I_a*(r_a+r_se); // generated emf
+I_sh=v_t/r_sh;
+I_a=I_l-I_sh;
+E_g=v_t-I_a*(r_a+r_se);
disp("(a) When the machine is connected as long shunt compound generator-");
-disp(sprintf("The armature current is %f A and the total emf is %.1f V",I_a,E_g));
+disp(sprintf("The armature current is %f A and the total emf is %f V",I_a,E_g));
//solution (b)
I_sh=(v_t/r_sh)-(I_l*r_se/r_sh);
I_a=I_l-I_sh;
E_g=v_t-(I_a*r_a)-(I_l*r_se);
disp("(b) When the machine is connected as short shunt compound generator-");
-disp(sprintf("The armature current is %f A and the total emf is %.2f V",I_a,E_g));
+disp(sprintf("The armature current is %f A and the total emf is %f V",I_a,E_g));
//END
diff --git a/1445/CH8/EX8.36/Ex8_36.sce b/1445/CH8/EX8.36/Ex8_36.sce
index 6ea9e53b5..842d723de 100644
--- a/1445/CH8/EX8.36/Ex8_36.sce
+++ b/1445/CH8/EX8.36/Ex8_36.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 36
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 36");
-//250 long shunt compound generator
//VARIABLE INITIALIZATION
v_t=250; //in Volts
I_l=150; //in Amperes
@@ -18,20 +18,20 @@ r_ip=0.02; //interpole resistance in Ohms
//SOLUTION
//solution (a)
-p_o=v_t*I_l; // power output
-I_sh=v_t/r_sh; // shunt current
-I_a=I_l+I_sh; // armature current
-r_tot=r_b+r_se+r_ip; // total armature circuit resistance
+p_o=v_t*I_l;
+I_sh=v_t/r_sh;
+I_a=I_l+I_sh;
+r_tot=r_b+r_se+r_ip;
arm_loss=(I_a^2)*r_tot; //armature circuit copper loss
cu_loss=v_t*I_sh; //shunt field copper loss
c_loss=cu_loss+loss1+loss2; //constant loss
-disp(sprintf("(a) The constant loss is %.0f W",c_loss));
+disp(sprintf("(a) The constant loss is %f W",c_loss));
//solution (b)
tot_loss=arm_loss+c_loss; //total loss
-p_i=p_o+tot_loss; // power input
-eff=(p_o/p_i)*100; // efficiency
-disp(sprintf("(b) The full load efficiency is %.0f %%",eff));
+p_i=p_o+tot_loss;
+eff=(p_o/p_i)*100;
+disp(sprintf("(b) The full load efficiency is %f %%",eff));
//END
diff --git a/1445/CH8/EX8.37/Ex8_37.sce b/1445/CH8/EX8.37/Ex8_37.sce
index 7cadef348..df3f4d6b1 100644
--- a/1445/CH8/EX8.37/Ex8_37.sce
+++ b/1445/CH8/EX8.37/Ex8_37.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 37
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 37");
-//250 V DC machine
//VARIABLE INITIALIZATION
p_o=50*1000; //in Watts
v_t=250; //in Volts
diff --git a/1445/CH8/EX8.38/Ex8_38.sce b/1445/CH8/EX8.38/Ex8_38.sce
index ce64d0ef1..15802d568 100644
--- a/1445/CH8/EX8.38/Ex8_38.sce
+++ b/1445/CH8/EX8.38/Ex8_38.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 38
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 38");
-//215 V DC machine supplying 5kW at 1000 rpm
//VARIABLE INITIALIZATION
v_t=215; //in Volts
r_a=0.4; //in Ohms
@@ -15,13 +15,13 @@ ratio=1.1; //according to the solution, Φ_b:Φ_a=1.1
//SOLUTION
//As generator
-I_ag=p/v_t; // as generator induced current
-E_a=v_t+(I_ag*r_a); // induced emf
+I_ag=p/v_t;
+E_a=v_t+(I_ag*r_a);
//As motor
-I_am=p/v_t; // current as motor
-E_b=v_t-(I_am*r_a); // back emf
-N_m=(1/ratio)*N_g*(E_b/E_a); // speed of machine
+I_am=p/v_t;
+E_b=v_t-(I_am*r_a);
+N_m=(1/ratio)*N_g*(E_b/E_a);
N_m=round(N_m); //to round off the value
disp(sprintf("The speed of the machine as motor is %d rpm",N_m));
diff --git a/1445/CH8/EX8.4/Ex8_4.sce b/1445/CH8/EX8.4/Ex8_4.sce
index afdaa2c0a..fbcb1d1b4 100644
--- a/1445/CH8/EX8.4/Ex8_4.sce
+++ b/1445/CH8/EX8.4/Ex8_4.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 4
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 4");
-//240 Volt Shunt Generator
//VARIABLE INITIALIZATION
v_t=240; //in Volts
I_l=200; //full load current in Amperes
@@ -17,19 +17,19 @@ s_loss=800; //stray(iron + friction) loss in Watts
//solution (a)
p_o=v_t*I_l; //output
eff=eff/100;
-p_i=p_o/eff; //input
+p_i=p_o/eff;
tot_loss=p_i-p_o; //since input=output+loss
-I_f=v_t/r_f; //field current
-I_a=I_l+I_f; //armature current
+I_f=v_t/r_f;
+I_a=I_l+I_f;
cu_loss=(I_f^2)*r_f; //copper loss
c_loss=cu_loss+s_loss; //constant loss
arm_loss=tot_loss-c_loss; //armature loss ((I_a^2)*r_a)
-r_a=arm_loss/(I_a^2); //armature resistance
-disp(sprintf("(a) The armature resisatnce is %.4f Ω",r_a));
+r_a=arm_loss/(I_a^2);
+disp(sprintf("(a) The armature resisatnce is %f Ω",r_a));
//solution (b)
//for maximum efficiency, armature loss = constant loss =>(I_a^2)*r_a=c_loss
I_a=sqrt(c_loss/r_a);
-disp(sprintf("(b) The load current corresponding to maximum efficiency is %.1f A",I_a));
+disp(sprintf("(b) The load current corresponding to maximum efficiency is %f A",I_a));
//END
diff --git a/1445/CH8/EX8.5/Ex8_5.sce b/1445/CH8/EX8.5/Ex8_5.sce
index 52b22ec32..8ced4b2f2 100644
--- a/1445/CH8/EX8.5/Ex8_5.sce
+++ b/1445/CH8/EX8.5/Ex8_5.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 5
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 5");
-//200 V shunt generator
//VARIABLE INITIALIZATION
v_t=200; //in Volts
I_l=50; //in Amperes
@@ -15,12 +15,10 @@ s_loss=500; //core and iron loss in Watts
//SOLUTION
//solution (a)
-//Shunt field current, Armature current and induced emf
-//I_sh is same as I_f and r_sh is same as r_f
-I_f=v_t/r_f; //Field current
-I_a=I_f+I_l; //armature current
-E_a=v_t+(I_a*r_a); //Emf of generator
-disp(sprintf("(a) The induced emf is %.1f V",E_a));
+I_f=v_t/r_f; //I_sh is same as I_f and r_sh is same as r_f
+I_a=I_f+I_l;
+E_a=v_t+(I_a*r_a);
+disp(sprintf("(a) The induced emf is %f V",E_a));
//solution (b)
arm_loss=(I_a^2)*r_a; //armature copper loss
@@ -28,17 +26,15 @@ sh_loss=(I_f^2)*r_f; //shunt field copper loss
tot_loss=arm_loss+sh_loss+s_loss;
p_o=v_t*I_l; //output power
p_i=p_o+tot_loss; //input power
-bhp=p_i/735.5; //1 metric horsepower= 735.498 W
-disp(sprintf("(b) The Break Horse Power(B.H.P.) of the prime mover is %.1f H.P.(metric)",bhp));
+bhp=p_i/735.5; //1 metric horsepower= 735.498W
+disp(sprintf("(b) The Break Horse Power(B.H.P.) of the prime mover is %f H.P.(metric)",bhp));
//solution (c)
-c_eff=(p_o/p_i)*100; //Commercial efficiency = Output/Input
-p_EE=E_a*I_a; //electrical power developed
-m_eff=(p_EE/p_i)*100; //Mechanical efficiency = electrical power/Input power
-e_eff=(p_o/p_EE)*100; //Electrical efficiency = output power/electrical power
-disp(sprintf("(c) The commercial efficiency is %.1f %%",c_eff));
-disp(sprintf("(c) The mechanical efficiency is %.1f %%",m_eff));
-disp(sprintf("(c) The electrical efficiency is %.1f %%",e_eff));
+c_eff=(p_o/p_i)*100;
+p_EE=E_a*I_a; //electrical power
+m_eff=(p_EE/p_i)*100;
+e_eff=(p_o/p_EE)*100;
+disp(sprintf("(c) The commercial efficiency is %f %%, the mechanical efficiency is %f %% and the electrical efficiency is %f %%",c_eff,m_eff,e_eff));
//END
diff --git a/1445/CH8/EX8.6/Ex8_6.sce b/1445/CH8/EX8.6/Ex8_6.sce
index 67e4601b2..fc89b9145 100644
--- a/1445/CH8/EX8.6/Ex8_6.sce
+++ b/1445/CH8/EX8.6/Ex8_6.sce
@@ -1,6 +1,7 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 6
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 6");
@@ -17,33 +18,33 @@ I_f=1.6; //field current in Amperes
//SOLUTION
//solution (i)
-E_b=v_t-(I_a*r_a); //Back emf
+E_b=v_t-(I_a*r_a);
w=(2*%pi*N)/60; //in radian/sec
-T_e=(E_b*I_a)/w; //electromagnetic torque
-disp(sprintf("(i) The electromagnetic torque is %.0f N-m",T_e));
+T_e=(E_b*I_a)/w;
+disp(sprintf("(i) The electromagnetic torque is %f N-m",T_e));
//solution (ii)
A=P; //since it is lap winding, so A=P and A=number of parallel paths
phi=(E_b*60*A)/(P*N*Z);
-disp(sprintf("(ii) The flux per pole is %.3f Wb",phi));
+disp(sprintf("(ii) The flux per pole is %f Wb",phi));
//solution (iii)
-//Rotational power= Power developed on rotor - Pshaft.(=Pout)
p_rotor=E_b*I_a; //power developed on rotor
p_rot=p_rotor-p_o; //p_shaft=p_out
-disp(sprintf("(iii) The rotational power is %.4f W",p_rot)); //text book answer is 870 W
+disp(sprintf("(iii) The rotational power is %f W",p_rot));
//solution (iv)
tot_loss=p_rot+((I_a^2)*r_a)+(v_t*I_f);
-p_i=p_o+tot_loss; //input power
+p_i=p_o+tot_loss;
eff=(p_o/p_i)*100;
-disp(sprintf("(iv) The efficiency is %.2f %%",eff));
+disp(sprintf("(iv) The efficiency is %f %%",eff));
//solution (v)
-T=p_o/w; //shaft torque
-disp(sprintf("(v) The shaft torque is %.0f N-m",T));
+T=p_o/w;
+disp(sprintf("(v) The shaft torque is %f N-m",T));
//The answers are slightly different due to the precision of floating point numbers
+
//END
diff --git a/1445/CH8/EX8.7/Ex8_7.sce b/1445/CH8/EX8.7/Ex8_7.sce
index 20e434a5a..0362b4f8e 100644
--- a/1445/CH8/EX8.7/Ex8_7.sce
+++ b/1445/CH8/EX8.7/Ex8_7.sce
@@ -1,11 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 7
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 7");
-//Contnuation of the Example 6
-//shaft load/ load torque remains fixed, and field flux is reduced to 80% by using field rheostat
//VARIABLE INITIALIZATION
p_o=20*746; //output power from H.P. to Watts (1 H.P.=745.699 or 746 W)
v_t=230; //in Volts
@@ -18,8 +17,8 @@ I_f=1.6; //field current in Amperes
ratio=0.8; //phi2:phi1=0.8 (here phi=flux)
//SOLUTION
-//Eb2/Eb1= phi2.W2/phi1.W1 = phi2.N2/phi1.N1
-E_b1=v_t-(I_a1*r_a); //
+
+E_b1=v_t-(I_a1*r_a);
I_a2=I_a1/ratio; //(phi2*I_a2)=(phi1*I_a1)
E_b2=v_t-(I_a2*r_a);
N2=(E_b2/E_b1)*(1/ratio)*N1; //N2:N1=(E_b2/E_b1)*(phi1/phi2)
diff --git a/1445/CH8/EX8.8/Ex8_8.sce b/1445/CH8/EX8.8/Ex8_8.sce
index 0eb7a9dd1..a2b0b8dde 100644
--- a/1445/CH8/EX8.8/Ex8_8.sce
+++ b/1445/CH8/EX8.8/Ex8_8.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 8
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 8");
-//250 V DC shunt machine
//VARIABLE INITIALIZATION
v_t=250; //in Volts
r_a=0.1; //armature resistance in Ohms
@@ -15,36 +15,31 @@ N_g=1000; //speed as generator in rpm
//SOLUTION
//machine as a generator
-I_l=p_o/v_t; //load current
-I_f=v_t/r_f; //field current, I_f is same as I_sh
-I_ag=I_l+I_f; //Output current as generator
+I_l=p_o/v_t;
+I_f=v_t/r_f; //I_f is same as I_sh
+I_ag=I_l+I_f;
E_a=v_t+(I_ag*r_a); //induced emf = E_a = E_g
//machine as a motor
-I_l=p_o/v_t; //full load current
-I_f=v_t/r_f;
-I_am=I_l-I_f; //output current as motor
-E_b=v_t-(I_am*r_a); //back emf = E_b = E_m
+I_l=p_o/v_t;
+I_f=v_t/r_f;
+I_am=I_l-I_f;
+E_b=v_t-(I_am*r_a); //back emf = E_b = E_m
//solution (a)
-N_m=(N_g*E_b)/E_a; //Speed of motor in RPM
+N_m=(N_g*E_b)/E_a;
N_m=round(N_m); //to round off the value of N_m
disp(sprintf("(a) The speed of the same machine as a motor is %d rpm",N_m));
//solution (b)
-//internal power developed as generator
+
//(i)
-//total power developed in the armature
-//=Eg.Iag
-p_g=(E_a*I_ag)/1000; //to express the answer in kW divide by 1000
-disp(sprintf("(b) (i) The internal power developed as generator is %.1f kW",p_g));
+p1=(E_a*I_ag)/1000; //to express the answer in kW
+disp(sprintf("(b) (i) The internal power developed as generator is %f kW",p1));
//(ii)
-//internal power developed as motor
-// is total power developed in armature
-//=Em.Iam
-p_m=(E_b*I_am)/1000;
-disp(sprintf("(b) (ii) The internal power developed as motor is %.1f kW",p_m));
+p2=(E_b*I_am)/1000;
+disp(sprintf("(b) (ii) The internal power developed as motor is %f kW",p2));
//END
diff --git a/1445/CH8/EX8.9/Ex8_9.sce b/1445/CH8/EX8.9/Ex8_9.sce
index fa24acd41..e518f9827 100644
--- a/1445/CH8/EX8.9/Ex8_9.sce
+++ b/1445/CH8/EX8.9/Ex8_9.sce
@@ -1,10 +1,10 @@
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 9
+clc;
disp("CHAPTER 8");
disp("EXAMPLE 9");
-//4 Pole 230 V lap wound shunt motor with 600 conductors. RPM 1800
//VARIABLE INITIALIZATION
P=4; //number of poles
v_t=230; //in Volts
@@ -16,14 +16,13 @@ l=20/100; //effective length of pole
B=4100/10000; //flux density from Gauss to Wb/m^2
//SOLUTION
-
I_f=v_t/r_f; //I_f is same as I_sh
-I_a=I_l-I_f; // armature current
+I_a=I_l-I_f;
ar=(%pi*d*l)/P; //area of pole
phi=ar*B; //phi = flux
-A=P; //for lap winding
-T=(phi*Z*I_a)/(2*%pi*A); //Torque developed
-disp(sprintf("The torque developed in the motor is %.4f N-m",T));
+A=P;
+T=(phi*Z*I_a)/(2*%pi*A);
+disp(sprintf("The torque developed in the motor is %f N-m",T));
//The answer is different as 'A' has not been included in the denominator(in the book)