blob: 5adaef4462853a0e96048faebc66333b2ed87e5c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 22
clc;
disp("CHAPTER 8");
disp("EXAMPLE 22");
//VARIABLE INITIALIZATION
N1=600; //in rpm
v=230; //in Volts
I_l1=50; //line current in Amperes
r_a=0.4; //armature resistance in Ohms
r_f=104.5; //field resistance in Ohms
drop=2; //brush drop in Volts
//SOLUTION
//solution (i)
I_l2=5;
I_a1=I_l1-(v/r_f);
E_b1=v-(I_a1*r_a)-drop;
I_a2=I_l2-(v/r_f);
E_b2=v-(I_a2*r_a)-drop;
N2=(E_b2/E_b1)*N1;
N2=round(N2);
disp(sprintf("(i) The speed at no load is %d rpm",N2));
//solution (ii)
I_l2=50;
N2=500;
E_b2=(N2/N1)*E_b1;
dif=v-drop; //difference
I_a2=I_l2-(v/r_f);
r_se=((dif-E_b2)/I_a2)-r_a;
disp(sprintf("(ii) The additional resistance is %f Ω",r_se));
//solution (iii)
phi1=1; //it is an assumption
I_a3=30;
N2=750;
E_b3=v-(I_a3*r_a)-drop;
phi2=(E_b3/E_b1)*(N1/N2)*phi1;
red=((1-phi2)*100*phi1)/phi1;
disp(sprintf("(iii) The percentage reduction of flux per pole is %f %%",red));
//END
|