blob: a9088f41b15b459bbbbed3148de7b5dc020c753d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 25
disp("CHAPTER 8");
disp("EXAMPLE 25");
//24 slot 2 pole DC machine with 18 turns per coil
//VARIABLE INITIALIZATION
slot=24; //number of slots
P=2; //number of poles
N=18; //number of turns per coil
B=1; //in Webers
l=20/100; //effective length in meters
rad=10/100; //radius in meters
w=183.2; //angular velocity in rad/s
//SOLUTION
A=2; // number of parallel paths
Z=slot*P*N; //total number of conductors
ar1=(2*%pi*rad*l)/P; // actual pole area
ar2=ar1*0.8; //since the magnetic poles 80% of the armature periphery
phi=B*ar2; //effective flux per pole
//solution (a)
E_a=(P*Z*phi*w)/(2*%pi*A);
disp(sprintf("(a) The induced emf is %.1f V",E_a));
//solution (b)
coil=slot/P; //number of coils in each path = slots/path
E_coil=E_a/coil; //induced emf per coil
disp(sprintf("(b) The induced emf per coil is %.2f V",E_coil));
//solution (c)
E_turn=E_coil/N; //emf induced per turn
disp(sprintf("(c) The induced emf per turn is %.2f V",E_turn));
//solution (d)
E_cond=E_turn/A; // emf induced per conductor
disp(sprintf("(d) The induced emf per conductor is %.3f V",E_cond));
//The answers are slightly different due to the precision of floating point numbers
//END
|