summaryrefslogtreecommitdiff
path: root/1040/CH4
diff options
context:
space:
mode:
authorprashantsinalkar2017-10-10 12:27:19 +0530
committerprashantsinalkar2017-10-10 12:27:19 +0530
commit7f60ea012dd2524dae921a2a35adbf7ef21f2bb6 (patch)
treedbb9e3ddb5fc829e7c5c7e6be99b2c4ba356132c /1040/CH4
parentb1f5c3f8d6671b4331cef1dcebdf63b7a43a3a2b (diff)
downloadScilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.gz
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.tar.bz2
Scilab-TBC-Uploads-7f60ea012dd2524dae921a2a35adbf7ef21f2bb6.zip
initial commit / add all books
Diffstat (limited to '1040/CH4')
-rw-r--r--1040/CH4/EX4.1.a/Chapter4_Ex1_a.sce32
-rw-r--r--1040/CH4/EX4.1.a/Chapter4_Ex1_a_Output.txt1
-rw-r--r--1040/CH4/EX4.1.b/Chapter4_Ex1_b.sce33
-rw-r--r--1040/CH4/EX4.1.b/Chapter4_Ex1_b_Output.txt2
-rw-r--r--1040/CH4/EX4.1.c/Chapter4_Ex1_c.sce36
-rw-r--r--1040/CH4/EX4.1.c/Chapter4_Ex1_c_Output.txt2
-rw-r--r--1040/CH4/EX4.1/Chapter4_Ex1.sce72
-rw-r--r--1040/CH4/EX4.2.a/Chapter4_Ex2_a.sce36
-rw-r--r--1040/CH4/EX4.2.a/Chapter4_Ex2_a_Output.txt2
-rw-r--r--1040/CH4/EX4.2.b/Chapter4_Ex2_b.sce39
-rw-r--r--1040/CH4/EX4.2.b/Chapter4_Ex2_b_Output.txt4
-rw-r--r--1040/CH4/EX4.2/Chapter4_Ex2.sce61
-rw-r--r--1040/CH4/EX4.3/Chapter4_Ex3.sce43
-rw-r--r--1040/CH4/EX4.4/Chapter4_Ex4.sce57
-rw-r--r--1040/CH4/EX4.5/Chapter4_Ex5.sce64
15 files changed, 484 insertions, 0 deletions
diff --git a/1040/CH4/EX4.1.a/Chapter4_Ex1_a.sce b/1040/CH4/EX4.1.a/Chapter4_Ex1_a.sce
new file mode 100644
index 000000000..34ff568da
--- /dev/null
+++ b/1040/CH4/EX4.1.a/Chapter4_Ex1_a.sce
@@ -0,0 +1,32 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436.
+//Chapter-4 Ex4.1.a Pg No. 135
+//Title:Diffusivity of Chlorine at 573K and 1.5atm
+//===========================================================================================================
+clear
+clc
+//INPUT
+S_g=235;//Total surface per gram (m2/g)
+V_g=0.29E-6;//Pore volume per gram (cm3/g)
+rho_p=1.41;
+D_He=0.0065;//Effective diffusivity of He (cm2/sec)
+M_He=4;//Molecular weight of He
+M_Cl2=70.09;//Molecular weight of Cl2
+T_ref=293;//Reference temperature
+T_degC=300;
+T=T_degC+273;//Reaction temperature(K)
+
+//CALCULATION
+r_bar=2*V_g/S_g;//Mean Pore radius
+D_Cl2=D_He*((M_He/M_Cl2)*(T/T_ref))^(0.5);//Assuming Knudsen flow at 573K
+
+//OUTPUT
+//Console Output
+mprintf('The predicted diffusivity of Chlorine is %0.2E cm2/s ',D_Cl2);
+
+//File Output
+fid= mopen('.\Chapter4_Ex1_a_Output.txt','w');
+mfprintf(fid,'The predicted diffusivity of Chlorine is %0.2E cm2/s ',D_Cl2);
+mclose(fid);
+//============================================END OF PROGRAM=================================================
+
+
diff --git a/1040/CH4/EX4.1.a/Chapter4_Ex1_a_Output.txt b/1040/CH4/EX4.1.a/Chapter4_Ex1_a_Output.txt
new file mode 100644
index 000000000..076d782b4
--- /dev/null
+++ b/1040/CH4/EX4.1.a/Chapter4_Ex1_a_Output.txt
@@ -0,0 +1 @@
+The predicted diffusivity of Chlorine is 2.17E-03 cm2/s \ No newline at end of file
diff --git a/1040/CH4/EX4.1.b/Chapter4_Ex1_b.sce b/1040/CH4/EX4.1.b/Chapter4_Ex1_b.sce
new file mode 100644
index 000000000..d35f481e6
--- /dev/null
+++ b/1040/CH4/EX4.1.b/Chapter4_Ex1_b.sce
@@ -0,0 +1,33 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436.
+//Chapter-4 Ex4.1.b Pg No. 135
+//Title: Computation of tortuosity in catalyst pellet
+//===========================================================================================================
+clear
+clc
+//INPUT
+S_g=235;//Total surface per gram (m2/g)
+V_g=0.29;//Pore volume per gram (cm3/g)
+D_AB=0.73;// at 1atm and 298K
+rho_p=1.41;//Density of particle (g/cm3)
+D_He=0.0065;//Effective diffusivity of He (cm2/sec)
+T_ref=293;//Reference temperature (K)
+M_He=4;//Molecular weight of He
+T=298;//Operating temperature
+
+//CALCULATION
+r_bar=2*V_g /(S_g *(10^4));
+D_K=9700*(r_bar)*(T_ref/M_He)^(0.5);//Knudsen flow
+D_AB1=D_AB*(293/298)^(1.7)// at 1.5 atm and 293K
+D_pore=1/((1/D_K)+(1/D_AB1));//pore diffusion
+Epsilon=V_g*rho_p;
+tau=(D_pore*Epsilon)/D_He;//Tortusity
+
+//OUTPUT
+//Console Output
+mprintf('\n The tortusity value = %0.2f',tau);
+
+//File Output
+fid= mopen('.\Chapter4_Ex1_b_Output.txt','w');
+mfprintf(fid,'\n The tortusity value = %0.2f',tau);
+mclose(fid);
+//========================================================END OF PROGRAM=================================
diff --git a/1040/CH4/EX4.1.b/Chapter4_Ex1_b_Output.txt b/1040/CH4/EX4.1.b/Chapter4_Ex1_b_Output.txt
new file mode 100644
index 000000000..b66731680
--- /dev/null
+++ b/1040/CH4/EX4.1.b/Chapter4_Ex1_b_Output.txt
@@ -0,0 +1,2 @@
+
+ The tortusity value = 1.25 \ No newline at end of file
diff --git a/1040/CH4/EX4.1.c/Chapter4_Ex1_c.sce b/1040/CH4/EX4.1.c/Chapter4_Ex1_c.sce
new file mode 100644
index 000000000..714a6cc01
--- /dev/null
+++ b/1040/CH4/EX4.1.c/Chapter4_Ex1_c.sce
@@ -0,0 +1,36 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436
+//Chapter-4 Ex4.1.c Pg No. 135
+//Title: Effective Diffusivity of chlorine at 15 atm
+//============================================================================================================
+clear
+clc
+//INPUT
+S_g=235;
+V_g=0.29;
+rho_p=1.41;
+T_ref=273;//Reference temperature (K)
+P_ref=1;//Reference pressure
+M_Cl2=70.9;//Molecular weight of Chlorine
+T=573;//operating temperature
+D_Cl2_CH4=0.15;//at 1atm 273K
+P=15;//operating pressure
+tau=1.25;//From value calculated in Ex4.1.b Pg. No. 136
+
+//CALCULATION
+r_bar=2*V_g /(S_g *(10^4));
+D_Cl2_CH4_new=D_Cl2_CH4*(P_ref/P)*(T/T_ref)^(1.7);
+D_K_Cl2=9700*r_bar*sqrt(T/M_Cl2);
+D_pore=1/((1/D_Cl2_CH4_new)+(1/D_K_Cl2));
+Epsilon=V_g*rho_p;
+D_Cl2=D_pore*Epsilon/tau;
+
+
+//OUTPUT
+//Console Output
+mprintf('\n The Effective diffusivity of Chlorine at %g K and %g atm = %0.2e cm2/sec ',T, P, D_Cl2);
+//File Output
+fid= mopen('.\Chapter4_Ex1_c_Output.txt','w');
+mfprintf(fid,'\n The Effective diffusivity of Chlorine at %g K and %g atm = %0.2e cm2/sec ',T, P, D_Cl2);
+mclose(fid);
+//=================================================END OF PROGRAM=============================================
+
diff --git a/1040/CH4/EX4.1.c/Chapter4_Ex1_c_Output.txt b/1040/CH4/EX4.1.c/Chapter4_Ex1_c_Output.txt
new file mode 100644
index 000000000..b5dfd6f3c
--- /dev/null
+++ b/1040/CH4/EX4.1.c/Chapter4_Ex1_c_Output.txt
@@ -0,0 +1,2 @@
+
+ The Effective diffusivity of Chlorine at 573 K and 15 atm = 1.87e-03 cm2/sec \ No newline at end of file
diff --git a/1040/CH4/EX4.1/Chapter4_Ex1.sce b/1040/CH4/EX4.1/Chapter4_Ex1.sce
new file mode 100644
index 000000000..e00945102
--- /dev/null
+++ b/1040/CH4/EX4.1/Chapter4_Ex1.sce
@@ -0,0 +1,72 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-4 Ex4.1 Pg No. 135
+//Title:Diffusivity of Chlorine and tortuosity in catalyst pellet
+//===========================================================================================================
+clear
+clc
+
+// COMMON INPUT
+S_g=235;//Total surface per gram (m2/g)
+V_g=0.29E-6;//Pore volume per gram (cm3/g)
+rho_p=1.41;//Density of particle (g/cm3)
+D_He=0.0065;//Effective diffusivity of He (cm2/sec)
+D_AB=0.73;// at 1atm and 298K
+M_He=4;//Molecular weight of He
+M_Cl2=70.09;//Molecular weight of Cl2
+T_ref=293;//Reference temperature
+T_degC=300;
+T_01=T_degC+273;//Reaction temperature(K) (Ex4.1.a)
+T_02=298;//Operating temperature (Ex4.1.b)
+T_03=573;//operating temperature (Ex4.1.c)
+P_ref=1;//Reference pressure
+D_Cl2_CH4=0.15;//at 1atm 273K
+P=15;//operating pressure
+//tau=1.25;//From value calculated in Ex4.1.b Pg. No. 136
+
+
+//CALCULATION (Ex4.1.a)
+r_bar=2*V_g/S_g;//Mean Pore radius
+D_Cl2_Ex_a=D_He*((M_He/M_Cl2)*(T_01/T_ref))^(0.5);//Assuming Knudsen flow at 573K
+
+//CALCULATION (Ex4.1.b)
+r_bar=2*V_g*(10^6)/(S_g *(10^4));
+D_K=9700*(r_bar)*(T_ref/M_He)^(0.5);//Knudsen flow
+D_AB1=D_AB*(293/298)^(1.7)// at 1.5 atm and 293K
+D_pore=1/((1/D_K)+(1/D_AB1));//pore diffusion
+Epsilon=V_g*rho_p*(10^6);
+tau=(D_pore*Epsilon)/D_He;//Tortusity
+
+//CALCULATION (Ex4.1.c)
+D_Cl2_CH4_new=D_Cl2_CH4*(P_ref/P)*(T_03/T_ref)^(1.7);
+D_K_Cl2=9700*r_bar*sqrt(T_03/M_Cl2);
+D_pore=1/((1/D_Cl2_CH4_new)+(1/D_K_Cl2));
+Epsilon=V_g*rho_p;
+D_Cl2_Ex_c=D_pore*Epsilon/tau;
+
+
+//OUTPUT
+mprintf('\n OUTPUT Ex4.1.a');
+mprintf('\n=================================================');
+mprintf('\nThe predicted diffusivity of Chlorine is %0.2e cm2/s ',D_Cl2_Ex_a);
+mprintf('\n\n OUTPUT Ex4.1.b');
+mprintf('\n=================================================');
+mprintf('\nThe tortusity value = %0.2f',tau);
+mprintf('\n\n OUTPUT Ex4.1.b');
+mprintf('\n=================================================')
+mprintf('\nThe Effective diffusivity of Chlorine at %g K and %g atm = %0.2e cm2/sec ',T_03, P, D_Cl2_Ex_c);
+
+//FILE OUTPUT
+fid= mopen('.\Chapter4-Ex1-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex4.1.a');
+mfprintf(fid,'\n=================================================');
+mfprintf(fid,'\nThe predicted diffusivity of Chlorine is %0.2e cm2/s ',D_Cl2_Ex_a);
+mfprintf(fid,'\n\n OUTPUT Ex4.1.b');
+mfprintf(fid,'\n=================================================');
+mfprintf(fid,'\nThe tortusity value = %0.2f',tau);
+mfprintf(fid,'\n\n OUTPUT Ex4.1.b');
+mfprintf(fid,'\n=================================================')
+mfprintf(fid,'\nThe Effective diffusivity of Chlorine at %g K and %g atm = %0.2e cm2/sec ',T_03, P, D_Cl2_Ex_c);
+mclose(fid)
+//============================================END OF PROGRAM=================================================
+
+
diff --git a/1040/CH4/EX4.2.a/Chapter4_Ex2_a.sce b/1040/CH4/EX4.2.a/Chapter4_Ex2_a.sce
new file mode 100644
index 000000000..5cde77c74
--- /dev/null
+++ b/1040/CH4/EX4.2.a/Chapter4_Ex2_a.sce
@@ -0,0 +1,36 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436
+//Chapter-4 Ex4.2.a Pg No. 140
+//Title:Effective diffusivity of O2 in air
+//============================================================================================================
+clear
+clc
+//INPUT
+S_g=150;//Total surface per gram (m2/g)
+V_g=0.45;//Pore volume per gram (cm3/g)
+V_i=0.30;//Micropore volume per gram (cm3/g)
+V_a=0.15;// Macropore volume per gram (cm3/g)
+rho_P=1.2;//Density of particle (g/cm3)
+tau=2.5;
+r_bar_i=40*(10^(-8));//Micropore radius
+r_bar_a=2000*(10^(-8));//Macropore radius
+D_AB=0.49;//For N2–O2 at 1 atm (cm2/s)
+M_O2=32;//Molecular weight of O2
+T=493;//Opereating Temperature (K)
+
+//CALCULATION
+Epsilon=V_g*rho_P;
+D_K_i=9700*(r_bar_i)*sqrt(T/M_O2);//Knudsen flow for micropore
+D_Pore_i=1/((1/D_K_i)+(1/D_AB))
+D_K_a=9700*(r_bar_a)*sqrt(T/M_O2);
+D_Pore_a=1/((1/D_K_a)+(1/D_AB));////Knudsen flow for macropore
+D_Pore_Avg=(V_i*D_Pore_i+V_a*D_Pore_a)/(V_i+V_a);
+D_e=Epsilon*D_Pore_Avg/tau;
+
+//OUTPUT
+//Console Output
+mprintf('\n The effective diffusivity of O2 in air = %0.2e cm2/s',D_e);
+//File Output
+fid= mopen('.\Chapter4_Ex2_a_Output.txt','w');
+mfprintf(fid,'\n The effective diffusivity of O2 in air = %0.2e cm2/s',D_e);
+mclose(fid);
+//======================================================END OF PROGRAM========================================
diff --git a/1040/CH4/EX4.2.a/Chapter4_Ex2_a_Output.txt b/1040/CH4/EX4.2.a/Chapter4_Ex2_a_Output.txt
new file mode 100644
index 000000000..a19e9eed8
--- /dev/null
+++ b/1040/CH4/EX4.2.a/Chapter4_Ex2_a_Output.txt
@@ -0,0 +1,2 @@
+
+ The effective diffusivity of O2 in air = 2.36e-02 cm2/s \ No newline at end of file
diff --git a/1040/CH4/EX4.2.b/Chapter4_Ex2_b.sce b/1040/CH4/EX4.2.b/Chapter4_Ex2_b.sce
new file mode 100644
index 000000000..3af409740
--- /dev/null
+++ b/1040/CH4/EX4.2.b/Chapter4_Ex2_b.sce
@@ -0,0 +1,39 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436
+//Chapter-4 Ex4.2.b Pg No.140
+//Title:Computation of surface mean pore radius, Diffusivity and tortusity
+//===========================================================================================================
+clear
+clc
+//INPUT
+S_g=150;//Total surface per gram (m2/g)
+V_g=0.45;//Pore volume per gram (cm3/g)
+V_i=0.30;//Micropore volume per gram (cm3/g)
+V_a=0.15;// Macropore volume per gram (cm3/g)
+rho_P=1.2;//Density of particle (g/cm3)
+tau=2.5;
+r_bar_i=40*(10^(-8));//Micropore radius
+r_bar_a=2000*(10^(-8));//Macropore radius
+D_AB=0.49;//For N2–O2 at 1 atm
+M_O2=32;//Molecular weight of O2
+T=493;//Opereating Temperature
+D_e=0.0235;//Refer Ex4.2a (cm2/s) Pg. No. 141
+
+//CALCULATION
+Epsilon=V_g*rho_P;
+r_bar=2*V_g/(S_g*10^4);
+D_K=9700*(r_bar)*sqrt(T/M_O2);//Knudsen Flow
+D_Pore=1/((1/D_K)+(1/D_AB));
+tau=D_Pore*Epsilon/D_e;
+
+//OUTPUT
+//Console Output
+mprintf('\n The calculated surface mean pore radius = %.0e cm',r_bar);
+mprintf('\n The predicted pore diffusivity = %0.2e cm2/sec',D_Pore);
+mprintf('\n The corresponding tortusity = %0.2f',tau);
+//File Output
+fid= mopen('.\Chapter4_Ex2_b_Output.txt','w');
+mfprintf(fid,'\n The calculated surface mean pore radius = %.0e cm',r_bar);
+mfprintf(fid,'\n The predicted pore diffusivity = %0.2e cm2/sec',D_Pore);
+mfprintf(fid,'\n The corresponding tortusity = %0.2f',tau);
+mclose(fid);
+//===========================================END OF PROGRAM==================================================
diff --git a/1040/CH4/EX4.2.b/Chapter4_Ex2_b_Output.txt b/1040/CH4/EX4.2.b/Chapter4_Ex2_b_Output.txt
new file mode 100644
index 000000000..7dccc0924
--- /dev/null
+++ b/1040/CH4/EX4.2.b/Chapter4_Ex2_b_Output.txt
@@ -0,0 +1,4 @@
+
+ The calculated surface mean pore radius = 6e-07 cm
+ The predicted pore diffusivity = 2.18e-02 cm2/sec
+ The corresponding tortusity = 0.50 \ No newline at end of file
diff --git a/1040/CH4/EX4.2/Chapter4_Ex2.sce b/1040/CH4/EX4.2/Chapter4_Ex2.sce
new file mode 100644
index 000000000..32279c58e
--- /dev/null
+++ b/1040/CH4/EX4.2/Chapter4_Ex2.sce
@@ -0,0 +1,61 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-4 Ex4.2 Pg No. 140
+//Title:Effective diffusivity of O2 in air
+//============================================================================================================
+clear
+clc
+// COMMON INPUT
+S_g=150;//Total surface per gram (m2/g)
+V_g=0.45;//Pore volume per gram (cm3/g)
+V_i=0.30;//Micropore volume per gram (cm3/g)
+V_a=0.15;// Macropore volume per gram (cm3/g)
+rho_P=1.2;//Density of particle (g/cm3)
+tau=2.5;// Tortusity
+r_bar_i=40*(10^(-8));//Micropore radius
+r_bar_a=2000*(10^(-8));//Macropore radius
+D_AB=0.49;//For N2–O2 at 1 atm (cm2/s)
+M_O2=32;//Molecular weight of O2
+T=493;//Opereating Temperature (K)
+
+
+
+//CALCULATION (Ex4.2.a)
+Epsilon=V_g*rho_P;
+D_K_i=9700*(r_bar_i)*sqrt(T/M_O2);//Knudsen flow for micropore
+D_Pore_i=1/((1/D_K_i)+(1/D_AB))
+D_K_a=9700*(r_bar_a)*sqrt(T/M_O2);
+D_Pore_a=1/((1/D_K_a)+(1/D_AB));////Knudsen flow for macropore
+D_Pore_Avg=(V_i*D_Pore_i+V_a*D_Pore_a)/(V_i+V_a);
+D_e=Epsilon*D_Pore_Avg/tau;
+
+//CALCULATION (Ex4.2.b)
+Epsilon=V_g*rho_P;
+r_bar=2*V_g/(S_g*10^4);
+D_K=9700*(r_bar)*sqrt(T/M_O2);//Knudsen Flow
+D_Pore=1/((1/D_K)+(1/D_AB));
+tau=D_Pore*Epsilon/D_e;
+
+//OUTPUT
+mprintf('\n OUTPUT Ex4.2.a');
+mprintf('\n=================================================');
+mprintf('\n The effective diffusivity of O2 in air = %0.2e cm2/s',D_e);
+mprintf('\n\n OUTPUT Ex4.2.b');
+mprintf('\n=================================================');
+mprintf('\n The calculated surface mean pore radius = %.0e cm',r_bar);
+mprintf('\n The predicted pore diffusivity = %0.2e cm2/sec',D_Pore);
+mprintf('\n The corresponding tortusity = %0.2f',tau);
+
+//FILE OUTPUT
+fid= mopen('.\Chapter4-Ex2-Output.txt','w');
+mfprintf(fid,'\n OUTPUT Ex4.2.a');
+mfprintf(fid,'\n=================================================');
+mfprintf(fid,'\n The effective diffusivity of O2 in air = %0.2e cm2/s',D_e);
+mfprintf(fid,'\n\n OUTPUT Ex4.2.b');
+mfprintf(fid,'\n=================================================');
+mfprintf(fid,'\n The calculated surface mean pore radius = %.0e cm',r_bar);
+mfprintf(fid,'\n The predicted pore diffusivity = %0.2e cm2/sec',D_Pore);
+mfprintf(fid,'\n The corresponding tortusity = %0.2f',tau);
+mclose(fid);
+
+
+//======================================================END OF PROGRAM========================================
diff --git a/1040/CH4/EX4.3/Chapter4_Ex3.sce b/1040/CH4/EX4.3/Chapter4_Ex3.sce
new file mode 100644
index 000000000..f17446d59
--- /dev/null
+++ b/1040/CH4/EX4.3/Chapter4_Ex3.sce
@@ -0,0 +1,43 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-4 Ex4.3 Pg No. 154
+//Title:Influence of Pore diffusion over rate
+//============================================================================================================
+clear
+clc
+//INPUT
+d_p=1/4;//Spherical Catalyst pellet size(inch)
+k=[7.6*10^-3 14*10^-3];//Reaction rates (mol/hr)
+f_A=[0.1 0.2];//Feed fraction of reactant A
+D_e=0.0085;// Diffusivity of A (cm2/s)
+rho_p=1.4 ;// Density of catalyst particle(g/cm3)
+V_ref=22400;// reference volume(cm3)
+T_ref=273;//Reference Temperature (K)
+P_ref=1;//Reference Pressure (atm)
+P=1.2;//Operating Pressure (atm)
+T_C=150;
+T=T_C+273;//Operating Temperature (K)
+
+//CALCULATION
+//For 10% of A
+C_A(1)=f_A(1)*T_ref*P_ref/(V_ref*T*P);
+R=d_p*2.54/2;
+k_app(1)=k(1)*rho_p/(3600*C_A(1));//Refer equation 4.53 Pg. No. 153
+phi_app(1)=R*sqrt(k_app(1)/D_e);//Refer equation 4.55 Pg. No. 155
+C_A(2)=f_A(2)*T_ref*P_ref/(V_ref*T*P);
+//If C_A is doubled the order is quite close to 1,from the Figure 4.8 Pg. No. 148, refer value of effectiveness
+eta_graph=0.42;
+k_app(2)=k_app(1)/eta_graph;
+phi_app(2)=R*sqrt(k_app(2)/D_e);
+eta_calc=(3/phi_app(2))*((1/tanh(phi_app(2)))-(1/phi_app(2)));
+eff_rate=(1-eta_graph)*100;
+
+//OUTPUT
+mprintf('\n The effectiveness from graph = %0.2f \n The calculated effectiveness = %0.2f',eta_graph,eta_calc);
+mprintf('\n The pore diffusion decreased the rate by %.0f%%',eff_rate);
+
+//FILE OUTPUT
+fid= mopen('.\Chapter4-Ex3-Output.txt','w');
+mfprintf(fid,'\n The effectiveness from graph = %0.2f \n The calculated effectiveness = %0.2f',eta_graph,eta_calc);
+mfprintf(fid,'\n The pore diffusion decreased the rate by %.0f%%',eff_rate);
+mclose(fid);
+//==============================================================END OF PROGRAM===============================
diff --git a/1040/CH4/EX4.4/Chapter4_Ex4.sce b/1040/CH4/EX4.4/Chapter4_Ex4.sce
new file mode 100644
index 000000000..942eae0cb
--- /dev/null
+++ b/1040/CH4/EX4.4/Chapter4_Ex4.sce
@@ -0,0 +1,57 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc. USA,pp 436.
+//Chapter-4 Ex4.4 Pg No.157
+//Title: Effectiveness factor for solid catalyzed reaction
+//======================================================================================================================
+clear
+clc
+//INPUT
+D_e_A=0.02;//(cm2/s)
+D_e_B=0.03;//(cm2/s)
+D_e_C=0.015;//(cm2/s)
+X_f_A=0.3;
+X_f_B=(1-X_f_A);
+eta_assumed=0.68;//Effectiveness factor from Fig.4.8 for first order reaction
+T=150;//(deg C)
+T_K=T+273;//(K)
+r=0.3;//(cm)Radius of catalyst sphere
+P_opt=4;//(atm)Operating Pressure
+R=82.056;//(cm3 atm/K mol)Gas constant
+
+
+//CALCULATION
+//Kinetic equation r= (2.5*10^-5*P_A*P_B)/(1+0.1*P_A+2*P_C)^2
+P_A=X_f_A*P_opt;
+P_B=X_f_B*P_opt;
+r_star=(2.5*10^-5*P_A*P_B)/(1+0.1*P_A)^2;
+C_A=P_A/(R*T_K);
+k=r_star/C_A;
+Phi= r*(k/D_e_A)^(0.5);
+P_A_bar=eta_assumed*P_A;
+delta_P_A=P_A*(1-eta_assumed);
+delta_P_B=delta_P_A*(D_e_A/D_e_B);
+P_B_bar=P_B-delta_P_B;
+delta_P_C=delta_P_A*(D_e_A/D_e_C);
+P_C_bar=delta_P_C;
+r_calc=(2.5*10^-5*P_A_bar*P_B_bar)/(1+0.1*P_A_bar+2*P_C_bar)^2
+eta_calc=r_calc/r_star;
+eta_approx=(eta_calc+eta_assumed)/2;
+
+//OUTPUT
+//Console Output
+mprintf('\tBased on average pressures calculated Rate and Effectiveness factor');
+mprintf('\n\t r : %0.2E (mol/s cm3)',r_calc);
+mprintf('\n\t eta_calc : %0.3f ',eta_calc);
+mprintf('\n The actual value of Effectiveness factor eta_actual :%0.1f',eta_approx);
+
+//File Output
+fid= mopen('.\Chapter4-Ex4-Output.txt','w');
+mfprintf(fid,'\tBased on average pressures calculated Rate and Effectiveness factor');
+mfprintf(fid,'\n\t r : %0.2E (mol/s cm3)',r_calc);
+mfprintf(fid,'\n\t eta_calc : %0.3f ',eta_calc);
+mfprintf(fid,'\n The actual value of Effectiveness factor eta_actual :%0.1f',eta_approx);
+mclose(fid);
+//================================================END OF PROGRAM==================================================================================
+
+
+
+
diff --git a/1040/CH4/EX4.5/Chapter4_Ex5.sce b/1040/CH4/EX4.5/Chapter4_Ex5.sce
new file mode 100644
index 000000000..9595a726c
--- /dev/null
+++ b/1040/CH4/EX4.5/Chapter4_Ex5.sce
@@ -0,0 +1,64 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc.,USA,pp 436.
+//Chapter-4 Ex4.5 Pg No. 164
+//Title:The optimum pore size distribution for a spherical pellet
+//=============================================================================================================
+clear
+clc
+//INPUT
+d_pellet=5*10^-1;//Catalyst pellet size (cm)
+k_cat =3.6;// True Rate Constant (sec-1)
+V_g_cat=0.60 ;// Pore Volume of the catalyst(cm3/g)
+S_g_cat=300*10^4;//Surface area of catalyst (cm2/g)
+dp=0.02;// Size of powdered catalyst(cm)
+rho_p=0.8 ;// Density of catalyst particle(g/cm3)
+r_bar_narrow= 40*10^(-10)//narrow distribution
+D_KA=0.012 ;//(cm2/sec)
+D_AB= 0.40 ;//(cm2/sec)
+r_macro=2000*10^(-10);//For Macropores
+V_cat=1/rho_p;//Total catalyst volume (cm3/g)
+eta=1;//For powdered catalyst
+
+//CALCULATION
+epsilon=V_g_cat/V_cat;
+r_bar=2*V_g_cat/S_g_cat;
+R=dp/2;
+R_pellet=d_pellet/2;
+D_pore_a=1/((1/D_KA)+(1/D_AB));
+tau=3;//Assumed value
+D_e_cat=D_pore_a*epsilon/tau;
+Phi_app=R*sqrt(k_cat/D_e_cat);//Refer equation 4.55 Pg. No. 153
+D_KB=D_KA*(r_macro/r_bar_narrow);
+D_pore_b=1/((1/D_KB)+(1/D_AB));
+V_a_end=0.35;
+del_V_a=-0.05;
+V_a=V_g_cat:del_V_a:V_a_end;
+ for i=1:6
+ V_b(i)=V_g_cat-V_a(i);//Refer Equation 4.81 Pg. No. 164
+ S_a(i)=2*(V_a(i)/r_bar_narrow)*(10^-6);
+ S_b(i)=2*(V_b(i)/r_macro)*(10^-6);
+ S_g(i)=S_a(i)+S_b(i);
+ k(i)=k_cat*S_g(i)/(S_g_cat*10^-4);
+ D_e(i)=((D_pore_a*V_a(i)+D_pore_b*V_b(i))/V_g_cat)*(epsilon/tau);
+ phi(i)=R_pellet*sqrt(k(i)/D_e(i));
+ eta(i)=(3/phi(i))*((1/tanh(phi(i)))-(1/phi(i)));
+ eta_k(i)=eta(i)*k(i)
+ end
+ //OUTPUT
+ mprintf('\n===================================================================================================================')
+ mprintf('\nV_a \t V_b \t\t S_a \t S_b \t S_g \t k \t D_e \t phi\teta\teta_k');
+ mprintf('\nVolume \t cm3/g \t\t Surface Area \t m2/g \t\t s-1 \t cm2/s \t (-)\t(-) \t (-)');
+ mprintf('\n===================================================================================================================')
+ for i=1:6
+ mprintf('\n %.2f \t %0.2f \t\t %.0f \t %.1f \t %0.1f \t\t %0.2f \t%0.2e\t%0.2f \t %0.2f \t %0.2f',V_a(i),V_b(i),S_a(i),S_b(i),S_g(i),k(i),D_e(i),phi(i),eta(i),eta_k(i));
+ end
+
+//FILE OUTPUT
+fid= mopen('.\Chapter4-Ex5-Output.txt','w');
+ mfprintf(fid,'\n===================================================================================================================')
+ mfprintf(fid,'\nV_a \t V_b \t\t S_a \t S_b \t S_g \t k \t D_e \t phi\teta\teta_k');
+ mfprintf(fid,'\nVolume \t cm3/g \t\t Surface Area \t m2/g \t\t s-1 \t cm2/s \t (-)\t(-) \t (-)');
+ mfprintf(fid,'\n===================================================================================================================')
+ for i=1:6
+ mfprintf(fid,'\n %.2f \t %0.2f \t\t %.0f \t %.1f \t %0.1f \t\t %0.2f \t%0.2e\t%0.2f \t %0.2f \t %0.2f',V_a(i),V_b(i),S_a(i),S_b(i),S_g(i),k(i),D_e(i),phi(i),eta(i),eta_k(i));
+ end
+//==============================================================END OF PROGRAM===================================================