summaryrefslogtreecommitdiff
path: root/1040/CH4/EX4.2.b/Chapter4_Ex2_b.sce
diff options
context:
space:
mode:
Diffstat (limited to '1040/CH4/EX4.2.b/Chapter4_Ex2_b.sce')
-rw-r--r--1040/CH4/EX4.2.b/Chapter4_Ex2_b.sce39
1 files changed, 39 insertions, 0 deletions
diff --git a/1040/CH4/EX4.2.b/Chapter4_Ex2_b.sce b/1040/CH4/EX4.2.b/Chapter4_Ex2_b.sce
new file mode 100644
index 000000000..3af409740
--- /dev/null
+++ b/1040/CH4/EX4.2.b/Chapter4_Ex2_b.sce
@@ -0,0 +1,39 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436
+//Chapter-4 Ex4.2.b Pg No.140
+//Title:Computation of surface mean pore radius, Diffusivity and tortusity
+//===========================================================================================================
+clear
+clc
+//INPUT
+S_g=150;//Total surface per gram (m2/g)
+V_g=0.45;//Pore volume per gram (cm3/g)
+V_i=0.30;//Micropore volume per gram (cm3/g)
+V_a=0.15;// Macropore volume per gram (cm3/g)
+rho_P=1.2;//Density of particle (g/cm3)
+tau=2.5;
+r_bar_i=40*(10^(-8));//Micropore radius
+r_bar_a=2000*(10^(-8));//Macropore radius
+D_AB=0.49;//For N2–O2 at 1 atm
+M_O2=32;//Molecular weight of O2
+T=493;//Opereating Temperature
+D_e=0.0235;//Refer Ex4.2a (cm2/s) Pg. No. 141
+
+//CALCULATION
+Epsilon=V_g*rho_P;
+r_bar=2*V_g/(S_g*10^4);
+D_K=9700*(r_bar)*sqrt(T/M_O2);//Knudsen Flow
+D_Pore=1/((1/D_K)+(1/D_AB));
+tau=D_Pore*Epsilon/D_e;
+
+//OUTPUT
+//Console Output
+mprintf('\n The calculated surface mean pore radius = %.0e cm',r_bar);
+mprintf('\n The predicted pore diffusivity = %0.2e cm2/sec',D_Pore);
+mprintf('\n The corresponding tortusity = %0.2f',tau);
+//File Output
+fid= mopen('.\Chapter4_Ex2_b_Output.txt','w');
+mfprintf(fid,'\n The calculated surface mean pore radius = %.0e cm',r_bar);
+mfprintf(fid,'\n The predicted pore diffusivity = %0.2e cm2/sec',D_Pore);
+mfprintf(fid,'\n The corresponding tortusity = %0.2f',tau);
+mclose(fid);
+//===========================================END OF PROGRAM==================================================