summaryrefslogtreecommitdiff
path: root/1040/CH4/EX4.1.c/Chapter4_Ex1_c.sce
diff options
context:
space:
mode:
Diffstat (limited to '1040/CH4/EX4.1.c/Chapter4_Ex1_c.sce')
-rw-r--r--1040/CH4/EX4.1.c/Chapter4_Ex1_c.sce36
1 files changed, 36 insertions, 0 deletions
diff --git a/1040/CH4/EX4.1.c/Chapter4_Ex1_c.sce b/1040/CH4/EX4.1.c/Chapter4_Ex1_c.sce
new file mode 100644
index 000000000..714a6cc01
--- /dev/null
+++ b/1040/CH4/EX4.1.c/Chapter4_Ex1_c.sce
@@ -0,0 +1,36 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436
+//Chapter-4 Ex4.1.c Pg No. 135
+//Title: Effective Diffusivity of chlorine at 15 atm
+//============================================================================================================
+clear
+clc
+//INPUT
+S_g=235;
+V_g=0.29;
+rho_p=1.41;
+T_ref=273;//Reference temperature (K)
+P_ref=1;//Reference pressure
+M_Cl2=70.9;//Molecular weight of Chlorine
+T=573;//operating temperature
+D_Cl2_CH4=0.15;//at 1atm 273K
+P=15;//operating pressure
+tau=1.25;//From value calculated in Ex4.1.b Pg. No. 136
+
+//CALCULATION
+r_bar=2*V_g /(S_g *(10^4));
+D_Cl2_CH4_new=D_Cl2_CH4*(P_ref/P)*(T/T_ref)^(1.7);
+D_K_Cl2=9700*r_bar*sqrt(T/M_Cl2);
+D_pore=1/((1/D_Cl2_CH4_new)+(1/D_K_Cl2));
+Epsilon=V_g*rho_p;
+D_Cl2=D_pore*Epsilon/tau;
+
+
+//OUTPUT
+//Console Output
+mprintf('\n The Effective diffusivity of Chlorine at %g K and %g atm = %0.2e cm2/sec ',T, P, D_Cl2);
+//File Output
+fid= mopen('.\Chapter4_Ex1_c_Output.txt','w');
+mfprintf(fid,'\n The Effective diffusivity of Chlorine at %g K and %g atm = %0.2e cm2/sec ',T, P, D_Cl2);
+mclose(fid);
+//=================================================END OF PROGRAM=============================================
+