summaryrefslogtreecommitdiff
path: root/1040/CH4/EX4.2.a/Chapter4_Ex2_a.sce
diff options
context:
space:
mode:
Diffstat (limited to '1040/CH4/EX4.2.a/Chapter4_Ex2_a.sce')
-rw-r--r--1040/CH4/EX4.2.a/Chapter4_Ex2_a.sce36
1 files changed, 36 insertions, 0 deletions
diff --git a/1040/CH4/EX4.2.a/Chapter4_Ex2_a.sce b/1040/CH4/EX4.2.a/Chapter4_Ex2_a.sce
new file mode 100644
index 000000000..5cde77c74
--- /dev/null
+++ b/1040/CH4/EX4.2.a/Chapter4_Ex2_a.sce
@@ -0,0 +1,36 @@
+//Harriot P.,2003,Chemical Reactor Design (I-Edition) Marcel Dekker,Inc., USA,pp 436
+//Chapter-4 Ex4.2.a Pg No. 140
+//Title:Effective diffusivity of O2 in air
+//============================================================================================================
+clear
+clc
+//INPUT
+S_g=150;//Total surface per gram (m2/g)
+V_g=0.45;//Pore volume per gram (cm3/g)
+V_i=0.30;//Micropore volume per gram (cm3/g)
+V_a=0.15;// Macropore volume per gram (cm3/g)
+rho_P=1.2;//Density of particle (g/cm3)
+tau=2.5;
+r_bar_i=40*(10^(-8));//Micropore radius
+r_bar_a=2000*(10^(-8));//Macropore radius
+D_AB=0.49;//For N2–O2 at 1 atm (cm2/s)
+M_O2=32;//Molecular weight of O2
+T=493;//Opereating Temperature (K)
+
+//CALCULATION
+Epsilon=V_g*rho_P;
+D_K_i=9700*(r_bar_i)*sqrt(T/M_O2);//Knudsen flow for micropore
+D_Pore_i=1/((1/D_K_i)+(1/D_AB))
+D_K_a=9700*(r_bar_a)*sqrt(T/M_O2);
+D_Pore_a=1/((1/D_K_a)+(1/D_AB));////Knudsen flow for macropore
+D_Pore_Avg=(V_i*D_Pore_i+V_a*D_Pore_a)/(V_i+V_a);
+D_e=Epsilon*D_Pore_Avg/tau;
+
+//OUTPUT
+//Console Output
+mprintf('\n The effective diffusivity of O2 in air = %0.2e cm2/s',D_e);
+//File Output
+fid= mopen('.\Chapter4_Ex2_a_Output.txt','w');
+mfprintf(fid,'\n The effective diffusivity of O2 in air = %0.2e cm2/s',D_e);
+mclose(fid);
+//======================================================END OF PROGRAM========================================