diff options
author | debashisdeb | 2014-06-20 15:42:42 +0530 |
---|---|---|
committer | debashisdeb | 2014-06-20 15:42:42 +0530 |
commit | 83c1bfceb1b681b4bb7253b47491be2d8b2014a1 (patch) | |
tree | f54eab21dd3d725d64a495fcd47c00d37abed004 /Industrial_Instrumentation | |
parent | a78126bbe4443e9526a64df9d8245c4af8843044 (diff) | |
download | Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.gz Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.bz2 Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.zip |
removing problem statements
Diffstat (limited to 'Industrial_Instrumentation')
-rw-r--r-- | Industrial_Instrumentation/Chapter_1.ipynb | 567 | ||||
-rw-r--r-- | Industrial_Instrumentation/Chapter_2.ipynb | 871 | ||||
-rw-r--r-- | Industrial_Instrumentation/Chapter_3.ipynb | 526 | ||||
-rw-r--r-- | Industrial_Instrumentation/Chapter_4.ipynb | 798 | ||||
-rw-r--r-- | Industrial_Instrumentation/Chapter_5.ipynb | 1206 | ||||
-rw-r--r-- | Industrial_Instrumentation/Chapter_6.ipynb | 786 | ||||
-rw-r--r-- | Industrial_Instrumentation/Chapter_7.ipynb | 799 | ||||
-rw-r--r-- | Industrial_Instrumentation/Chapter_8.ipynb | 686 | ||||
-rw-r--r-- | Industrial_Instrumentation/ch2.ipynb | 69 | ||||
-rw-r--r-- | Industrial_Instrumentation/ch3.ipynb | 128 | ||||
-rw-r--r-- | Industrial_Instrumentation/ch4.ipynb | 314 | ||||
-rw-r--r-- | Industrial_Instrumentation/ch5.ipynb | 234 | ||||
-rw-r--r-- | Industrial_Instrumentation/ch6.ipynb | 108 | ||||
-rw-r--r-- | Industrial_Instrumentation/ch7.ipynb | 24 | ||||
-rw-r--r-- | Industrial_Instrumentation/ch8.ipynb | 90 | ||||
-rw-r--r-- | Industrial_Instrumentation/ch9.ipynb | 110 |
16 files changed, 3391 insertions, 3925 deletions
diff --git a/Industrial_Instrumentation/Chapter_1.ipynb b/Industrial_Instrumentation/Chapter_1.ipynb index ee337d56..d0854801 100644 --- a/Industrial_Instrumentation/Chapter_1.ipynb +++ b/Industrial_Instrumentation/Chapter_1.ipynb @@ -1,412 +1,433 @@ { "metadata": { - "name": "Chapter_1" - }, - "nbformat": 2, + "name": "", + "signature": "sha256:6ba3160044fd56988f5c5098ab622aa22c3eae2ec5a701c2274f1da18b060ff5" + }, + "nbformat": 3, + "nbformat_minor": 0, "worksheets": [ { "cells": [ { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h1>Chapter 1: Temperature<h1>" ] - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 1.1, Page Number: 53<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Temperature Conversion'''", - "", - "#variable declaration", - "c=-40.0 #Temp in degree Celcius", - "", - "#calculations", - "k=c+273", - "F=((9.0/5.0)*c)+32.0", - "R=((9.0/5.0)*c)+492.0", - "", - "#Result", - "print('\\nK=%d\u00b0K' %k)", - "print('\\nF=%d\u00b0F' %F)", + "\n", + "\n", + "#variable declaration\n", + "c=-40.0 #Temp in degree Celcius\n", + "\n", + "#calculations\n", + "k=c+273\n", + "F=((9.0/5.0)*c)+32.0\n", + "R=((9.0/5.0)*c)+492.0\n", + "\n", + "#Result\n", + "print('\\nK=%d\u00b0K' %k)\n", + "print('\\nF=%d\u00b0F' %F)\n", "print('\\nR=%d\u00b0R' %R)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "", - "K=233\u00b0K", - "", - "F=-40\u00b0F", - "", + "\n", + "K=233\u00b0K\n", + "\n", + "F=-40\u00b0F\n", + "\n", "R=420\u00b0R" ] } - ], + ], "prompt_number": 1 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3> Example 1.2, Page Number: 53<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''percentage Accuracy and Error'''", - "", - "#varable Declaration", - "span=1000.0 #given value of span in \u00b0C", - "accuracy=1.0/100.0 #1% accuracy", - "", - "#calculations", - "err=span*accuracy", - "max_scale=1200.0", - "Range_instr=max_scale+span", - "meter_reading=700.0", - "per_of_err=(err/meter_reading)*100.0", - "", - "#result", - "print('(a)\\nAs error can be either positive or negative') ", - "print('\\n the probable error at any point on the scale =\u00b1 %d\u00b0C'%err)", - "print('\\n(b)\\nRange of the Instrument = %d\u00b0C'%Range_instr)", + "\n", + "\n", + "#varable Declaration\n", + "span=1000.0 #given value of span in \u00b0C\n", + "accuracy=1.0/100.0 #1% accuracy\n", + "\n", + "#calculations\n", + "err=span*accuracy\n", + "max_scale=1200.0\n", + "Range_instr=max_scale+span\n", + "meter_reading=700.0\n", + "per_of_err=(err/meter_reading)*100.0\n", + "\n", + "#result\n", + "print('(a)\\nAs error can be either positive or negative') \n", + "print('\\n the probable error at any point on the scale =\u00b1 %d\u00b0C'%err)\n", + "print('\\n(b)\\nRange of the Instrument = %d\u00b0C'%Range_instr)\n", "print('\\n(c)\\nPercentage of Error = \u00b1 %.2f%% '%per_of_err)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "As error can be either positive or negative", - "", - " the probable error at any point on the scale =\u00b1 10\u00b0C", - "", - "(b)", - "Range of the Instrument = 2200\u00b0C", - "", - "(c)", + "(a)\n", + "As error can be either positive or negative\n", + "\n", + " the probable error at any point on the scale =\u00b1 10\u00b0C\n", + "\n", + "(b)\n", + "Range of the Instrument = 2200\u00b0C\n", + "\n", + "(c)\n", "Percentage of Error = \u00b1 1.43% " ] } - ], + ], "prompt_number": 10 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 1.3, Page Number: 54<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Two wire RTD'''", - "", - "#variable declaration", - "resi_per_leg=5.0 # lead wire resistance per leg in Ohm", - "temp_coeff=0.385 # Temperature coefficient of Pt 100 RTD in ohms/\u00b0C", - "", - "#calculation", - "R_due_to_leadwires=2*resi_per_leg", - "err=R_due_to_leadwires/temp_coeff", - "err =round(err,0)", - "temp_obj=200.0", - "temp_measured=temp_obj+err", - "per_of_err=((temp_measured-temp_obj)/temp_obj)*100.0", - "", - "#Result", - "print('(a)\\nThe contribution of 10 ohms lead wire resistance')", - "print('to the measurement error = %d\u00b0C' %err)", + "\n", + "\n", + "#variable declaration\n", + "resi_per_leg=5.0 # lead wire resistance per leg in Ohm\n", + "temp_coeff=0.385 # Temperature coefficient of Pt 100 RTD in ohms/\u00b0C\n", + "\n", + "#calculation\n", + "R_due_to_leadwires=2*resi_per_leg\n", + "err=R_due_to_leadwires/temp_coeff\n", + "err =round(err,0)\n", + "temp_obj=200.0\n", + "temp_measured=temp_obj+err\n", + "per_of_err=((temp_measured-temp_obj)/temp_obj)*100.0\n", + "\n", + "#Result\n", + "print('(a)\\nThe contribution of 10 ohms lead wire resistance')\n", + "print('to the measurement error = %d\u00b0C' %err)\n", "print('\\n(b)\\nPercentage of Error = %d%%' %per_of_err)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "The contribution of 10 ohms lead wire resistance", - "to the measurement error = 26\u00b0C", - "", - "(b)", + "(a)\n", + "The contribution of 10 ohms lead wire resistance\n", + "to the measurement error = 26\u00b0C\n", + "\n", + "(b)\n", "Percentage of Error = 13%" ] } - ], + ], "prompt_number": 3 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 1.4, Page Number: 54<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Thermocouple temperature measurement'''", - "", - "#variable declaration", - "temp=2.022 #Millivolt corresponds to reference junction temp 50\u00b0C", - "millivolt_cor=37.325 #Millivolt corresponds to reference junction temp 900\u00b0C", - "", - "#calculation", - "op=millivolt_cor-temp", - "", - "#result", + "\n", + "\n", + "#variable declaration\n", + "temp=2.022 #Millivolt corresponds to reference junction temp 50\u00b0C\n", + "millivolt_cor=37.325 #Millivolt corresponds to reference junction temp 900\u00b0C\n", + "\n", + "#calculation\n", + "op=millivolt_cor-temp\n", + "\n", + "#result\n", "print('Millivolt output available = % .3f' %op)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Millivolt output available = 35.303" ] } - ], + ], "prompt_number": 4 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 1.5, Page Number: 54<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Hot junction temperature of thermocouple'''", - "", - "#variable declaration", - "millivolt_cor=2.585 #Millivolt corresponds to reference junction temp 50\u00b0C", - "pot_reading=30.511 #reading on pot", - "", - "#calculation", - "corrected_millivolt=pot_reading+millivolt_cor", - "", - "#result", + "\n", + "\n", + "#variable declaration\n", + "millivolt_cor=2.585 #Millivolt corresponds to reference junction temp 50\u00b0C\n", + "pot_reading=30.511 #reading on pot\n", + "\n", + "#calculation\n", + "corrected_millivolt=pot_reading+millivolt_cor\n", + "\n", + "#result\n", "print('Temperature correspond to %.3f mV from the table = 600\u00b0C' %corrected_millivolt)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Temperature correspond to 33.096 mV from the table = 600\u00b0C" ] } - ], + ], "prompt_number": 5 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 1.6, Page Number: 54<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Caliberation of an instrument'''", - "", - "#variable Declarion", - "ref_jun=100.0 #reference junction temp.", - "mV_100=0.645 #voltage at 100\u00b0C", - "mV_1000=9.585 #voltage at 1000\u00b0C", - "mV_1200=11.947 #voltage at 1200\u00b0C", - "", - "#calculation", - "op1=mV_1000-mV_100", - "op2=mV_1200-mV_100", - "", - "#result", - "print('Millivolt to be fed checking 1000 C = %.3f mV'%op1)", + "\n", + "\n", + "#variable Declarion\n", + "ref_jun=100.0 #reference junction temp.\n", + "mV_100=0.645 #voltage at 100\u00b0C\n", + "mV_1000=9.585 #voltage at 1000\u00b0C\n", + "mV_1200=11.947 #voltage at 1200\u00b0C\n", + "\n", + "#calculation\n", + "op1=mV_1000-mV_100\n", + "op2=mV_1200-mV_100\n", + "\n", + "#result\n", + "print('Millivolt to be fed checking 1000 C = %.3f mV'%op1)\n", "print('\\nMillivolt to be fed checking 1200 C = %.3f mV'%op2)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "Millivolt to be fed checking 1000 C = 8.940 mV", - "", + "Millivolt to be fed checking 1000 C = 8.940 mV\n", + "\n", "Millivolt to be fed checking 1200 C = 11.302 mV" ] } - ], + ], "prompt_number": 6 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 1.7, page Number: 55<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Wall temperature measurement'''", - "", - "#variable declaration", - "E_rec_pyro=0.95*0.85 #Energy received by pyrometer", - "", - "#calculation", - "T=1100.0/E_rec_pyro", - " ", - "#result", + "\n", + "#variable declaration\n", + "E_rec_pyro=0.95*0.85 #Energy received by pyrometer\n", + "\n", + "#calculation\n", + "T=1100.0/E_rec_pyro\n", + " \n", + "#result\n", "print('Pyrometer reading T = %.2f\u00b0C'%T)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Pyrometer reading T = 1362.23\u00b0C" ] } - ], + ], "prompt_number": 7 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 1.8, Page Number: 55<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Thermocouple output'''", - "", - "#(a)", - "", - "#variable declaration", - "hot1_mV=41.29 # Millivolt corresponds to hot junction temp ", - "cold1_mV=2.022 # Millivolt corresponds to cold junction temp ", - "", - "#calculation", - "op1=hot1_mV-cold1_mV", - "", - "#(b)", - "", - "#variable declaration", - "hot2_mV=33.096 #Millivolt corresponds to hot junction temp ", - "cold2_mV=2.585 #Millivolt corresponds to cold junction temp ", - "#calculation", - "op2=hot2_mV-cold2_mV", - "", - "#(c)", - "", - "#variable declaration", - "hot3_mV=11.947 #Millivolt corresponds to hot junction temp ", - "cold3_mV=0.299 #Millivolt corresponds to cold junction temp ", - "#calculation", - "op3=hot3_mV-cold3_mV", - "", - "#result", - "print('(a)\\nOutput Millivolt = %.3f'%op1)", - "print('\\n(b)\\nOutput Millivolt = %.3f'%op2)", - "print('\\n(c)\\nAs the wrongly formed thermocouples at J1 and J2 will always oppose')", - "print('the main millivolt output, the net output will be lower than normal value.')", + "\n", + "\n", + "#(a)\n", + "\n", + "#variable declaration\n", + "hot1_mV=41.29 # Millivolt corresponds to hot junction temp \n", + "cold1_mV=2.022 # Millivolt corresponds to cold junction temp \n", + "\n", + "#calculation\n", + "op1=hot1_mV-cold1_mV\n", + "\n", + "#(b)\n", + "\n", + "#variable declaration\n", + "hot2_mV=33.096 #Millivolt corresponds to hot junction temp \n", + "cold2_mV=2.585 #Millivolt corresponds to cold junction temp \n", + "#calculation\n", + "op2=hot2_mV-cold2_mV\n", + "\n", + "#(c)\n", + "\n", + "#variable declaration\n", + "hot3_mV=11.947 #Millivolt corresponds to hot junction temp \n", + "cold3_mV=0.299 #Millivolt corresponds to cold junction temp \n", + "#calculation\n", + "op3=hot3_mV-cold3_mV\n", + "\n", + "#result\n", + "print('(a)\\nOutput Millivolt = %.3f'%op1)\n", + "print('\\n(b)\\nOutput Millivolt = %.3f'%op2)\n", + "print('\\n(c)\\nAs the wrongly formed thermocouples at J1 and J2 will always oppose')\n", + "print('the main millivolt output, the net output will be lower than normal value.')\n", "print('Output mV<%.3f'%op3)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "Output Millivolt = 39.268", - "", - "(b)", - "Output Millivolt = 30.511", - "", - "(c)", - "As the wrongly formed thermocouples at J1 and J2 will always oppose", - "the main millivolt output, the net output will be lower than normal value.", + "(a)\n", + "Output Millivolt = 39.268\n", + "\n", + "(b)\n", + "Output Millivolt = 30.511\n", + "\n", + "(c)\n", + "As the wrongly formed thermocouples at J1 and J2 will always oppose\n", + "the main millivolt output, the net output will be lower than normal value.\n", "Output mV<11.648" ] } - ], + ], "prompt_number": 8 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 1.9, Page Number: 56<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''electtronic temperature transmitter'''", - "", - "#variable declaration", - "Rl_ind=250.0 #load resistor for indicator", - "Rl_rec=250.0 #load resistor for recorder", - "load_allowable=600.0 #allowable load with load independency", - "", - "#calculation", - "load_connected= Rl_ind+Rl_rec", - "max_load_controller=load_allowable-load_connected", - "op_cont=600.0", - "total=Rl_ind+Rl_rec+load_allowable", - "extra_load=total-op_cont", - "", - "#result", - "print('(a)\\nThe max load to the controller = %d ohms'%max_load_controller)", - "print('\\n(b)\\nExtra Load = %d ohms'%extra_load)", - "print('\\nAdditional Power Supply voltage required = 10 V')", + "\n", + "\n", + "#variable declaration\n", + "Rl_ind=250.0 #load resistor for indicator\n", + "Rl_rec=250.0 #load resistor for recorder\n", + "load_allowable=600.0 #allowable load with load independency\n", + "\n", + "#calculation\n", + "load_connected= Rl_ind+Rl_rec\n", + "max_load_controller=load_allowable-load_connected\n", + "op_cont=600.0\n", + "total=Rl_ind+Rl_rec+load_allowable\n", + "extra_load=total-op_cont\n", + "\n", + "#result\n", + "print('(a)\\nThe max load to the controller = %d ohms'%max_load_controller)\n", + "print('\\n(b)\\nExtra Load = %d ohms'%extra_load)\n", + "print('\\nAdditional Power Supply voltage required = 10 V')\n", "print('\\nMinimum Power Supply Voltage = 34 ')" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "The max load to the controller = 100 ohms", - "", - "(b)", - "Extra Load = 500 ohms", - "", - "Additional Power Supply voltage required = 10 V", - "", + "(a)\n", + "The max load to the controller = 100 ohms\n", + "\n", + "(b)\n", + "Extra Load = 500 ohms\n", + "\n", + "Additional Power Supply voltage required = 10 V\n", + "\n", "Minimum Power Supply Voltage = 34 " ] } - ], + ], "prompt_number": 9 } - ] + ], + "metadata": {} } ] }
\ No newline at end of file diff --git a/Industrial_Instrumentation/Chapter_2.ipynb b/Industrial_Instrumentation/Chapter_2.ipynb index f6c4dada..41a457ab 100644 --- a/Industrial_Instrumentation/Chapter_2.ipynb +++ b/Industrial_Instrumentation/Chapter_2.ipynb @@ -1,603 +1,630 @@ { "metadata": { - "name": "Chapter_2" - }, - "nbformat": 2, + "name": "", + "signature": "sha256:e12000c40c7eba5fb38d72e0bdbc08735899d3485eb0ecea04e85215c845b6b8" + }, + "nbformat": 3, + "nbformat_minor": 0, "worksheets": [ { "cells": [ { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h1>Chapter 2: Pressure<h1>" ] - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 2.1, Page Number: 116<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Pressure conversion'''", - "", - "#(a)", - "", - "#variable declaration", - "#1kg/cm^2=10000 mmWG", - "x=10000.0*10.0 #equivalnt to 10kg/cm^2", - "", - "#result", - "print('(a)\\n 10kg/cm^2 = %.0f mmWG' %x)", - "", - "#(b)", - "", - "#variable declaration", - "onemm_Hg=13.546 #pressure of 1 mm Hg", - "", - "#calculation", - "y=10.0**5/onemm_Hg", - "y=y/10.0**3", - "", - "#result", - "print('\\n(b)\\n10kg/cm^2 = 10^5 mmWG = %.2f * 10^3 mmHg' %y)", - "", - "#(c)", - "", - "#variable declaration", - "onebar=1.03 # 1 Bar presssure in kg/cm^2", - "#calculation", - "z=10.0/onebar", - "", - "#result", + "\n", + "\n", + "#(a)\n", + "\n", + "#variable declaration\n", + "#1kg/cm^2=10000 mmWG\n", + "x=10000.0*10.0 #equivalnt to 10kg/cm^2\n", + "\n", + "#result\n", + "print('(a)\\n 10kg/cm^2 = %.0f mmWG' %x)\n", + "\n", + "#(b)\n", + "\n", + "#variable declaration\n", + "onemm_Hg=13.546 #pressure of 1 mm Hg\n", + "\n", + "#calculation\n", + "y=10.0**5/onemm_Hg\n", + "y=y/10.0**3\n", + "\n", + "#result\n", + "print('\\n(b)\\n10kg/cm^2 = 10^5 mmWG = %.2f * 10^3 mmHg' %y)\n", + "\n", + "#(c)\n", + "\n", + "#variable declaration\n", + "onebar=1.03 # 1 Bar presssure in kg/cm^2\n", + "#calculation\n", + "z=10.0/onebar\n", + "\n", + "#result\n", "print('\\n(c)\\n10kg/cm^2 = %.2f bars' %z)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - " 10kg/cm^2 = 100000 mmWG", - "", - "(b)", - "10kg/cm^2 = 10^5 mmWG = 7.38 * 10^3 mmHg", - "", - "(c)", + "(a)\n", + " 10kg/cm^2 = 100000 mmWG\n", + "\n", + "(b)\n", + "10kg/cm^2 = 10^5 mmWG = 7.38 * 10^3 mmHg\n", + "\n", + "(c)\n", "10kg/cm^2 = 9.71 bars" ] } - ], + ], "prompt_number": 1 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 2.2, Page Number: 116<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Gauge and absolute pressure'''", - "", - "#(a)", - "", - "#variable Declaration", - "gamm=1000.0 # density of water", - "d=35.0 # depth of water ", - "dens_Hg=13.546 # density of Hg", - "", - "#calculation", - "press_in_kg_cm=gamm*d*10**-4", - "press_in_mmHg=gamm*d/dens_Hg", - "press_in_mmHg=press_in_mmHg/10**3", - "", - "#result", - "print('(a)\\nThe pressure at depth of %d meters in a water tank=%.1f kg/cm^2 = %.2f*10^3 mmHg'%(d, press_in_kg_cm, press_in_mmHg))", - "", - "#(b)", - "", - "#varible declaration", - "press_atm=1.03 #atmospheric pressure", - "", - "#calculation", - "abspress=press_in_kg_cm+press_atm", - "abspress_mmHg=press_in_mmHg*1000.0+760.0", - "abspress_mmHg=abspress_mmHg/1000.0", - "", - "#result", + "\n", + "\n", + "#(a)\n", + "\n", + "#variable Declaration\n", + "gamm=1000.0 # density of water\n", + "d=35.0 # depth of water \n", + "dens_Hg=13.546 # density of Hg\n", + "\n", + "#calculation\n", + "press_in_kg_cm=gamm*d*10**-4\n", + "press_in_mmHg=gamm*d/dens_Hg\n", + "press_in_mmHg=press_in_mmHg/10**3\n", + "\n", + "#result\n", + "print('(a)\\nThe pressure at depth of %d meters in a water tank=%.1f kg/cm^2 = %.2f*10^3 mmHg'%(d, press_in_kg_cm, press_in_mmHg))\n", + "\n", + "#(b)\n", + "\n", + "#varible declaration\n", + "press_atm=1.03 #atmospheric pressure\n", + "\n", + "#calculation\n", + "abspress=press_in_kg_cm+press_atm\n", + "abspress_mmHg=press_in_mmHg*1000.0+760.0\n", + "abspress_mmHg=abspress_mmHg/1000.0\n", + "\n", + "#result\n", "print('\\n(b)\\nAbsolute Pressure= %.2f kg/cm^2 Abs = %.2f*10^3 mmHg Abs'%(abspress, abspress_mmHg))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "The pressure at depth of 35 meters in a water tank=3.5 kg/cm^2 = 2.58*10^3 mmHg", - "", - "(b)", + "(a)\n", + "The pressure at depth of 35 meters in a water tank=3.5 kg/cm^2 = 2.58*10^3 mmHg\n", + "\n", + "(b)\n", "Absolute Pressure= 4.53 kg/cm^2 Abs = 3.34*10^3 mmHg Abs" ] } - ], + ], "prompt_number": 2 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 2.3, Page Number:116<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "''' Gauge and absolute pressure'''", - "", - "#varible declaration", - "egp=260.0 # equivalent gauge pressure", - "", - "#calculation", - "abspress=760.0-egp", - "", - "#result", + "\n", + "\n", + "#varible declaration\n", + "egp=260.0 # equivalent gauge pressure\n", + "\n", + "#calculation\n", + "abspress=760.0-egp\n", + "\n", + "#result\n", "print('Absolute Presssure = %d mmHg' %abspress)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Absolute Presssure = 500 mmHg" ] } - ], + ], "prompt_number": 3 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 2.4,Page Number:117<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''pressure measurement using U tube manometer'''", - "", - "#(a)", - "", - "#variable declaration", - "p_diff=500.0 #pressure difference in mmHg", - "", - "#calculations", - "pdiff=p_diff*13.546/10000", - "", - "#Result", - "print('(a)\\np1-p2 = %.3f kg/cm^2' %pdiff)", - "", - "", - "#(b)", - "", - "#variable declaration", - "p1=6770.0 # Gauge pressure in mmWG", - "p_atm=10300.0 # atmospheric pressure ", - "", - "#calculation", - "abs_p1=p1+p_atm", - "", - "#result", - "print('\\n(b)If p2 is open to atmosphere:\\nAbsolute Pressure P1 = %d mmWG abs.' %abs_p1)", - "", - "#(c)", - "", - "#variable declaration", - "P1=500.0 #mmHg absolute pressure", - "", - "#calculations", - "P1_gauge=P1-760.0", - "", - "#result", + "\n", + "\n", + "#(a)\n", + "\n", + "#variable declaration\n", + "p_diff=500.0 #pressure difference in mmHg\n", + "\n", + "#calculations\n", + "pdiff=p_diff*13.546/10000\n", + "\n", + "#Result\n", + "print('(a)\\np1-p2 = %.3f kg/cm^2' %pdiff)\n", + "\n", + "\n", + "#(b)\n", + "\n", + "#variable declaration\n", + "p1=6770.0 # Gauge pressure in mmWG\n", + "p_atm=10300.0 # atmospheric pressure \n", + "\n", + "#calculation\n", + "abs_p1=p1+p_atm\n", + "\n", + "#result\n", + "print('\\n(b)If p2 is open to atmosphere:\\nAbsolute Pressure P1 = %d mmWG abs.' %abs_p1)\n", + "\n", + "#(c)\n", + "\n", + "#variable declaration\n", + "P1=500.0 #mmHg absolute pressure\n", + "\n", + "#calculations\n", + "P1_gauge=P1-760.0\n", + "\n", + "#result\n", "print('\\n(c)If p2 is evacuated and sealed:\\np1= %d mmHg gauge Pressure' %P1_gauge)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "p1-p2 = 0.677 kg/cm^2", - "", - "(b)If p2 is open to atmosphere:", - "Absolute Pressure P1 = 17070 mmWG abs.", - "", - "(c)If p2 is evacuated and sealed:", + "(a)\n", + "p1-p2 = 0.677 kg/cm^2\n", + "\n", + "(b)If p2 is open to atmosphere:\n", + "Absolute Pressure P1 = 17070 mmWG abs.\n", + "\n", + "(c)If p2 is evacuated and sealed:\n", "p1= -260 mmHg gauge Pressure" ] } - ], + ], "prompt_number": 4 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 2.5, Page Number: 117<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Specific Gravity and weight density'''", - "", - "#variable declaration", - "spe_grav_water=1.0 # specific gravity of water", - "", - "#calculation", - "spe_grav_X=spe_grav_water*100.0/50.0", - "wt_dens_water=1000.0", - "wt_dens_X=wt_dens_water*2.0", - "", - "#result", + "\n", + "\n", + "#variable declaration\n", + "spe_grav_water=1.0 # specific gravity of water\n", + "\n", + "#calculation\n", + "spe_grav_X=spe_grav_water*100.0/50.0\n", + "wt_dens_water=1000.0\n", + "wt_dens_X=wt_dens_water*2.0\n", + "\n", + "#result\n", "print('Weight Density of X = %d kg/m^3' %wt_dens_X)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Weight Density of X = 2000 kg/m^3" ] } - ], + ], "prompt_number": 5 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 2.6, Page Number: 117<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''water flow rate using mercury manometer'''", - "", - "#variable declaration", - "A=1.0/20.0 # Area ratio", - "p_diff=1500.0 # pressure difference in mmWG", - "", - "#result", - "print('(a)\\nAs Delta_h=A2/A1*h << h and normally negligible for well type manometer')", - "print('hence, p1-p2 = h = %d =111 mmHg' %p_diff)", - "print('\\n(b)\\nh measured above the oriinal reference will be half of H, i.e. 111/2=55.5 mmHg')", + "\n", + "\n", + "#variable declaration\n", + "A=1.0/20.0 # Area ratio\n", + "p_diff=1500.0 # pressure difference in mmWG\n", + "\n", + "#result\n", + "print('(a)\\nAs Delta_h=A2/A1*h << h and normally negligible for well type manometer')\n", + "print('hence, p1-p2 = h = %d =111 mmHg' %p_diff)\n", + "print('\\n(b)\\nh measured above the oriinal reference will be half of H, i.e. 111/2=55.5 mmHg')\n", "print('(Since area of both legs are same)')" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "As Delta_h=A2/A1*h << h and normally negligible for well type manometer", - "hence, p1-p2 = h = 1500 =111 mmHg", - "", - "(b)", - "h measured above the oriinal reference will be half of H, i.e. 111/2=55.5 mmHg", + "(a)\n", + "As Delta_h=A2/A1*h << h and normally negligible for well type manometer\n", + "hence, p1-p2 = h = 1500 =111 mmHg\n", + "\n", + "(b)\n", + "h measured above the oriinal reference will be half of H, i.e. 111/2=55.5 mmHg\n", "(Since area of both legs are same)" ] } - ], + ], "prompt_number": 6 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 2.7, Page Number: 119<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''readings and errors in Bourdon gauge reading'''", - "", - "print('1 kg/cm^2 = 10 mWG\\n')", - "", - "#(a)", - "", - "#variable declaration", - "press=10+2 #pressure read by the gauge", - "", - "#result", - "print('\\n(a)Bourdon Gauge is mounted 20 meters below water line:')", - "print('\\nPressure read by the Gauge = %d kg/cm^2'%press)", - "", - "", - "#(b)", - "", - "#variable declaration", - "press2=10-3 #pressure read by the gauge", - "", - "#result", - "print('\\n\\n(b)Bourdon Gauge is located 30 meters above the water line:')", + "\n", + "\n", + "print('1 kg/cm^2 = 10 mWG\\n')\n", + "\n", + "#(a)\n", + "\n", + "#variable declaration\n", + "press=10+2 #pressure read by the gauge\n", + "\n", + "#result\n", + "print('\\n(a)Bourdon Gauge is mounted 20 meters below water line:')\n", + "print('\\nPressure read by the Gauge = %d kg/cm^2'%press)\n", + "\n", + "\n", + "#(b)\n", + "\n", + "#variable declaration\n", + "press2=10-3 #pressure read by the gauge\n", + "\n", + "#result\n", + "print('\\n\\n(b)Bourdon Gauge is located 30 meters above the water line:')\n", "print('\\nPressure read by the Gauge = %d kg/cm^2'%press2)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "1 kg/cm^2 = 10 mWG", - "", - "", - "(a)Bourdon Gauge is mounted 20 meters below water line:", - "", - "Pressure read by the Gauge = 12 kg/cm^2", - "", - "", - "(b)Bourdon Gauge is located 30 meters above the water line:", - "", + "1 kg/cm^2 = 10 mWG\n", + "\n", + "\n", + "(a)Bourdon Gauge is mounted 20 meters below water line:\n", + "\n", + "Pressure read by the Gauge = 12 kg/cm^2\n", + "\n", + "\n", + "(b)Bourdon Gauge is located 30 meters above the water line:\n", + "\n", "Pressure read by the Gauge = 7 kg/cm^2" ] } - ], + ], "prompt_number": 7 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 2.8, Page Number: 120<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Specific Gravity and density of liquid'''", - "", - "#Variable declaration", - "dens_water=1000.0 # water Density", - "h1=125.0 # height1 mm", - "h2=250.0 # height2 mm", - "d2=h1*dens_water/h2", - "", - "#result", - "", - "#a", - "print('(a)\\nDensity of Liquid = %d kg/m^3' %d2)", - "print('\\nSpecific Density of the liquid = %.1f' %(h1/h2))", - "", - "#(b)", - "print('\\n\\n(b)\\nIf Values of water and liquid interchanged:\\n')", - "d3=h2*dens_water/h1", - "print('\\nDensity of Liquid = %d kg/m^3' %d3)", + "\n", + "\n", + "#Variable declaration\n", + "dens_water=1000.0 # water Density\n", + "h1=125.0 # height1 mm\n", + "h2=250.0 # height2 mm\n", + "d2=h1*dens_water/h2\n", + "\n", + "#result\n", + "\n", + "#a\n", + "print('(a)\\nDensity of Liquid = %d kg/m^3' %d2)\n", + "print('\\nSpecific Density of the liquid = %.1f' %(h1/h2))\n", + "\n", + "#(b)\n", + "print('\\n\\n(b)\\nIf Values of water and liquid interchanged:\\n')\n", + "d3=h2*dens_water/h1\n", + "print('\\nDensity of Liquid = %d kg/m^3' %d3)\n", "print('\\nSpecific Density of the liquid = %.1f' %(h2/h1))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "Density of Liquid = 500 kg/m^3", - "", - "Specific Density of the liquid = 0.5", - "", - "", - "(b)", - "If Values of water and liquid interchanged:", - "", - "", - "Density of Liquid = 2000 kg/m^3", - "", + "(a)\n", + "Density of Liquid = 500 kg/m^3\n", + "\n", + "Specific Density of the liquid = 0.5\n", + "\n", + "\n", + "(b)\n", + "If Values of water and liquid interchanged:\n", + "\n", + "\n", + "Density of Liquid = 2000 kg/m^3\n", + "\n", "Specific Density of the liquid = 2.0" ] } - ], + ], "prompt_number": 8 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 2.9, Page Number: 120<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''strain gauge wire length and cross section area'''", - "", - "import math", - "#variable Declaration", - "R=120.0 #resistance", - "l=122.0 #length", - "a=0.1 #area", - "R1=140.0 #resistance in ohm", - "", - "#calculation", - "rho=R*a/l", - "l1=math.sqrt(R1*a*l/rho)", - "l1=round(l1,0)", - "", - "#Result", - "print('Length l1 = %d meters' %l1)", - "A1=a*l/l1", + "\n", + "\n", + "import math\n", + "#variable Declaration\n", + "R=120.0 #resistance\n", + "l=122.0 #length\n", + "a=0.1 #area\n", + "R1=140.0 #resistance in ohm\n", + "\n", + "#calculation\n", + "rho=R*a/l\n", + "l1=math.sqrt(R1*a*l/rho)\n", + "l1=round(l1,0)\n", + "\n", + "#Result\n", + "print('Length l1 = %d meters' %l1)\n", + "A1=a*l/l1\n", "print('\\nArea A1 = %.4f mm^2' %A1)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "Length l1 = 132 meters", - "", + "Length l1 = 132 meters\n", + "\n", "Area A1 = 0.0924 mm^2" ] } - ], + ], "prompt_number": 1 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 2.10, Page Number: 121<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Capacitance calculation for variable dielectric'''", - "", - "c=0.57 #Constant", - "", - "#(a)", - "", - "#variable declaration", - "d=0.1 #distance between plates", - "di1=100.0 #Dielectric constant", - "di2=1000.0 #Dielectric constant", - "", - "#calculation", - "c1=c*di1*10.0/d", - "c1=round(c1,0)", - "", - "#result", - "print('(a)\\nC1=%d pf' %c1)", - "", - "", - "#(b)", - "", - "#calculation", - "c2=c*di2*10/d", - "", - "#result", - "print('\\n(b)\\nC2=%d pf' %c2)", - "", - "", - "#(c)", - "", - "#calculation", - "ds=0.09", - "c11=c*di1*10/ds", - "c12=c*di2*10/ds", - "", - "#result", + "\n", + "\n", + "c=0.57 #Constant\n", + "\n", + "#(a)\n", + "\n", + "#variable declaration\n", + "d=0.1 #distance between plates\n", + "di1=100.0 #Dielectric constant\n", + "di2=1000.0 #Dielectric constant\n", + "\n", + "#calculation\n", + "c1=c*di1*10.0/d\n", + "c1=round(c1,0)\n", + "\n", + "#result\n", + "print('(a)\\nC1=%d pf' %c1)\n", + "\n", + "\n", + "#(b)\n", + "\n", + "#calculation\n", + "c2=c*di2*10/d\n", + "\n", + "#result\n", + "print('\\n(b)\\nC2=%d pf' %c2)\n", + "\n", + "\n", + "#(c)\n", + "\n", + "#calculation\n", + "ds=0.09\n", + "c11=c*di1*10/ds\n", + "c12=c*di2*10/ds\n", + "\n", + "#result\n", "print('\\n(c)\\nC1 = %.1f pf\\nC2 = %d pf'%(c11,c12))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "C1=5700 pf", - "", - "(b)", - "C2=57000 pf", - "", - "(c)", - "C1 = 6333.3 pf", + "(a)\n", + "C1=5700 pf\n", + "\n", + "(b)\n", + "C2=57000 pf\n", + "\n", + "(c)\n", + "C1 = 6333.3 pf\n", "C2 = 63333 pf" ] } - ], + ], "prompt_number": 10 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 2.11, Page Number: 121<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''pressure gauge caliberation'''", - "", - "#variable Declaration", - "A=1.0 #area", - "p1=10.0 #pressure", - "", - "#calculation", - "W1=A*p1", - "", - "#Result", - "print('W1 = %d kg' %W1)", + "\n", + "\n", + "#variable Declaration\n", + "A=1.0 #area\n", + "p1=10.0 #pressure\n", + "\n", + "#calculation\n", + "W1=A*p1\n", + "\n", + "#Result\n", + "print('W1 = %d kg' %W1)\n", "print('\\nWith the 4 standard weights of 10kg, 20kg, 30kg and 40kg')" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "W1 = 10 kg", - "", + "W1 = 10 kg\n", + "\n", "With the 4 standard weights of 10kg, 20kg, 30kg and 40kg" ] } - ], + ], "prompt_number": 11 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 2.12, Page Number: 122<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''pressure calculation using McLeod gauge'''", - "", - "#varable declaration", - "p1=10**-2 #pressure in torr", - "h1=20.0 #height in mm", - "", - "#xalculation", - "K=p1/h1**2", - "p2=K*30**2", - "p2=p2*100.0", - "", - "#Result", + "\n", + "#varable declaration\n", + "p1=10**-2 #pressure in torr\n", + "h1=20.0 #height in mm\n", + "\n", + "#xalculation\n", + "K=p1/h1**2\n", + "p2=K*30**2\n", + "p2=p2*100.0\n", + "\n", + "#Result\n", "print('The unknown pressure p2 = %.2f * 10^-2 torr' %p2)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "The unknown pressure p2 = 2.25 * 10^-2 torr" ] } - ], + ], "prompt_number": 12 } - ] + ], + "metadata": {} } ] }
\ No newline at end of file diff --git a/Industrial_Instrumentation/Chapter_3.ipynb b/Industrial_Instrumentation/Chapter_3.ipynb index 6d26bc18..b7ff3a1a 100644 --- a/Industrial_Instrumentation/Chapter_3.ipynb +++ b/Industrial_Instrumentation/Chapter_3.ipynb @@ -1,391 +1,413 @@ { "metadata": { - "name": "Chapter_3" - }, - "nbformat": 2, + "name": "", + "signature": "sha256:40aab97a0942d997de9cd8ee539182af9fd67e045ac34df8f9ba65083df3fe50" + }, + "nbformat": 3, + "nbformat_minor": 0, "worksheets": [ { "cells": [ { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h1>Chapter_3: Force Torque and Velocity<h1>" ] - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 3.1, Page Number: 163<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Force calculation'''", - "", - "#variable declaration", - "m1=20 #mass of the body in Kg ", - "a=5 #acceleration in m/s^2", - "", - "#calculation", - "F=m1*a", - "", - "#result", + "\n", + "\n", + "#variable declaration\n", + "m1=20 #mass of the body in Kg \n", + "a=5 #acceleration in m/s^2\n", + "\n", + "#calculation\n", + "F=m1*a\n", + "\n", + "#result\n", "print('F = %d Newtons'%F)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "F = 100 Newtons" ] } - ], + ], "prompt_number": 6 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 3.2, Page Number: 163<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Weight calculation'''", - "", - "#variable declaration", - "m1=50 #mass of the body in Kg ", - "g1=9.8 #acceleration due to gravity", - "", - "#calculation", - "W2=m1*g1", - "", - "#result", + "\n", + "\n", + "#variable declaration\n", + "m1=50 #mass of the body in Kg \n", + "g1=9.8 #acceleration due to gravity\n", + "\n", + "#calculation\n", + "W2=m1*g1\n", + "\n", + "#result\n", "print('W = %d Newtons = %d kgf' %(W2,m1))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "W = 490 Newtons = 50 kgf" ] } - ], + ], "prompt_number": 7 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 3.3, Page Number: 164<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''calculation of specific gravity'''", - "", - "#variable declaration", - "wt_material=2500.0 #weight of 1 m^3 material", - "wt_water=1000.0 #weight of 1 m^3 water", - "", - "#calculation", - "spe_grav=wt_material/wt_water", - "", - "#result", + "\n", + "\n", + "#variable declaration\n", + "wt_material=2500.0 #weight of 1 m^3 material\n", + "wt_water=1000.0 #weight of 1 m^3 water\n", + "\n", + "#calculation\n", + "spe_grav=wt_material/wt_water\n", + "\n", + "#result\n", "print('Specific gravity of the material = %.1f' %spe_grav)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Specific gravity of the material = 2.5" ] } - ], + ], "prompt_number": 8 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 3.4, Page Number: 164<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Estimation of uncertainty due to sensitivity'''", - "", - "import math", - "#variable declaration", - "L=20.0 # length in cm", - "W=2000.0 # Weight of mass in gm ", - "db=0.02 # length in cm ", - "Wb=100.0 # Weight of mass in gm ", - "dG=0.5 # length in cm", - "", - "#calculation", - "S=L/(2*W*db+Wb*dG)", - "fi=0.2", - "DeltaW=fi*math.pi/(180*S)", - "", - "#result", - "print('S = %.3f rad/g' %S)", + "\n", + "\n", + "import math\n", + "#variable declaration\n", + "L=20.0 # length in cm\n", + "W=2000.0 # Weight of mass in gm \n", + "db=0.02 # length in cm \n", + "Wb=100.0 # Weight of mass in gm \n", + "dG=0.5 # length in cm\n", + "\n", + "#calculation\n", + "S=L/(2*W*db+Wb*dG)\n", + "fi=0.2\n", + "DeltaW=fi*math.pi/(180*S)\n", + "\n", + "#result\n", + "print('S = %.3f rad/g' %S)\n", "print('\\nDeltaW = %.3f g' %DeltaW)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "S = 0.154 rad/g", - "", + "S = 0.154 rad/g\n", + "\n", "DeltaW = 0.023 g" ] } - ], + ], "prompt_number": 9 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 3.5, Page Number: 164<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Torque Calculation'''", - "", - "import math", - "", - "#variable declaration", - "hp=746.0 # horse power", - "P=5*hp # Saft power in Watts", - "N=1500.0 # speed in rpm", - "", - "#calculation", - "n=N/60.0", - "T=P*60/(2*math.pi*n)", - "", - "#result", + "\n", + "\n", + "import math\n", + "\n", + "#variable declaration\n", + "hp=746.0 # horse power\n", + "P=5*hp # Saft power in Watts\n", + "N=1500.0 # speed in rpm\n", + "\n", + "#calculation\n", + "n=N/60.0\n", + "T=P*60/(2*math.pi*n)\n", + "\n", + "#result\n", "print('T = %.0f Newton meters' %(math.ceil(T)))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "T = 1425 Newton meters" ] } - ], + ], "prompt_number": 10 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 3.6, Page Number: 165<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Force calculation'''", - "", - "#variable declaration", - "ch_l=0.075 #change in length", - "orig_l=50.0 #Original length", - "", - "#calculation", - "S=ch_l/orig_l", - "E=9.66*10**5", - "stress=E*S", - "area=1.5", - "f=stress*area", - "", - "#result", + "\n", + "\n", + "#variable declaration\n", + "ch_l=0.075 #change in length\n", + "orig_l=50.0 #Original length\n", + "\n", + "#calculation\n", + "S=ch_l/orig_l\n", + "E=9.66*10**5\n", + "stress=E*S\n", + "area=1.5\n", + "f=stress*area\n", + "\n", + "#result\n", "print('Strain = %.4f cm/cm\\nStress =%d kg/cm^2\\nForce = %.1f kg'%(S,stress,f))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "Strain = 0.0015 cm/cm", - "Stress =1449 kg/cm^2", + "Strain = 0.0015 cm/cm\n", + "Stress =1449 kg/cm^2\n", "Force = 2173.5 kg" ] } - ], + ], "prompt_number": 11 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 3.7, Page Number: 165<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''resistance strain gauge'''", - "", - "import math", - "", - "#(a)", - "", - "#variable declaration", - "R1=120.0 # resistance in Ohm", - "R2=120.0 # resistance in Ohm", - "R3=120.0 # resistance in Ohm", - "R4=120.0 # resistance in Ohm", - "Rg=100.0 # resistance in Ohm", - "", - "#calculation", - "C=(R1*R2*R4)+(R1*R3*R4)+(R1*R2*R3)+(R2*R3*R4)+(Rg*(R1+R4)*(R2+R3))", - "C=C/(10**7)", - "", - "#result", - "print('(a)\\nC=%.3f*10^7' %C)", - "E=10", - "F=(E*R3*R1*2*10**3)/(C*10**7)", - "print('\\nF = %.1f *10^3 A/mm = %.1f mA/mm'%(F,F))", - "", - "#(b)", - "", - "#calculation", - "Fe=2*10**-4", - "E=10", - "DeltaE=Fe*E/(4+4*10**-4)", - "DeltaE=DeltaE*10**3", - "", - "#Result", + "\n", + "\n", + "import math\n", + "\n", + "#(a)\n", + "\n", + "#variable declaration\n", + "R1=120.0 # resistance in Ohm\n", + "R2=120.0 # resistance in Ohm\n", + "R3=120.0 # resistance in Ohm\n", + "R4=120.0 # resistance in Ohm\n", + "Rg=100.0 # resistance in Ohm\n", + "\n", + "#calculation\n", + "C=(R1*R2*R4)+(R1*R3*R4)+(R1*R2*R3)+(R2*R3*R4)+(Rg*(R1+R4)*(R2+R3))\n", + "C=C/(10**7)\n", + "\n", + "#result\n", + "print('(a)\\nC=%.3f*10^7' %C)\n", + "E=10\n", + "F=(E*R3*R1*2*10**3)/(C*10**7)\n", + "print('\\nF = %.1f *10^3 A/mm = %.1f mA/mm'%(F,F))\n", + "\n", + "#(b)\n", + "\n", + "#calculation\n", + "Fe=2*10**-4\n", + "E=10\n", + "DeltaE=Fe*E/(4+4*10**-4)\n", + "DeltaE=DeltaE*10**3\n", + "\n", + "#Result\n", "print('\\n(b)\\nDeltaEg=%.1f mV' %DeltaE)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "C=1.267*10^7", - "", - "F = 22.7 *10^3 A/mm = 22.7 mA/mm", - "", - "(b)", + "(a)\n", + "C=1.267*10^7\n", + "\n", + "F = 22.7 *10^3 A/mm = 22.7 mA/mm\n", + "\n", + "(b)\n", "DeltaEg=0.5 mV" ] } - ], + ], "prompt_number": 12 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 3.8, PAge Number: 167<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''speed measurement using stroboscope'''", - "", - "#(a)", - "import math", - "", - "#variable Declaration", - "r1=2500.0 # Highest flasing rate ", - "r2=1500.0 # next Highest flasing rate ", - "", - "#calculation", - "n=(r1*r2)/(r1-r2)", - "", - "#result", - "print('(a)\\nn = %d rpm'%n)", - "", - "#(b)", - "", - "#variable declaration", - "N=5.0 # Fift time syncronization for same speed", - "", - "#calculation", - "r5=n*r1/((r1*(N-1))+n)", - "r5=math.ceil(r5)", - "", - "#result", + "\n", + "\n", + "#(a)\n", + "import math\n", + "\n", + "#variable Declaration\n", + "r1=2500.0 # Highest flasing rate \n", + "r2=1500.0 # next Highest flasing rate \n", + "\n", + "#calculation\n", + "n=(r1*r2)/(r1-r2)\n", + "\n", + "#result\n", + "print('(a)\\nn = %d rpm'%n)\n", + "\n", + "#(b)\n", + "\n", + "#variable declaration\n", + "N=5.0 # Fift time syncronization for same speed\n", + "\n", + "#calculation\n", + "r5=n*r1/((r1*(N-1))+n)\n", + "r5=math.ceil(r5)\n", + "\n", + "#result\n", "print('\\n(b)\\nr5=%d Flashes/Minute' %r5)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "n = 3750 rpm", - "", - "(b)", + "(a)\n", + "n = 3750 rpm\n", + "\n", + "(b)\n", "r5=682 Flashes/Minute" ] } - ], + ], "prompt_number": 13 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 3.9, Page Number: 167<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''speed measurement using proximity'''", - "", - "#variable declaration", - "rpm=1500.0 #rotation in rpm", - "f=200.0 #frequency", - "", - "#calculation", - "N=60*f/rpm", - "", - "#result", + "\n", + "\n", + "#variable declaration\n", + "rpm=1500.0 #rotation in rpm\n", + "f=200.0 #frequency\n", + "\n", + "#calculation\n", + "N=60*f/rpm\n", + "\n", + "#result\n", "print('No of teeth on the wheel\\nN=%d' %N)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "No of teeth on the wheel", + "No of teeth on the wheel\n", "N=8" ] } - ], + ], "prompt_number": 14 } - ] + ], + "metadata": {} } ] }
\ No newline at end of file diff --git a/Industrial_Instrumentation/Chapter_4.ipynb b/Industrial_Instrumentation/Chapter_4.ipynb index f58d6ec6..ea3f076f 100644 --- a/Industrial_Instrumentation/Chapter_4.ipynb +++ b/Industrial_Instrumentation/Chapter_4.ipynb @@ -1,554 +1,578 @@ { "metadata": { - "name": "Chapter_4" - }, - "nbformat": 2, + "name": "", + "signature": "sha256:81d0436ef2f36f55ad662ab91b6d5e2e47a4c3c61b8080d3706a64417c68403d" + }, + "nbformat": 3, + "nbformat_minor": 0, "worksheets": [ { "cells": [ { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h1>Chapter 4: Acceleration Vibration and Density<h1>" ] - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 4.1, Page Number:209 <h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "''''mechanical system for a seismic instrument'''", - "", - "import math", - "#(a)", - "", - "#variable Declaration", - "k=50.0 #Spring constant ", - "m=0.005 # mass in kg", - "", - "#calculation", - "wn=math.sqrt(k/m)", - "", - "#result", - "print('(a)\\nNatural frequency(wn)= %d rad/s' %wn)", - "", - "", - "#(b)", - "", - "#calculation", - "Cc=2*(m*k)**(0.5)", - "", - "#result", + "\n", + "import math\n", + "#(a)\n", + "\n", + "#variable Declaration\n", + "k=50.0 #Spring constant \n", + "m=0.005 # mass in kg\n", + "\n", + "#calculation\n", + "wn=math.sqrt(k/m)\n", + "\n", + "#result\n", + "print('(a)\\nNatural frequency(wn)= %d rad/s' %wn)\n", + "\n", + "\n", + "#(b)\n", + "\n", + "#calculation\n", + "Cc=2*(m*k)**(0.5)\n", + "\n", + "#result\n", "print('\\n(b)\\nCc=%d' %Cc)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "Natural frequency(wn)= 100 rad/s", - "", - "(b)", + "(a)\n", + "Natural frequency(wn)= 100 rad/s\n", + "\n", + "(b)\n", "Cc=1" ] } - ], + ], "prompt_number": 1 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 4.2, Page Number:209<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Frequency and phase angle of motion'''", - "", - "#(a)", - "import math", - "", - "#variable Declaration", - "Cc=1.0 # damping ratio ", - "C=0.7*Cc # Critical damping ratio ", - "m=0.005 # mass", - "k=50.0 # spring constant", - "", - "#calculation", - "w=math.sqrt((k/m)-(C/(2*m))**2)", - "", - "#result", - "print('(a)\\nw=%.1f rad/s' %w)", - "", - "#(b)", - "", - "#variable Declaration", - "w1=250.0 # angular velocity", - "", - "#calculation", - "theta=C*w1/(k-m*w1**2)", - "print('\\ntheta=%f' %theta)", - "fi=math.atan(-theta)", - "fi=fi*180.0/math.pi", - "", - "#result", + "\n", + "\n", + "#(a)\n", + "import math\n", + "\n", + "#variable Declaration\n", + "Cc=1.0 # damping ratio \n", + "C=0.7*Cc # Critical damping ratio \n", + "m=0.005 # mass\n", + "k=50.0 # spring constant\n", + "\n", + "#calculation\n", + "w=math.sqrt((k/m)-(C/(2*m))**2)\n", + "\n", + "#result\n", + "print('(a)\\nw=%.1f rad/s' %w)\n", + "\n", + "#(b)\n", + "\n", + "#variable Declaration\n", + "w1=250.0 # angular velocity\n", + "\n", + "#calculation\n", + "theta=C*w1/(k-m*w1**2)\n", + "print('\\ntheta=%f' %theta)\n", + "fi=math.atan(-theta)\n", + "fi=fi*180.0/math.pi\n", + "\n", + "#result\n", "print('\\nfi = %d\u00b0'%fi)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "w=71.4 rad/s", - "", - "theta=-0.666667", - "", + "(a)\n", + "w=71.4 rad/s\n", + "\n", + "theta=-0.666667\n", + "\n", "fi = 33\u00b0" ] } - ], + ], "prompt_number": 2 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 4.3, PAge Number: 210<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''time calculation for exponetial transient term'''", - "import math", - "", - "#variable Declaration", - "m=0.005 # mass ", - "c=0.7 # damping ratio", - "", - "#calculation", - "y=-math.log(0.01)", - "t=y*2*m/c", - "", - "#result", + "\n", + "import math\n", + "\n", + "#variable Declaration\n", + "m=0.005 # mass \n", + "c=0.7 # damping ratio\n", + "\n", + "#calculation\n", + "y=-math.log(0.01)\n", + "t=y*2*m/c\n", + "\n", + "#result\n", "print('t=%.4f Secs' %t)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "t=0.0658 Secs" ] } - ], + ], "prompt_number": 3 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 4.4, Page Number:210<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Acceleration measurement'''", - "", - "#variable Declaration", - "rg1=1200.0 #resistance in Ohm", - "rg2=1200.0 #resistance in Ohm", - "rg3=1200.0 #resistance in Ohm", - "rg4=1200.0 #resistance in Ohm", - "", - "#calculation", - "D1=rg1*5.0/100.0", - "D2=rg2*5.0/100.0", - "D3=rg3*5.0/100.0", - "D4=rg4*5.0/100.0", - "E=12.0", - "v=E*(((rg1+D1)/(rg1+D1+rg2-D2))-((rg4-D4)/(rg3+D3+rg4-D4)))", - "v=v*1000.0", - "", - "#result", + "\n", + "\n", + "#variable Declaration\n", + "rg1=1200.0 #resistance in Ohm\n", + "rg2=1200.0 #resistance in Ohm\n", + "rg3=1200.0 #resistance in Ohm\n", + "rg4=1200.0 #resistance in Ohm\n", + "\n", + "#calculation\n", + "D1=rg1*5.0/100.0\n", + "D2=rg2*5.0/100.0\n", + "D3=rg3*5.0/100.0\n", + "D4=rg4*5.0/100.0\n", + "E=12.0\n", + "v=E*(((rg1+D1)/(rg1+D1+rg2-D2))-((rg4-D4)/(rg3+D3+rg4-D4)))\n", + "v=v*1000.0\n", + "\n", + "#result\n", "print('V0=%d mV' %v)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "V0=600 mV" ] } - ], + ], "prompt_number": 4 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 4.5, Page Number:211<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''output voltage of quartz piezoelectric crystal'''", - "", - "#variable declaration", - "g=0.06 # voltage sensitivity", - "", - "#calculation", - "t=2.5*10**-3", - "p=20*9.8*10**4", - "E=g*t*p", - "", - "#Result", + "\n", + "\n", + "#variable declaration\n", + "g=0.06 # voltage sensitivity\n", + "\n", + "#calculation\n", + "t=2.5*10**-3\n", + "p=20*9.8*10**4\n", + "E=g*t*p\n", + "\n", + "#Result\n", "print('E=%d V' %E)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "E=294 V" ] } - ], + ], "prompt_number": 5 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 4.6, Page Number: 211<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Differential values of capacitor'''", - "", - "#resistance in Ohm", - "c0=25.0 # capacitance in pF", - "x0=0.5 # distance between plates", - "x1=0.05 # steady state displacement ", - "", - "#calculations", - "c1=c0*x0/(x0-x1)", - "c2=c0*x0/(x0+x1)", - "", - "#result", + "\n", + "\n", + "#resistance in Ohm\n", + "c0=25.0 # capacitance in pF\n", + "x0=0.5 # distance between plates\n", + "x1=0.05 # steady state displacement \n", + "\n", + "#calculations\n", + "c1=c0*x0/(x0-x1)\n", + "c2=c0*x0/(x0+x1)\n", + "\n", + "#result\n", "print('C1=%.2f pF\\nC2=%.2f pF'%(c1,c2))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "C1=27.78 pF", + "C1=27.78 pF\n", "C2=22.73 pF" ] } - ], + ], "prompt_number": 6 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 4.7, Page Number: 211<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Specific Gravity Conversion'''", - "", - "#(a)", - "", - "#Specific gravity at 60 degree F", - "sg_at_60=1.02", - "", - "#calculation", - "API=(141.5/sg_at_60)-131.5", - "", - "#result", - "print('(a)\\nDegrees API = %.2f\u00b0API' %API)", - "", - "#(b)", - "", - "#calculation", - "Be=145-145/sg_at_60", - "", - "#result", - "print('\\n(b)\\nDegrees Baume(heavy) = %.1f\u00b0Be' %Be)", - "", - "", - "#(c)", - "", - "#calculation", - "Bk=(sg_at_60-1)*1000", - "", - "#result", - "print('\\n(c)\\nDegrees Barkometer = %d\u00b0Bk' %Bk)", - "", - "#(d)", - "", - "#calculation", - "Q=(sg_at_60-1)*1000", - "", - "#result", - "print('\\n(c)\\nDegrees Quevenne = %d\u00b0Q' %Q)", - "", - "#(e)", - "", - "#calculation", - "Tw=200*(sg_at_60-1.0)", - "", - "#result", + "\n", + "\n", + "#(a)\n", + "\n", + "#Specific gravity at 60 degree F\n", + "sg_at_60=1.02\n", + "\n", + "#calculation\n", + "API=(141.5/sg_at_60)-131.5\n", + "\n", + "#result\n", + "print('(a)\\nDegrees API = %.2f\u00b0API' %API)\n", + "\n", + "#(b)\n", + "\n", + "#calculation\n", + "Be=145-145/sg_at_60\n", + "\n", + "#result\n", + "print('\\n(b)\\nDegrees Baume(heavy) = %.1f\u00b0Be' %Be)\n", + "\n", + "\n", + "#(c)\n", + "\n", + "#calculation\n", + "Bk=(sg_at_60-1)*1000\n", + "\n", + "#result\n", + "print('\\n(c)\\nDegrees Barkometer = %d\u00b0Bk' %Bk)\n", + "\n", + "#(d)\n", + "\n", + "#calculation\n", + "Q=(sg_at_60-1)*1000\n", + "\n", + "#result\n", + "print('\\n(c)\\nDegrees Quevenne = %d\u00b0Q' %Q)\n", + "\n", + "#(e)\n", + "\n", + "#calculation\n", + "Tw=200*(sg_at_60-1.0)\n", + "\n", + "#result\n", "print('\\n(d)\\nDegrees Twaddel = %d\u00b0Tw' %Tw)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "Degrees API = 7.23\u00b0API", - "", - "(b)", - "Degrees Baume(heavy) = 2.8\u00b0Be", - "", - "(c)", - "Degrees Barkometer = 20\u00b0Bk", - "", - "(c)", - "Degrees Quevenne = 20\u00b0Q", - "", - "(d)", + "(a)\n", + "Degrees API = 7.23\u00b0API\n", + "\n", + "(b)\n", + "Degrees Baume(heavy) = 2.8\u00b0Be\n", + "\n", + "(c)\n", + "Degrees Barkometer = 20\u00b0Bk\n", + "\n", + "(c)\n", + "Degrees Quevenne = 20\u00b0Q\n", + "\n", + "(d)\n", "Degrees Twaddel = 4\u00b0Tw" ] } - ], + ], "prompt_number": 7 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 4.8, Page NUmber: 212<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''calculation of the volume of displacer'''", - "", - "import math", - "", - "#variable Declaration", - "T=0.5 # Torque Tube Force", - "sg1=1.02 # Maximum spe.gravity to be measured", - "sg2=0.98 # Minimum spe.gravity to be measured", - "wt=1000*10**-6", - "", - "#calculation", - "v=T/((sg1-sg2)*wt)", - "v=math.ceil(v)", - "", - "#result", + "\n", + "\n", + "import math\n", + "\n", + "#variable Declaration\n", + "T=0.5 # Torque Tube Force\n", + "sg1=1.02 # Maximum spe.gravity to be measured\n", + "sg2=0.98 # Minimum spe.gravity to be measured\n", + "wt=1000*10**-6\n", + "\n", + "#calculation\n", + "v=T/((sg1-sg2)*wt)\n", + "v=math.ceil(v)\n", + "\n", + "#result\n", "print('V=%d cm^3' %v)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "V=12500 cm^3" ] } - ], + ], "prompt_number": 8 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 4.9, Page Number: 212<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Differential pressure Sensor'''", - "", - "import math", - "", - "#variavle declaration", - "sg1=0.85 # Maximum spe.gravity to be measured", - "sg2=0.8 # Minimum spe.gravity to be measured", - "span=150.0 # D/P cell span", - "", - "", - "#a", - "", - "#calculation", - "H=span/(sg1-sg2)", - "", - "#result", - "print('(a)\\nH=%d mm = %dm' %(H,H/1000))", - "", - "#b", - "", - "#calculation", - "span_min=1500.0", - "span2=span_min*(sg1-sg2)", - "span2=math.ceil(span2)", - "", - "#result", + "\n", + "\n", + "import math\n", + "\n", + "#variavle declaration\n", + "sg1=0.85 # Maximum spe.gravity to be measured\n", + "sg2=0.8 # Minimum spe.gravity to be measured\n", + "span=150.0 # D/P cell span\n", + "\n", + "\n", + "#a\n", + "\n", + "#calculation\n", + "H=span/(sg1-sg2)\n", + "\n", + "#result\n", + "print('(a)\\nH=%d mm = %dm' %(H,H/1000))\n", + "\n", + "#b\n", + "\n", + "#calculation\n", + "span_min=1500.0\n", + "span2=span_min*(sg1-sg2)\n", + "span2=math.ceil(span2)\n", + "\n", + "#result\n", "print('\\n(b)\\nD/P span = %d mm' %span2)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "H=3000 mm = 3m", - "", - "(b)", + "(a)\n", + "H=3000 mm = 3m\n", + "\n", + "(b)\n", "D/P span = 75 mm" ] } - ], + ], "prompt_number": 9 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 4.10, Page Number:212<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Specific Gravity of unknown liquid'''", - "", - "#variable declaration", - "Ww=12-2 # Width of water", - "dw=1000.0 # density of water", - "", - "#calculation", - "v=Ww/dw", - "dx=(10-2)/v", - "sg=dx/dw ", - "", - "#result", + "\n", + "#variable declaration\n", + "Ww=12-2 # Width of water\n", + "dw=1000.0 # density of water\n", + "\n", + "#calculation\n", + "v=Ww/dw\n", + "dx=(10-2)/v\n", + "sg=dx/dw \n", + "\n", + "#result\n", "print('Specific Gravity of X =%.1f' %sg)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Specific Gravity of X =0.8" ] } - ], + ], "prompt_number": 10 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 4.11, PAge Number: 213<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''calculation of specific gravity'''", - "", - "#(a)", - "", - "#variable declaration", - "wt=1.5 # weight of object", - " ", - "#calculation", - "v_obj=2.0/1000", - "dx=wt/v_obj", - "sg=dx/1000", - "", - "#result", - "print('(a)\\nSpecific Gravity = %.2f' %sg)", - "", - "#(b)", - "", - "sgl=0.8 # specific grav of liquid", - "dens=800.0 # density", - "", - "#calculation", - "W1=dens*v_obj-wt", - "", - "#result", - "print('\\n(b)\\nW1 = %.1f kg' %W1)", - "", - "", - "#(c)", - "", - "#variable declaration", - "sg2=1.2 # spe. grav.", - "dens2=1200.0 # density", - "", - "#calculation", - "W2=dens2*v_obj-wt", - "", - "#result", + "\n", + "\n", + "#(a)\n", + "\n", + "#variable declaration\n", + "wt=1.5 # weight of object\n", + " \n", + "#calculation\n", + "v_obj=2.0/1000\n", + "dx=wt/v_obj\n", + "sg=dx/1000\n", + "\n", + "#result\n", + "print('(a)\\nSpecific Gravity = %.2f' %sg)\n", + "\n", + "#(b)\n", + "\n", + "sgl=0.8 # specific grav of liquid\n", + "dens=800.0 # density\n", + "\n", + "#calculation\n", + "W1=dens*v_obj-wt\n", + "\n", + "#result\n", + "print('\\n(b)\\nW1 = %.1f kg' %W1)\n", + "\n", + "\n", + "#(c)\n", + "\n", + "#variable declaration\n", + "sg2=1.2 # spe. grav.\n", + "dens2=1200.0 # density\n", + "\n", + "#calculation\n", + "W2=dens2*v_obj-wt\n", + "\n", + "#result\n", "print('\\n(c)\\nW2 = %.1f kg' %W2)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "Specific Gravity = 0.75", - "", - "(b)", - "W1 = 0.1 kg", - "", - "(c)", + "(a)\n", + "Specific Gravity = 0.75\n", + "\n", + "(b)\n", + "W1 = 0.1 kg\n", + "\n", + "(c)\n", "W2 = 0.9 kg" ] } - ], + ], "prompt_number": 11 } - ] + ], + "metadata": {} } ] }
\ No newline at end of file diff --git a/Industrial_Instrumentation/Chapter_5.ipynb b/Industrial_Instrumentation/Chapter_5.ipynb index fa1d0762..4ec568e3 100644 --- a/Industrial_Instrumentation/Chapter_5.ipynb +++ b/Industrial_Instrumentation/Chapter_5.ipynb @@ -1,874 +1,918 @@ { "metadata": { - "name": "Chapter_5" - }, - "nbformat": 2, + "name": "", + "signature": "sha256:6f1ee33190d8c693b6015349dc3ea8fa65731657e9afb9deaa10542a8aa4bde7" + }, + "nbformat": 3, + "nbformat_minor": 0, "worksheets": [ { "cells": [ { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h1>Chapter 5: Flow <h1>" ] - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.1, Page Number: 310<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''flow rate calulation'''", - "", - "import math", - "#(i)", - "", - "#variable declaration", - "d=75.0*10**-3 # diameter of pipe", - "a=math.pi*d**2/4 # area of cross section of pipe", - "v=760.0*10**-3 # flow velocity", - "", - "#calculation", - "Q=v*a", - "Q=Q*10**3", - "print('(i)\\nVolume Flow Rate Q=%.3f *10^-3 m^3/sec' %Q)", - "rho=1000.0", - "W=rho*Q*10**-3", - "", - "#result", + "\n", + "\n", + "import math\n", + "#(i)\n", + "\n", + "#variable declaration\n", + "d=75.0*10**-3 # diameter of pipe\n", + "a=math.pi*d**2/4 # area of cross section of pipe\n", + "v=760.0*10**-3 # flow velocity\n", + "\n", + "#calculation\n", + "Q=v*a\n", + "Q=Q*10**3\n", + "print('(i)\\nVolume Flow Rate Q=%.3f *10^-3 m^3/sec' %Q)\n", + "rho=1000.0\n", + "W=rho*Q*10**-3\n", + "\n", + "#result\n", "print('\\n(ii)\\nMass Flow rate W=%.3f kg/sec' %W)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(i)", - "Volume Flow Rate Q=3.358 *10^-3 m^3/sec", - "", - "(ii)", + "(i)\n", + "Volume Flow Rate Q=3.358 *10^-3 m^3/sec\n", + "\n", + "(ii)\n", "Mass Flow rate W=3.358 kg/sec" ] } - ], + ], "prompt_number": 1 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.2, page Number:310<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Volumetric flow rate calculation'''", - "", - "import math", - "", - "#variable declaration", - "D=40.0 # Diameter of pipe", - "d=20.0 # Diameter of Orifice", - "mr=15.0 # Manometer reading", - "", - "#calculation", - "h=(13.6-1)*15.0*10.0", - "B=d/D", - "M=1/math.sqrt(1-(B**4))", - "Cd=0.5999", - "x=math.sqrt(2*9.8*h*(10**-3))", - "Q=x*Cd*M*(math.pi*((20*(10**-3))**2))/4", - "Q=Q*3600.0", - "", - "#result", - "print('Volumetric flow rate Q= %.4f m^3/hr' %Q)", - "#Answer slightly deviates from answer given in the book because of pi value.", + "\n", + "\n", + "import math\n", + "\n", + "#variable declaration\n", + "D=40.0 # Diameter of pipe\n", + "d=20.0 # Diameter of Orifice\n", + "mr=15.0 # Manometer reading\n", + "\n", + "#calculation\n", + "h=(13.6-1)*15.0*10.0\n", + "B=d/D\n", + "M=1/math.sqrt(1-(B**4))\n", + "Cd=0.5999\n", + "x=math.sqrt(2*9.8*h*(10**-3))\n", + "Q=x*Cd*M*(math.pi*((20*(10**-3))**2))/4\n", + "Q=Q*3600.0\n", + "\n", + "#result\n", + "print('Volumetric flow rate Q= %.4f m^3/hr' %Q)\n", + "#Answer slightly deviates from answer given in the book because of pi value.\n", "#if pi=3.14, then answer is same as in textbook " - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Volumetric flow rate Q= 4.2649 m^3/hr" ] } - ], + ], "prompt_number": 2 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.3, Page Number: 310<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Nominal flow velocity'''", - "", - "import math", - "#variable declaration", - "Re=10.0**5 # Reynolds number", - "D=40.0*10**-3 # Diameter of pipe ", - "v=10**-6 # Kinematic viscosity in m^2/sec", - "", - "#calculation", - "V1=Re*v/D", - "A1=(math.pi*(40.0*10**-3)**2)/4", - "A2=(math.pi*(20.0*10**-3)**2)/4", - "V2=V1*A1/A2", - "", - "#result", + "\n", + "\n", + "import math\n", + "#variable declaration\n", + "Re=10.0**5 # Reynolds number\n", + "D=40.0*10**-3 # Diameter of pipe \n", + "v=10**-6 # Kinematic viscosity in m^2/sec\n", + "\n", + "#calculation\n", + "V1=Re*v/D\n", + "A1=(math.pi*(40.0*10**-3)**2)/4\n", + "A2=(math.pi*(20.0*10**-3)**2)/4\n", + "V2=V1*A1/A2\n", + "\n", + "#result\n", "print('V2=%.1f m/sec' %V2)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "V2=10.0 m/sec" ] } - ], + ], "prompt_number": 3 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.4, Page Number: 311<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''pressure difference calculation'''", - "", - "import math", - "", - "#variable declaration", - "Cd=0.61 # discharge coefficient", - "D=40.0*10**-3 # Diameter of pipe", - "d=20.0*10**-3 # Diameter of Orifice ", - "", - "#calculation", - "M=1/math.sqrt(1-(d/D)**4)", - "V2=10.0", - "rho=1000.0", - "g=9.8", - "X=V2*math.sqrt(rho/(2*g))/(Cd*M)", - "p_diff=X**2", - "p_diff=math.floor(p_diff/100)", - "p_diff=p_diff/100.0", - "", - "", - "#result", + "\n", + "\n", + "import math\n", + "\n", + "#variable declaration\n", + "Cd=0.61 # discharge coefficient\n", + "D=40.0*10**-3 # Diameter of pipe\n", + "d=20.0*10**-3 # Diameter of Orifice \n", + "\n", + "#calculation\n", + "M=1/math.sqrt(1-(d/D)**4)\n", + "V2=10.0\n", + "rho=1000.0\n", + "g=9.8\n", + "X=V2*math.sqrt(rho/(2*g))/(Cd*M)\n", + "p_diff=X**2\n", + "p_diff=math.floor(p_diff/100)\n", + "p_diff=p_diff/100.0\n", + "\n", + "\n", + "#result\n", "print('P1-P2 = %.2f kg/cm^2'%p_diff)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "P1-P2 = 1.28 kg/cm^2" ] } - ], + ], "prompt_number": 4 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.5, Page Number: 312<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''volume flow rate for orifice and venturi Tubes'''", - "", - "import math", - "", - "#variable declaration", - "Cd=0.6 # discharge coefficient", - "D=150.0*10**-3 # Diameter of pipe", - "d=75.0*10**-3 # Diameter of Orifice ", - "p=250.0 # pressure recorded", - "g=9.8 # acceleration due to gravity", - "rho=1000.0 # Water density ", - "s=75.0*10**-3 # venturi tube size", - "", - "#(a)", - "", - "#calculation", - "Q=Cd*math.pi*s**2*math.sqrt(2*g*p/rho)/(4*math.sqrt(1-(d/D)**4)) ", - "", - "#result", - "print('(a) For orifice plate\\nQ=%f m^3/sec = %.3f litres/sec'%(Q,Q*1000))", - "", - "#calculation", - "Cd1=0.99", - "Q2=Cd1*math.pi*s**2*math.sqrt(2*g*p/rho)/(4*math.sqrt(1-(d/D)**4))", - "", - "#result", - "print('\\n\\n(b)For venturi tube\\nQ=%f m^3/sec = %.2f litres/sec'%(Q2,Q2*1000))", - "#Answer slightly deviates from answer given in the book because of pi value.", + "\n", + "\n", + "import math\n", + "\n", + "#variable declaration\n", + "Cd=0.6 # discharge coefficient\n", + "D=150.0*10**-3 # Diameter of pipe\n", + "d=75.0*10**-3 # Diameter of Orifice \n", + "p=250.0 # pressure recorded\n", + "g=9.8 # acceleration due to gravity\n", + "rho=1000.0 # Water density \n", + "s=75.0*10**-3 # venturi tube size\n", + "\n", + "#(a)\n", + "\n", + "#calculation\n", + "Q=Cd*math.pi*s**2*math.sqrt(2*g*p/rho)/(4*math.sqrt(1-(d/D)**4)) \n", + "\n", + "#result\n", + "print('(a) For orifice plate\\nQ=%f m^3/sec = %.3f litres/sec'%(Q,Q*1000))\n", + "\n", + "#calculation\n", + "Cd1=0.99\n", + "Q2=Cd1*math.pi*s**2*math.sqrt(2*g*p/rho)/(4*math.sqrt(1-(d/D)**4))\n", + "\n", + "#result\n", + "print('\\n\\n(b)For venturi tube\\nQ=%f m^3/sec = %.2f litres/sec'%(Q2,Q2*1000))\n", + "#Answer slightly deviates from answer given in the book because of pi value.\n", "#if pi=3.14, then answer is same as in textbook " - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a) For orifice plate", - "Q=0.006060 m^3/sec = 6.060 litres/sec", - "", - "", - "(b)For venturi tube", + "(a) For orifice plate\n", + "Q=0.006060 m^3/sec = 6.060 litres/sec\n", + "\n", + "\n", + "(b)For venturi tube\n", "Q=0.009999 m^3/sec = 10.00 litres/sec" ] } - ], + ], "prompt_number": 5 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.6, Page Number: 312<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''determination of Reynolds number'''", - "", - "import math", - "", - "#(i)", - "", - "#variable declaration", - "V=0.02 # volumetric flow rate", - "d=10*10**-2 # Diameter of pipe", - "", - "#calculation", - "A=math.pi*d**2/4", - "v=V/A", - "rho=1000.0", - "Re=rho*v*d/10**-3", - "Re=Re/100000.0", - "", - "#result", - "print('(i)\\nReynolds number(Re) = %.3f * 10^5'%Re)", - "", - "#(ii)", - "", - "#variable declaration", - "Cd=0.98 # discharge coefficient ", - "D=20*10**-2 # Diameter of pipe ", - "d=10*10**-2 # Diameter of orifice", - "", - "#calculation", - "M=1/math.sqrt(1-(d/D)**4)", - "a2=math.pi*d**2/4", - "Q=0.02", - "g=9.8", - "X=Q*math.sqrt(rho)/(M*Cd*a2*math.sqrt(2*g))", - "p_diff=math.ceil(X**2)", - "", - "#result", - "print('\\n(ii)\\nPressur_difference = %d kg/m^2 = %.4f kg/cm^2'%(p_diff,p_diff/10000))", - "#Answer slightly deviates from answer given in the book because of pi value.", + "\n", + "\n", + "import math\n", + "\n", + "#(i)\n", + "\n", + "#variable declaration\n", + "V=0.02 # volumetric flow rate\n", + "d=10*10**-2 # Diameter of pipe\n", + "\n", + "#calculation\n", + "A=math.pi*d**2/4\n", + "v=V/A\n", + "rho=1000.0\n", + "Re=rho*v*d/10**-3\n", + "Re=Re/100000.0\n", + "\n", + "#result\n", + "print('(i)\\nReynolds number(Re) = %.3f * 10^5'%Re)\n", + "\n", + "#(ii)\n", + "\n", + "#variable declaration\n", + "Cd=0.98 # discharge coefficient \n", + "D=20*10**-2 # Diameter of pipe \n", + "d=10*10**-2 # Diameter of orifice\n", + "\n", + "#calculation\n", + "M=1/math.sqrt(1-(d/D)**4)\n", + "a2=math.pi*d**2/4\n", + "Q=0.02\n", + "g=9.8\n", + "X=Q*math.sqrt(rho)/(M*Cd*a2*math.sqrt(2*g))\n", + "p_diff=math.ceil(X**2)\n", + "\n", + "#result\n", + "print('\\n(ii)\\nPressur_difference = %d kg/m^2 = %.4f kg/cm^2'%(p_diff,p_diff/10000))\n", + "#Answer slightly deviates from answer given in the book because of pi value.\n", "#if pi=3.14, then answer is same as in textbook " - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(i)", - "Reynolds number(Re) = 2.546 * 10^5", - "", - "(ii)", + "(i)\n", + "Reynolds number(Re) = 2.546 * 10^5\n", + "\n", + "(ii)\n", "Pressur_difference = 323 kg/m^2 = 0.0323 kg/cm^2" ] } - ], + ], "prompt_number": 6 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.7, Page Number: 313<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Fluid velocity and Volumetric flow rate'''", - "", - "import math", - "", - "#1kg/m^2=10 meters water head", - "", - "#variable declaration", - "g=9.81 #acceleration due to gravity", - "h=20.0 #height", - "", - "#calculation", - "v=math.sqrt(2*g*h)", - "d=300.0*10**-3", - "A=(math.pi*d**2)/4", - "A=math.floor(A*1000)", - "A=A/1000.0", - "Q=A*v", - "", - "#result", + "\n", + "\n", + "import math\n", + "\n", + "#1kg/m^2=10 meters water head\n", + "\n", + "#variable declaration\n", + "g=9.81 #acceleration due to gravity\n", + "h=20.0 #height\n", + "\n", + "#calculation\n", + "v=math.sqrt(2*g*h)\n", + "d=300.0*10**-3\n", + "A=(math.pi*d**2)/4\n", + "A=math.floor(A*1000)\n", + "A=A/1000.0\n", + "Q=A*v\n", + "\n", + "#result\n", "print('Q = %.3f m^3/sec'%Q)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Q = 1.387 m^3/sec" ] } - ], + ], "prompt_number": 7 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.8, Page Number:313<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Fluid velocity calculation'''", - "", - "import math", - "", - "#variable declaration", - "Cd=0.6 # coefficient of discharge ", - "g=9.8 #acceleration due to gravity", - "h=400*10**-3 #height", - "", - "#calculation", - "V=Cd*math.sqrt(2*g*h)", - "", - "#result", + "\n", + "\n", + "import math\n", + "\n", + "#variable declaration\n", + "Cd=0.6 # coefficient of discharge \n", + "g=9.8 #acceleration due to gravity\n", + "h=400*10**-3 #height\n", + "\n", + "#calculation\n", + "V=Cd*math.sqrt(2*g*h)\n", + "\n", + "#result\n", "print('V = %.2f m/sec' %V)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "V = 1.68 m/sec" ] } - ], + ], "prompt_number": 8 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.9, Page Number: 314<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''velocity measurement using pilot tube'''", - "", - "import math", - "", - "#variable declaration", - "Cd=0.98 # coefficient of discharge", - "g=9.8 #acceleration due to gravity", - "h=900.0*10**-3 #height", - "", - "#calculation", - "V=Cd*math.sqrt(2*g*h)", - "V=math.floor(V*100)", - "V=(V/100.0)", - "", - "#result", + "\n", + "\n", + "import math\n", + "\n", + "#variable declaration\n", + "Cd=0.98 # coefficient of discharge\n", + "g=9.8 #acceleration due to gravity\n", + "h=900.0*10**-3 #height\n", + "\n", + "#calculation\n", + "V=Cd*math.sqrt(2*g*h)\n", + "V=math.floor(V*100)\n", + "V=(V/100.0)\n", + "\n", + "#result\n", "print('V = %.2f m/sec' %V)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "V = 4.11 m/sec" ] } - ], + ], "prompt_number": 9 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.10, Page Number:314<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Determination of flow velocity'''", - "", - "import math", - "", - "#Variable declaration", - "del_p=20*10**3 #Pa", - "dens_water=1000 #kg/m^3", - "dens_air=1.29 #kg/m^3", - "", - "#calculations", - "", - "#(i)When flowing fluid is water", - "v=math.sqrt(2*del_p/dens_water)", - "", - "#(ii)When flowing fluid is air", - "v1=math.sqrt(2*del_p/dens_air)", - "", - "#result", - "print('\\n(i)When flowing fluid is water\\n\\tV=%.3f m/sec'%v)", + "\n", + "\n", + "import math\n", + "\n", + "#Variable declaration\n", + "del_p=20*10**3 #Pa\n", + "dens_water=1000 #kg/m^3\n", + "dens_air=1.29 #kg/m^3\n", + "\n", + "#calculations\n", + "\n", + "#(i)When flowing fluid is water\n", + "v=math.sqrt(2*del_p/dens_water)\n", + "\n", + "#(ii)When flowing fluid is air\n", + "v1=math.sqrt(2*del_p/dens_air)\n", + "\n", + "#result\n", + "print('\\n(i)When flowing fluid is water\\n\\tV=%.3f m/sec'%v)\n", "print('\\n(ii)When flowing fluid is air\\n\\tV=%.0f m/sec'%v1)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "", - "(i)When flowing fluid is water", - "\tV=6.325 m/sec", - "", - "(ii)When flowing fluid is air", + "\n", + "(i)When flowing fluid is water\n", + "\tV=6.325 m/sec\n", + "\n", + "(ii)When flowing fluid is air\n", "\tV=176 m/sec" ] } - ], + ], "prompt_number": 10 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.11, Page Number: 314<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''detemination of flow velocity'''", - "", - "import math", - "", - "# variable declaration", - "dens=1026.0 # density of see water", - "p=25.0*10**3 # pressure difference in manometer ", - "", - "#calculation", - "V=math.sqrt(2*p/dens)", - "", - "#result", + "\n", + "\n", + "import math\n", + "\n", + "# variable declaration\n", + "dens=1026.0 # density of see water\n", + "p=25.0*10**3 # pressure difference in manometer \n", + "\n", + "#calculation\n", + "V=math.sqrt(2*p/dens)\n", + "\n", + "#result\n", "print('V=%.2f m/sec =%.3f km/hr'%(V,V*18/5))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "V=6.98 m/sec =25.131 km/hr" ] } - ], + ], "prompt_number": 11 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.12, Page Number: 314<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''calculation of flying speed of aircraft'''", - "import math", - "", - "# variable declaration", - "dens=1.29 # air density at height ", - "", - "#calculation", - "p=12.5*1000", - "V=math.sqrt(2*p/dens)", - "", - "", - "#result", + "\n", + "import math\n", + "\n", + "# variable declaration\n", + "dens=1.29 # air density at height \n", + "\n", + "#calculation\n", + "p=12.5*1000\n", + "V=math.sqrt(2*p/dens)\n", + "\n", + "\n", + "#result\n", "print('V=%.2f m/sec =%.2f km/hr'%(V,V*18/5))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "V=139.21 m/sec =501.16 km/hr" ] } - ], + ], "prompt_number": 12 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.13, Page Number: 315<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Maximum fluid handling capacity of Rotameter'''", - "", - "import math", - "", - "#variable declaration", - "Cd=0.6 # discharge coefficient", - "Dp=0.05 # inside diameter of metering tube ", - "Df=0.035 # diameter of rotameter ", - "g=9.8 # acceleration due to gravity", - "rho_f=3.9*10**3 # density of cylindrical float", - "rho=1000.0 # water density ", - "Vf=3.36*10**-5 # volume of the float", - "", - "#calculation", - "Q=Cd*((Dp**2-Df**2)/Df)*math.sqrt(math.pi*g*Vf*(rho_f-rho)/(2*rho))", - "Q=Q*10000.0", - "", - "#result", - "print('Volumetric flow Q=%.4f *10^-4 m^3/sec' %Q)", - "#Answer slightly deviates from answer given in the book because of pi value.", + "\n", + "\n", + "import math\n", + "\n", + "#variable declaration\n", + "Cd=0.6 # discharge coefficient\n", + "Dp=0.05 # inside diameter of metering tube \n", + "Df=0.035 # diameter of rotameter \n", + "g=9.8 # acceleration due to gravity\n", + "rho_f=3.9*10**3 # density of cylindrical float\n", + "rho=1000.0 # water density \n", + "Vf=3.36*10**-5 # volume of the float\n", + "\n", + "#calculation\n", + "Q=Cd*((Dp**2-Df**2)/Df)*math.sqrt(math.pi*g*Vf*(rho_f-rho)/(2*rho))\n", + "Q=Q*10000.0\n", + "\n", + "#result\n", + "print('Volumetric flow Q=%.4f *10^-4 m^3/sec' %Q)\n", + "#Answer slightly deviates from answer given in the book because of pi value.\n", "#if pi=3.14, then answer is same as in textbook " - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Volumetric flow Q=8.4652 *10^-4 m^3/sec" ] } - ], + ], "prompt_number": 13 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.14, Page number: 315<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Determination of range of flow for ratameter'''", - "", - "import math", - "# variable declaration", - "Cd=1 # discharge coefficient", - "Dp=0.018 # inside diameter of metering tube ", - "Df=0.015 # diameter of rotameter ", - "g=9.81 # acceleration due to gravity", - "rho_f=2.7 # density of cylindrical float", - "rho=0.8 # water density ", - "Vf=520.0*10**-9 # volume of the float", - "", - "#case 1", - "", - "#caculation", - "Qmin=Cd*((Dp**2-Df**2)/Df)*math.sqrt(math.pi*g*Vf*(rho_f-rho)/(2*rho))", - "Qmin=Qmin*100000.0", - "", - "#result", - "print('Case 1: When float is at the bottom\\n Volumetric flow Qmin=%.3f *10^-5 m^3/sec'%Qmin)", - "", - "#case 2", - "", - "#calculation", - "Dp2=0.0617", - "Qmax=Cd*((Dp2**2-Df**2)/Df)*math.sqrt(math.pi*g*Vf*(rho_f-rho)/(2*rho))", - "Qmax=Qmax*100000", - "", - "#result", + "\n", + "\n", + "import math\n", + "# variable declaration\n", + "Cd=1 # discharge coefficient\n", + "Dp=0.018 # inside diameter of metering tube \n", + "Df=0.015 # diameter of rotameter \n", + "g=9.81 # acceleration due to gravity\n", + "rho_f=2.7 # density of cylindrical float\n", + "rho=0.8 # water density \n", + "Vf=520.0*10**-9 # volume of the float\n", + "\n", + "#case 1\n", + "\n", + "#caculation\n", + "Qmin=Cd*((Dp**2-Df**2)/Df)*math.sqrt(math.pi*g*Vf*(rho_f-rho)/(2*rho))\n", + "Qmin=Qmin*100000.0\n", + "\n", + "#result\n", + "print('Case 1: When float is at the bottom\\n Volumetric flow Qmin=%.3f *10^-5 m^3/sec'%Qmin)\n", + "\n", + "#case 2\n", + "\n", + "#calculation\n", + "Dp2=0.0617\n", + "Qmax=Cd*((Dp2**2-Df**2)/Df)*math.sqrt(math.pi*g*Vf*(rho_f-rho)/(2*rho))\n", + "Qmax=Qmax*100000\n", + "\n", + "#result\n", "print('\\n\\nCase 2: When float is at the bottom\\n Volumetric flow Qmax=%.2f *10^-5 m^3/sec'%Qmax)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "Case 1: When float is at the bottom", - " Volumetric flow Qmin=2.879 *10^-5 m^3/sec", - "", - "", - "Case 2: When float is at the bottom", + "Case 1: When float is at the bottom\n", + " Volumetric flow Qmin=2.879 *10^-5 m^3/sec\n", + "\n", + "\n", + "Case 2: When float is at the bottom\n", " Volumetric flow Qmax=104.17 *10^-5 m^3/sec" ] } - ], + ], "prompt_number": 14 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.15, Page Number:316<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''calculation of coal delivery for coal conveyor system'''", - "", - "# variable declaration", - "W=165.0 # weight of material on section of length", - "R=328.0 # Conveyor speed m/min", - "L=16.0 # Length of weighting platform in m", - "", - "#calculation", - "Q=W*R/L", - "", - "#result", + "\n", + "\n", + "# variable declaration\n", + "W=165.0 # weight of material on section of length\n", + "R=328.0 # Conveyor speed m/min\n", + "L=16.0 # Length of weighting platform in m\n", + "\n", + "#calculation\n", + "Q=W*R/L\n", + "\n", + "#result\n", "print('Flow Rate Q=%.2f kg/min =%.1f kg/hour'%(Q,Q/60))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Flow Rate Q=3382.50 kg/min =56.4 kg/hour" ] } - ], + ], "prompt_number": 15 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.16, Page Number:316<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Fluid velocity calculation'''", - "", - "import math", - "", - "#variable declaration", - "f=100.0 # beat frequency", - "d=300.0*10**-3 # Sound path", - "a=45.0 #angle between transmeter and receiver in degrees", - "", - "#calculation", - "a_rad=45.0*math.pi/180.0", - "v=f*d/(2*math.cos(a_rad))", - "", - "#Result", + "\n", + "\n", + "import math\n", + "\n", + "#variable declaration\n", + "f=100.0 # beat frequency\n", + "d=300.0*10**-3 # Sound path\n", + "a=45.0 #angle between transmeter and receiver in degrees\n", + "\n", + "#calculation\n", + "a_rad=45.0*math.pi/180.0\n", + "v=f*d/(2*math.cos(a_rad))\n", + "\n", + "#Result\n", "print('Fluid Velocity V=%.1f m/sec'%v)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Fluid Velocity V=21.2 m/sec" ] } - ], + ], "prompt_number": 16 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.17, Page Number: 316<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''volume flow rate'''", - "", - "# variable declaration", - "r=150.0 # speed of rotation", - "v=120.0 # volume trapped between gears and casting", - "", - "#clculation", - "Q=4.0*v*r", - "", - "#result", + "\n", + "\n", + "# variable declaration\n", + "r=150.0 # speed of rotation\n", + "v=120.0 # volume trapped between gears and casting\n", + "\n", + "#clculation\n", + "Q=4.0*v*r\n", + "\n", + "#result\n", "print('Volume flow rate Q=%d cm^3/min = %d litres/min'%(Q,Q/1000))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Volume flow rate Q=72000 cm^3/min = 72 litres/min" ] } - ], + ], "prompt_number": 17 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.18, Page Number: 317<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''induced emf in electromagnetic flow meter'''", - "", - "import math", - "", - "# variable declaration", - "Q=2500.0 # Quantitty flow rate", - "d=2.75 # inner diameter", - "", - "#calculation", - "a=(math.pi*d**2)/4", - "v=Q/(60*a)", - "B=60.0", - "e=B*d*10**-2*v*10**-2", - "", - "#result", + "\n", + "\n", + "import math\n", + "\n", + "# variable declaration\n", + "Q=2500.0 # Quantitty flow rate\n", + "d=2.75 # inner diameter\n", + "\n", + "#calculation\n", + "a=(math.pi*d**2)/4\n", + "v=Q/(60*a)\n", + "B=60.0\n", + "e=B*d*10**-2*v*10**-2\n", + "\n", + "#result\n", "print('Induced emf e =%.4f V=%.1f mV'%(e,e*1000))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Induced emf e =0.1157 V=115.7 mV" ] } - ], + ], "prompt_number": 18 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.19, Pae Number:317<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''velocity of flow in electromagnetic flow meter'''", - "", - "# variable declaration", - "e=0.2*10**-3 # voltage of electromagnetic flow meter", - "B=0.08 # Flux density", - "l=10.0*10**-2 # Diameter of pipe", - "", - "#calculation", - "v=e/(B*l)", - "", - "#result", + "\n", + "\n", + "# variable declaration\n", + "e=0.2*10**-3 # voltage of electromagnetic flow meter\n", + "B=0.08 # Flux density\n", + "l=10.0*10**-2 # Diameter of pipe\n", + "\n", + "#calculation\n", + "v=e/(B*l)\n", + "\n", + "#result\n", "print('V = %.3f m/sec = %.2f cm/sec'%(v,v*100))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "V = 0.025 m/sec = 2.50 cm/sec" ] } - ], + ], "prompt_number": 19 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 5.20, Page Number: 317<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''average velocity of flow in electromagnetic flow meter'''", - "", - "# variable declaration", - "ei=0.15*10**-3 # peak value", - "em=2*ei # p-p amplifier output ", - "B=0.1 # flux density", - "l=60.0*10**-3 # diameter of the pipe", - "", - "#calculation", - "v=em/(B*l)", - "", - "#result", + "\n", + "\n", + "# variable declaration\n", + "ei=0.15*10**-3 # peak value\n", + "em=2*ei # p-p amplifier output \n", + "B=0.1 # flux density\n", + "l=60.0*10**-3 # diameter of the pipe\n", + "\n", + "#calculation\n", + "v=em/(B*l)\n", + "\n", + "#result\n", "print('Velocity of flow V = %.2f m/sec = %.1f cm/sec'%(v,v*100))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Velocity of flow V = 0.05 m/sec = 5.0 cm/sec" ] } - ], + ], "prompt_number": 20 } - ] + ], + "metadata": {} } ] }
\ No newline at end of file diff --git a/Industrial_Instrumentation/Chapter_6.ipynb b/Industrial_Instrumentation/Chapter_6.ipynb index d3a9a093..bdc5920d 100644 --- a/Industrial_Instrumentation/Chapter_6.ipynb +++ b/Industrial_Instrumentation/Chapter_6.ipynb @@ -1,534 +1,558 @@ { "metadata": { - "name": "Chapter_6" - }, - "nbformat": 2, + "name": "", + "signature": "sha256:6148d2be2796832e7d2e9cefcc5c361a4c9dc07b22c355b627a74bd914199046" + }, + "nbformat": 3, + "nbformat_minor": 0, "worksheets": [ { "cells": [ { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h1>Chapter 6: Level<h1>" ] - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 6.1,Page Number:370<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''output current of two wire pressure transmitter'''", - "", - "#(a)", - "", - "# variable declaration", - "p=1.5 # pressure applied", - "a=4.0 # mA corresponds to 0 kg/cm^2", - "b=20.0 # mA corresponds to 2 kg/cm^2", - "", - "#calculation", - "wh=(((b-a)/2)*p)+a", - "", - "#result", - "print('(a)just at the bottom level of the tank')", - "print('Water head applied to the transmitter =%d mA'%wh)", - "", - "#(b)", - "", - "#calculation", - "wh2=(((b-a)/2)*p)+2*a", - "", - "#result", - "print('\\n\\n(b)5m below the bottom of the tank')", - "print('Water head applied to the transmitter =%d mA' %wh2)", - "", - "#(c)", - "", - "#calculation", - "wh3=(((b-a)/2)*p)", - "", - "#result", - "print('\\n\\n(c)5m above the bottom of the tank')", + "\n", + "\n", + "#(a)\n", + "\n", + "# variable declaration\n", + "p=1.5 # pressure applied\n", + "a=4.0 # mA corresponds to 0 kg/cm^2\n", + "b=20.0 # mA corresponds to 2 kg/cm^2\n", + "\n", + "#calculation\n", + "wh=(((b-a)/2)*p)+a\n", + "\n", + "#result\n", + "print('(a)just at the bottom level of the tank')\n", + "print('Water head applied to the transmitter =%d mA'%wh)\n", + "\n", + "#(b)\n", + "\n", + "#calculation\n", + "wh2=(((b-a)/2)*p)+2*a\n", + "\n", + "#result\n", + "print('\\n\\n(b)5m below the bottom of the tank')\n", + "print('Water head applied to the transmitter =%d mA' %wh2)\n", + "\n", + "#(c)\n", + "\n", + "#calculation\n", + "wh3=(((b-a)/2)*p)\n", + "\n", + "#result\n", + "print('\\n\\n(c)5m above the bottom of the tank')\n", "print('Water head applied to the transmitter =%d mA'%wh3)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)just at the bottom level of the tank", - "Water head applied to the transmitter =16 mA", - "", - "", - "(b)5m below the bottom of the tank", - "Water head applied to the transmitter =20 mA", - "", - "", - "(c)5m above the bottom of the tank", + "(a)just at the bottom level of the tank\n", + "Water head applied to the transmitter =16 mA\n", + "\n", + "\n", + "(b)5m below the bottom of the tank\n", + "Water head applied to the transmitter =20 mA\n", + "\n", + "\n", + "(c)5m above the bottom of the tank\n", "Water head applied to the transmitter =12 mA" ] } - ], + ], "prompt_number": 1 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 6.2, Page Number:371<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''water level and current at different positions'''", - "", - "#(a)", - "", - "#variable declaration", - "b=20.0 # Maximum output", - "a=4.0 # minimum output ", - "op=16.0 # output in mA", - "", - "#calculation", - "p=(op-a)*2/(b-a)", - "p_h=p*10.0", - "h=p_h-2-5", - "", - "#result", - "print('(a)\\nh = %dm'%h)", - "", - "#(b)", - "", - "#variable declaration", - "p1=1 # pressure applied", - "", - "#calculation", - "t_op=((b-a)/2)*p1+4", - "", - "#result", - "print('\\n(b)\\nTransmitter output =%d mA'%t_op)", - "", - "#(c)", - "", - "#variable declaration", - "p2=0.5 # applied pressure", - "", - "#calculation", - "t_op1=((b-a)/2)*p2+4", - "", - "#result", + "\n", + "\n", + "#(a)\n", + "\n", + "#variable declaration\n", + "b=20.0 # Maximum output\n", + "a=4.0 # minimum output \n", + "op=16.0 # output in mA\n", + "\n", + "#calculation\n", + "p=(op-a)*2/(b-a)\n", + "p_h=p*10.0\n", + "h=p_h-2-5\n", + "\n", + "#result\n", + "print('(a)\\nh = %dm'%h)\n", + "\n", + "#(b)\n", + "\n", + "#variable declaration\n", + "p1=1 # pressure applied\n", + "\n", + "#calculation\n", + "t_op=((b-a)/2)*p1+4\n", + "\n", + "#result\n", + "print('\\n(b)\\nTransmitter output =%d mA'%t_op)\n", + "\n", + "#(c)\n", + "\n", + "#variable declaration\n", + "p2=0.5 # applied pressure\n", + "\n", + "#calculation\n", + "t_op1=((b-a)/2)*p2+4\n", + "\n", + "#result\n", "print('\\n(c)\\nTransmitter output =%d mA'%t_op1)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "h = 8m", - "", - "(b)", - "Transmitter output =12 mA", - "", - "(c)", + "(a)\n", + "h = 8m\n", + "\n", + "(b)\n", + "Transmitter output =12 mA\n", + "\n", + "(c)\n", "Transmitter output =8 mA" ] } - ], + ], "prompt_number": 2 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 6.3, Page Number: 372<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Differential pressure output at different levels'''", - "", - "#(a)", - "", - "#variable declaration", - "b=20.0 # Maximum output", - "a=4.0 # minimum output", - "op=16.0 # actual output ", - "wt_l1=25.0 # water level (i)", - "", - "#calculation", - "t_op=((b-a)/100)*(100-75)+4", - "", - "#result", - "print('(a)\\nWater level=+25cm\\nTransmitter output = %d mA' %t_op)", - "", - "#(b)", - "", - "#calculation", - "wt_l2=-25.0 # water level (ii)", - "t_op2=((b-a)/100)*(100-25)+4", - "", - "#result", - "print('\\n(b)\\nWater level=-25cm\\nTransmitter output = %d mA' %t_op2)", - "", - "#(c)", - "", - "#Variable declaration", - "t_op3=12.0 # Transmitter output ", - "", - "#calculation", - "H=(100.0/(b-a))*(12-4) ", - "", - "#result", + "\n", + "\n", + "#(a)\n", + "\n", + "#variable declaration\n", + "b=20.0 # Maximum output\n", + "a=4.0 # minimum output\n", + "op=16.0 # actual output \n", + "wt_l1=25.0 # water level (i)\n", + "\n", + "#calculation\n", + "t_op=((b-a)/100)*(100-75)+4\n", + "\n", + "#result\n", + "print('(a)\\nWater level=+25cm\\nTransmitter output = %d mA' %t_op)\n", + "\n", + "#(b)\n", + "\n", + "#calculation\n", + "wt_l2=-25.0 # water level (ii)\n", + "t_op2=((b-a)/100)*(100-25)+4\n", + "\n", + "#result\n", + "print('\\n(b)\\nWater level=-25cm\\nTransmitter output = %d mA' %t_op2)\n", + "\n", + "#(c)\n", + "\n", + "#Variable declaration\n", + "t_op3=12.0 # Transmitter output \n", + "\n", + "#calculation\n", + "H=(100.0/(b-a))*(12-4) \n", + "\n", + "#result\n", "print('\\n(c)\\nHead Applied = %d cm\\nLevel corresponding to 50 cm head =0 cm' %H)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "Water level=+25cm", - "Transmitter output = 8 mA", - "", - "(b)", - "Water level=-25cm", - "Transmitter output = 16 mA", - "", - "(c)", - "Head Applied = 50 cm", + "(a)\n", + "Water level=+25cm\n", + "Transmitter output = 8 mA\n", + "\n", + "(b)\n", + "Water level=-25cm\n", + "Transmitter output = 16 mA\n", + "\n", + "(c)\n", + "Head Applied = 50 cm\n", "Level corresponding to 50 cm head =0 cm" ] } - ], + ], "prompt_number": 3 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 6.4, Page Number: 373<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Displacer with spring balance'''", - "", - "#(a)", - "", - "#variable declaration", - "a=5.0*10**-4 #area", - "l=8.0 #length", - "dens=6.0*1000.0 #density", - "", - "#calculation", - "w=a*l*dens", - "", - "#result", - "print('(a)\\nWeight of the displacer if weighed in air = %d kg'%w)", - "", - "", - "#(i)", - "", - "#variable declaration", - "sbr1=23.0 # spring balance reading", - "", - "#calculation", - "wloss1=w-sbr1", - "L1=wloss1/(1000.0*a)", - "", - "#result", - "print('\\n(i)\\tL1=%dm'%L1)", - "", - "", - "#(ii)", - "", - "#variable declaration", - "sbr2=22.0 # spring balance reading", - "", - "#calculation", - "wloss2=w-sbr2", - "L2=wloss2/(1000.0*a)", - "", - "#result", - "print('\\n(ii)\\tL2=%dm'%L2)", - "", - "#(iii)", - "", - "#variable declaration", - "sbr3=21.0 # spring balance reading", - "", - "#calculation", - "wloss3=w-sbr3", - "L3=wloss3/(1000.0*a)", - "", - "#result", - "print('\\n(iii)\\tL3=%dm'%L3)", - "", - "#(b)", - "", - "#variable declaration", - "level=8.0 # level wen tank is full ", - "", - "#calculation", - "wt=a*level*1000.0", - "spring=w-wt", - "", - "#result", + "\n", + "\n", + "#(a)\n", + "\n", + "#variable declaration\n", + "a=5.0*10**-4 #area\n", + "l=8.0 #length\n", + "dens=6.0*1000.0 #density\n", + "\n", + "#calculation\n", + "w=a*l*dens\n", + "\n", + "#result\n", + "print('(a)\\nWeight of the displacer if weighed in air = %d kg'%w)\n", + "\n", + "\n", + "#(i)\n", + "\n", + "#variable declaration\n", + "sbr1=23.0 # spring balance reading\n", + "\n", + "#calculation\n", + "wloss1=w-sbr1\n", + "L1=wloss1/(1000.0*a)\n", + "\n", + "#result\n", + "print('\\n(i)\\tL1=%dm'%L1)\n", + "\n", + "\n", + "#(ii)\n", + "\n", + "#variable declaration\n", + "sbr2=22.0 # spring balance reading\n", + "\n", + "#calculation\n", + "wloss2=w-sbr2\n", + "L2=wloss2/(1000.0*a)\n", + "\n", + "#result\n", + "print('\\n(ii)\\tL2=%dm'%L2)\n", + "\n", + "#(iii)\n", + "\n", + "#variable declaration\n", + "sbr3=21.0 # spring balance reading\n", + "\n", + "#calculation\n", + "wloss3=w-sbr3\n", + "L3=wloss3/(1000.0*a)\n", + "\n", + "#result\n", + "print('\\n(iii)\\tL3=%dm'%L3)\n", + "\n", + "#(b)\n", + "\n", + "#variable declaration\n", + "level=8.0 # level wen tank is full \n", + "\n", + "#calculation\n", + "wt=a*level*1000.0\n", + "spring=w-wt\n", + "\n", + "#result\n", "print('\\n(b):when the tank is full\\nSpring Balance reading = %d kg'%spring)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "Weight of the displacer if weighed in air = 24 kg", - "", - "(i)\tL1=2m", - "", - "(ii)\tL2=4m", - "", - "(iii)\tL3=6m", - "", - "(b):when the tank is full", + "(a)\n", + "Weight of the displacer if weighed in air = 24 kg\n", + "\n", + "(i)\tL1=2m\n", + "\n", + "(ii)\tL2=4m\n", + "\n", + "(iii)\tL3=6m\n", + "\n", + "(b):when the tank is full\n", "Spring Balance reading = 20 kg" ] } - ], + ], "prompt_number": 4 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 6.5, Page Number: 374<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Buoyancy Force calculation'''", - "", - "#variable declaration", - "rho=1000.0 # density of water ", - "v=3.0 # displaced volume of water ", - "", - "#calculation", - "Bw=rho*v", - "", - "#Result", + "\n", + "\n", + "#variable declaration\n", + "rho=1000.0 # density of water \n", + "v=3.0 # displaced volume of water \n", + "\n", + "#calculation\n", + "Bw=rho*v\n", + "\n", + "#Result\n", "print('Buoyance Force(Bw) = %d kg'%Bw)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Buoyance Force(Bw) = 3000 kg" ] } - ], + ], "prompt_number": 5 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 6.6, Page Number: 374<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Determination of displaced volume from Buoyancy Force'''", - "", - "#variable declaration", - "rho=1000.0 # density of water", - "Bw=5000.0 # Buoyancy Force", - "", - "#calculation", - "v=Bw/rho", - "", - "#result", + "\n", + "\n", + "#variable declaration\n", + "rho=1000.0 # density of water\n", + "Bw=5000.0 # Buoyancy Force\n", + "\n", + "#calculation\n", + "v=Bw/rho\n", + "\n", + "#result\n", "print('V = %d m^3' %v)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "V = 5 m^3" ] } - ], + ], "prompt_number": 6 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 6.7, Page Number: 374<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Determination of hydrostatic pressure in open tank'''", - "", - "#variable declaration", - "rho=1000.0 # density of water", - "h=10.0 # height of liquid", - "", - "#calculation", - "P=rho*h", - "", - "#result", + "\n", + "\n", + "#variable declaration\n", + "rho=1000.0 # density of water\n", + "h=10.0 # height of liquid\n", + "\n", + "#calculation\n", + "P=rho*h\n", + "\n", + "#result\n", "print('P = %d kg/m^2 = %d kg/cm^2 '%(P,P/10000))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "P = 10000 kg/m^2 = 1 kg/cm^2 " ] } - ], + ], "prompt_number": 7 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 6.8, Page Number: 374<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Determination of hydrostatic pressure in closed tank'''", - "", - "#variable declaration", - "rho=1000.0 # density of water", - "h=15.0 # height of liquid ", - "ex_p=1.0 # External pressure on liquid", - "", - "#calculation", - "P=(rho*h/10000.0)+ex_p", - "", - "#result", + "\n", + "\n", + "#variable declaration\n", + "rho=1000.0 # density of water\n", + "h=15.0 # height of liquid \n", + "ex_p=1.0 # External pressure on liquid\n", + "\n", + "#calculation\n", + "P=(rho*h/10000.0)+ex_p\n", + "\n", + "#result\n", "print('P = %.1f kg/cm^2' %P)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "P = 2.5 kg/cm^2" ] } - ], + ], "prompt_number": 8 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 6.9, Page Number:374<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Determination of height from hydrostatic pressure'''", - "", - "#variable declaration", - "rho=1000.0 # density of water", - "ex_p=0.5*10**4 # External pressure on liquid ", - "P=1.6*10**4 #(rho*h/10000)+ex_p", - "", - "#calculation", - "h=(P-ex_p)/1000.0", - "", - "#result", + "\n", + "\n", + "#variable declaration\n", + "rho=1000.0 # density of water\n", + "ex_p=0.5*10**4 # External pressure on liquid \n", + "P=1.6*10**4 #(rho*h/10000)+ex_p\n", + "\n", + "#calculation\n", + "h=(P-ex_p)/1000.0\n", + "\n", + "#result\n", "print('h = %d m' %h)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "h = 11 m" ] } - ], + ], "prompt_number": 9 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 6.10, Page Number:375<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''calculation of level on the probe'''", - "", - "#variable declaration", - "c2=100.0*10**-6 # capacitance in capacitance probe", - "r1=10.0*10**3 # value of resistor in bride", - "r2=100.0*10**3 # value of resistor in bride", - "r3=50.0*10**3 # value of resistor in bride", - "", - "#calculation", - "Cx=r1*c2/r3", - "Cx=Cx*10**6", - "", - "#result", - "print('Cx = %d microFarad'%Cx)", - "c=5.0", - "", - "#calculation", - "l=Cx/c", - "", - "#result", + "\n", + "\n", + "#variable declaration\n", + "c2=100.0*10**-6 # capacitance in capacitance probe\n", + "r1=10.0*10**3 # value of resistor in bride\n", + "r2=100.0*10**3 # value of resistor in bride\n", + "r3=50.0*10**3 # value of resistor in bride\n", + "\n", + "#calculation\n", + "Cx=r1*c2/r3\n", + "Cx=Cx*10**6\n", + "\n", + "#result\n", + "print('Cx = %d microFarad'%Cx)\n", + "c=5.0\n", + "\n", + "#calculation\n", + "l=Cx/c\n", + "\n", + "#result\n", "print('\\nLevel on the probe = %dm'%l)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "Cx = 20 microFarad", - "", + "Cx = 20 microFarad\n", + "\n", "Level on the probe = 4m" ] } - ], + ], "prompt_number": 10 } - ] + ], + "metadata": {} } ] }
\ No newline at end of file diff --git a/Industrial_Instrumentation/Chapter_7.ipynb b/Industrial_Instrumentation/Chapter_7.ipynb index f42da02c..4a5cfd38 100644 --- a/Industrial_Instrumentation/Chapter_7.ipynb +++ b/Industrial_Instrumentation/Chapter_7.ipynb @@ -1,567 +1,594 @@ { "metadata": { - "name": "Chapter_7" - }, - "nbformat": 2, + "name": "", + "signature": "sha256:7398e89d85008e2cdad3036771199a6877abb82c38f4bdc25b1a999f38a5b0fa" + }, + "nbformat": 3, + "nbformat_minor": 0, "worksheets": [ { "cells": [ { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h1>Chapter 7: Velocity Humidity and Moisture<h1>" ] - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 7.1, Page NUmber: 436<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''calculation of absolute viscosity'''", - "", - "#variable declaration", - "f=2*9.8*10**5 # Force in Dynes", - "A=100.0 # area in cm^2", - "V=20.0 # velocity in m/sec", - "l=10.0 # length in cm", - "", - "#calculation", - "mu=(f/A)/(V/l)", - "mu=mu/1000.0", - "", - "#result", + "\n", + "\n", + "#variable declaration\n", + "f=2*9.8*10**5 # Force in Dynes\n", + "A=100.0 # area in cm^2\n", + "V=20.0 # velocity in m/sec\n", + "l=10.0 # length in cm\n", + "\n", + "#calculation\n", + "mu=(f/A)/(V/l)\n", + "mu=mu/1000.0\n", + "\n", + "#result\n", "print('The absolute viscosity mu = %.1f*10^5 centipoises'%mu)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "The absolute viscosity mu = 9.8*10^5 centipoises" ] } - ], + ], "prompt_number": 4 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 7.2, Page Number:437<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''calculation of kinematic relative and absolute viscosity'''", - "", - "#(a)", - "", - "#variable declaration", - "v=10.0 # absolute viscosity", - "", - "#calculation", - "F=1/v", - "", - "#result", - "print('(a)\\nFluidity = %.1f rhe'%F)", - "", - "#(b)", - "", - "#variable declaration", - "mu=10.0 # absolute viscosity", - "rho=0.8 # density in m/cm^3", - "", - "#calculation", - "ve=mu/rho", - "", - "#result", - "print('\\n(b)\\nKinematic viscosity (v)= %.1f cm^2/sec'%ve)", - "", - "", - "#(c)", - "", - "#variable declaration", - "ab=1000.0 # absolute viscosity ", - "abwt=1.002 # absolute viscosity of water at 20 deree celcius", - "", - "#calculation", - "rv=ab/abwt", - "", - "#result", - "print('\\n(c)\\nRelative viscosity = %d centipoises'%rv)", - "", - "#(d)", - "", - "#variable declaration", - "PAS=10.0", - "", - "#Result", + "\n", + "\n", + "#(a)\n", + "\n", + "#variable declaration\n", + "v=10.0 # absolute viscosity\n", + "\n", + "#calculation\n", + "F=1/v\n", + "\n", + "#result\n", + "print('(a)\\nFluidity = %.1f rhe'%F)\n", + "\n", + "#(b)\n", + "\n", + "#variable declaration\n", + "mu=10.0 # absolute viscosity\n", + "rho=0.8 # density in m/cm^3\n", + "\n", + "#calculation\n", + "ve=mu/rho\n", + "\n", + "#result\n", + "print('\\n(b)\\nKinematic viscosity (v)= %.1f cm^2/sec'%ve)\n", + "\n", + "\n", + "#(c)\n", + "\n", + "#variable declaration\n", + "ab=1000.0 # absolute viscosity \n", + "abwt=1.002 # absolute viscosity of water at 20 deree celcius\n", + "\n", + "#calculation\n", + "rv=ab/abwt\n", + "\n", + "#result\n", + "print('\\n(c)\\nRelative viscosity = %d centipoises'%rv)\n", + "\n", + "#(d)\n", + "\n", + "#variable declaration\n", + "PAS=10.0\n", + "\n", + "#Result\n", "print('\\n(c)\\nAbsolute viscosity = 1000 centipoises =10 poises = 1PAS')" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "Fluidity = 0.1 rhe", - "", - "(b)", - "Kinematic viscosity (v)= 12.5 cm^2/sec", - "", - "(c)", - "Relative viscosity = 998 centipoises", - "", - "(c)", + "(a)\n", + "Fluidity = 0.1 rhe\n", + "\n", + "(b)\n", + "Kinematic viscosity (v)= 12.5 cm^2/sec\n", + "\n", + "(c)\n", + "Relative viscosity = 998 centipoises\n", + "\n", + "(c)\n", "Absolute viscosity = 1000 centipoises =10 poises = 1PAS" ] } - ], + ], "prompt_number": 5 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 7.3, Page Number: 438<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Absolute viscosity of the Newtonian fluid'''", - "", - "import math", - "#b)", - "", - "#variable declaration", - "R=0.5 # radius", - "L=5 # length", - "p_diff=800.0 # pressure difference", - "V=10.0 # volume", - "", - "#calculation", - "mu=(math.pi*R**4)*p_diff/(8*V*L)", - "", - "#result", + "\n", + "\n", + "import math\n", + "#b)\n", + "\n", + "#variable declaration\n", + "R=0.5 # radius\n", + "L=5 # length\n", + "p_diff=800.0 # pressure difference\n", + "V=10.0 # volume\n", + "\n", + "#calculation\n", + "mu=(math.pi*R**4)*p_diff/(8*V*L)\n", + "\n", + "#result\n", "print('(b)\\nmu=%.4f poise =%.2f centipoise'%(mu,mu*100))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(b)", + "(b)\n", "mu=0.3927 poise =39.27 centipoise" ] } - ], + ], "prompt_number": 6 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 7.4, Page Number: 439<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''kinematic viscosity and density calculation'''", - "", - "import math ", - "#(a)", - "", - "#variable declaration", - "g=980.0 # acceleration due to gravity", - "h=4 # Height", - "R=0.5 # radius", - "V=10.0 # volume ", - "l=5.0 # length ", - "t=1.0", - "", - "#calculation", - "v=(math.pi*g*h*t*R**4)/(8*l*V)", - "", - "#result", - "print('(a)\\n v = %.2f stokes'%v)", - "", - "#calculation", - "mu=0.3925", - "rho=mu/v", - "", - "#result", + "\n", + "\n", + "import math \n", + "#(a)\n", + "\n", + "#variable declaration\n", + "g=980.0 # acceleration due to gravity\n", + "h=4 # Height\n", + "R=0.5 # radius\n", + "V=10.0 # volume \n", + "l=5.0 # length \n", + "t=1.0\n", + "\n", + "#calculation\n", + "v=(math.pi*g*h*t*R**4)/(8*l*V)\n", + "\n", + "#result\n", + "print('(a)\\n v = %.2f stokes'%v)\n", + "\n", + "#calculation\n", + "mu=0.3925\n", + "rho=mu/v\n", + "\n", + "#result\n", "print('\\n(b)\\n Density of the fluid rho = %.3f gm/cm^3'%rho)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - " v = 1.92 stokes", - "", - "(b)", + "(a)\n", + " v = 1.92 stokes\n", + "\n", + "(b)\n", " Density of the fluid rho = 0.204 gm/cm^3" ] } - ], + ], "prompt_number": 7 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 7.5, Page Number: 440<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Kinematic Viscosity in Saybolts Universal viscometer'''", - "", - "#variable declaration", - "", - "#(a)", - "A=0.226 # value of A as per equation", - "B=195.0 # value of B as per equation", - "t=60.0 # Efflux time", - "", - "#calcullation", - "v=A*t-B/t", - "A1=0.220", - "B1=135.0", - "t1=140.0", - "v1=A1*t1-B1/t1", - "", - "#result", - "print('(a) Fluid X\\n v = %.2f centipoises'%v)", + "\n", + "#variable declaration\n", + "\n", + "#(a)\n", + "A=0.226 # value of A as per equation\n", + "B=195.0 # value of B as per equation\n", + "t=60.0 # Efflux time\n", + "\n", + "#calcullation\n", + "v=A*t-B/t\n", + "A1=0.220\n", + "B1=135.0\n", + "t1=140.0\n", + "v1=A1*t1-B1/t1\n", + "\n", + "#result\n", + "print('(a) Fluid X\\n v = %.2f centipoises'%v)\n", "print('\\n(b)Fluid Y\\n v = %.1f centipoises'%v1)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a) Fluid X", - " v = 10.31 centipoises", - "", - "(b)Fluid Y", + "(a) Fluid X\n", + " v = 10.31 centipoises\n", + "\n", + "(b)Fluid Y\n", " v = 29.8 centipoises" ] } - ], + ], "prompt_number": 8 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 7.6, Page Number: 441<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''calculation of absolute viscosity'''", - "", - "import math", - "", - "#variable declaration", - "t=12.0 # time interval of falling ball in sec ", - "Rsb=7.0 # Specific gravity of ball", - "Rsf=1.12 # Specific gravity of fluid", - "B=1.5 # Ball constant in centipoises", - "", - "#calculation", - "mu=t*(Rsb-Rsf)*B", - "", - "#result", + "\n", + "\n", + "import math\n", + "\n", + "#variable declaration\n", + "t=12.0 # time interval of falling ball in sec \n", + "Rsb=7.0 # Specific gravity of ball\n", + "Rsf=1.12 # Specific gravity of fluid\n", + "B=1.5 # Ball constant in centipoises\n", + "\n", + "#calculation\n", + "mu=t*(Rsb-Rsf)*B\n", + "\n", + "#result\n", "print('mu= %.2f centipoises = %d centipoises(approx)'%(mu,math.ceil(mu)))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "mu= 105.84 centipoises = 106 centipoises(approx)" ] } - ], + ], "prompt_number": 9 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 7.7, Page Number: 441<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''calculation of relative humidity'''", - "", - "#(a)", - "", - "#variable declaration", - "B=45.0 # dry bulb temperature", - "W=25.0 # wet bulb temperature", - "", - "#result", - "print('\\n(b)\\nPsychromatic differential : %d\u00b0C'%(B-W))", - "print('\\n Relative humidity is 80%% corresponding to')", - "print(' \\ntemperature 45\u00b0C and psychromatic differential 20\u00b0C')", - "", - "#(b)", - "", - "#variable declaration", - "B1=30.0 # dry bulb temperature", - "W1=27.0 # wet bulb temperature", - "", - "#result", - "print('\\n(b)\\nPsychromatic differential : %d\u00b0C'%(B1-W1))", - "print('\\n Relative humidity is 80%% corresponding to')", + "\n", + "\n", + "#(a)\n", + "\n", + "#variable declaration\n", + "B=45.0 # dry bulb temperature\n", + "W=25.0 # wet bulb temperature\n", + "\n", + "#result\n", + "print('\\n(b)\\nPsychromatic differential : %d\u00b0C'%(B-W))\n", + "print('\\n Relative humidity is 80%% corresponding to')\n", + "print(' \\ntemperature 45\u00b0C and psychromatic differential 20\u00b0C')\n", + "\n", + "#(b)\n", + "\n", + "#variable declaration\n", + "B1=30.0 # dry bulb temperature\n", + "W1=27.0 # wet bulb temperature\n", + "\n", + "#result\n", + "print('\\n(b)\\nPsychromatic differential : %d\u00b0C'%(B1-W1))\n", + "print('\\n Relative humidity is 80%% corresponding to')\n", "print(' \\ntemperature 30\u00b0C and psychromatic differential 3\u00b0C')" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "", - "(b)", - "Psychromatic differential : 20\u00b0C", - "", - " Relative humidity is 80%% corresponding to", - " ", - "temperature 45\u00b0C and psychromatic differential 20\u00b0C", - "", - "(b)", - "Psychromatic differential : 3\u00b0C", - "", - " Relative humidity is 80%% corresponding to", - " ", + "\n", + "(b)\n", + "Psychromatic differential : 20\u00b0C\n", + "\n", + " Relative humidity is 80%% corresponding to\n", + " \n", + "temperature 45\u00b0C and psychromatic differential 20\u00b0C\n", + "\n", + "(b)\n", + "Psychromatic differential : 3\u00b0C\n", + "\n", + " Relative humidity is 80%% corresponding to\n", + " \n", "temperature 30\u00b0C and psychromatic differential 3\u00b0C" ] } - ], + ], "prompt_number": 10 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 7.8, Page Number: 441<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''calculation of Relative Humidity dew point and moisture content'''", - "", - "#variable declaration", - "D=80.0 # intersection point of DB temperature", - "W=66.5 # intersection point of WB temperature", - "", - "#Result", - "", - "#(a)", - "print('(a)\\nThe intersection point of DB temperature 80\u00b0F and WB temperature 66.5\u00b0F')", - "print(' \\nlines on the relative humidity curve for 50%.\\n RH = 50%')", - "", - "#(b)", - "print('\\n(b)\\nFrom the point of intersection of the dry and wet bulb curves, move left')", - "print(' \\nhorizontally to the dew point temperature curve where it meets at 60\u00b0F')", - "print('\\nDew Point = 60\u00b0F')", - "", - "#(c)", - "print('\\n(c)\\nFrom the point of intersection of the dry and wet bulb curves,')", - "print('\\nhorizontally to the right to the moisture content plot where it meets at 76.')", + "\n", + "\n", + "#variable declaration\n", + "D=80.0 # intersection point of DB temperature\n", + "W=66.5 # intersection point of WB temperature\n", + "\n", + "#Result\n", + "\n", + "#(a)\n", + "print('(a)\\nThe intersection point of DB temperature 80\u00b0F and WB temperature 66.5\u00b0F')\n", + "print(' \\nlines on the relative humidity curve for 50%.\\n RH = 50%')\n", + "\n", + "#(b)\n", + "print('\\n(b)\\nFrom the point of intersection of the dry and wet bulb curves, move left')\n", + "print(' \\nhorizontally to the dew point temperature curve where it meets at 60\u00b0F')\n", + "print('\\nDew Point = 60\u00b0F')\n", + "\n", + "#(c)\n", + "print('\\n(c)\\nFrom the point of intersection of the dry and wet bulb curves,')\n", + "print('\\nhorizontally to the right to the moisture content plot where it meets at 76.')\n", "print('\\nMoisture Content : 76 grains of water per pound of dry air.')" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "The intersection point of DB temperature 80\u00b0F and WB temperature 66.5\u00b0F", - " ", - "lines on the relative humidity curve for 50%.", - " RH = 50%", - "", - "(b)", - "From the point of intersection of the dry and wet bulb curves, move left", - " ", - "horizontally to the dew point temperature curve where it meets at 60\u00b0F", - "", - "Dew Point = 60\u00b0F", - "", - "(c)", - "From the point of intersection of the dry and wet bulb curves,", - "", - "horizontally to the right to the moisture content plot where it meets at 76.", - "", + "(a)\n", + "The intersection point of DB temperature 80\u00b0F and WB temperature 66.5\u00b0F\n", + " \n", + "lines on the relative humidity curve for 50%.\n", + " RH = 50%\n", + "\n", + "(b)\n", + "From the point of intersection of the dry and wet bulb curves, move left\n", + " \n", + "horizontally to the dew point temperature curve where it meets at 60\u00b0F\n", + "\n", + "Dew Point = 60\u00b0F\n", + "\n", + "(c)\n", + "From the point of intersection of the dry and wet bulb curves,\n", + "\n", + "horizontally to the right to the moisture content plot where it meets at 76.\n", + "\n", "Moisture Content : 76 grains of water per pound of dry air." ] } - ], + ], "prompt_number": 11 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 7.9, Page Number: 442<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''calculation of relative humidity'''", - "", - "#variable declaration", - "wt_vap=500.0 # Amount of water vapour present", - "wt_vap_to_sat=1500.0 # Amount of water vapour added to saturate", - "", - "#calculation", - "total=wt_vap+wt_vap_to_sat", - "Rh=(wt_vap/total)*100", - "", - "#result", + "\n", + "\n", + "#variable declaration\n", + "wt_vap=500.0 # Amount of water vapour present\n", + "wt_vap_to_sat=1500.0 # Amount of water vapour added to saturate\n", + "\n", + "#calculation\n", + "total=wt_vap+wt_vap_to_sat\n", + "Rh=(wt_vap/total)*100\n", + "\n", + "#result\n", "print('RH = %d%%'%Rh)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "RH = 25%" ] } - ], + ], "prompt_number": 12 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 7.10, Page Number: 442<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''percentage relative humidity'''", - "", - "#variable declaration", - "pv=30.0 # partial pressure of water vapour", - "ps=60.0 # Saturation partial pressure ", - "", - "#calculations", - "Rh=(pv/ps)*100", - "", - "#Result", + "\n", + "\n", + "#variable declaration\n", + "pv=30.0 # partial pressure of water vapour\n", + "ps=60.0 # Saturation partial pressure \n", + "\n", + "#calculations\n", + "Rh=(pv/ps)*100\n", + "\n", + "#Result\n", "print('%%RH = %d%%'%Rh)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "%RH = 50%" ] } - ], + ], "prompt_number": 13 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 7.11, Page Number: 442<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''percentage increase in moisture content'''", - "", - "#variable declaration", - "i1=250.0 # ionazation current ", - "i2=350.0 # ionazation current ", - "", - "#calculation", - "m=(i2-i1)*100/i1", - "", - "#result", + "\n", + "\n", + "#variable declaration\n", + "i1=250.0 # ionazation current \n", + "i2=350.0 # ionazation current \n", + "\n", + "#calculation\n", + "m=(i2-i1)*100/i1\n", + "\n", + "#result\n", "print('%% increase in moisture content = %d%%'%m)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "% increase in moisture content = 40%" ] } - ], + ], "prompt_number": 14 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 7.12, Page Number: 443<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''calculation of moisture content'''", - "", - "#variable declaraton", - "i2=150.0 # wet weight", - "i1=125.0 # dry weight", - "", - "#calculation", - "m=(i2-i1)*100/i1", - "", - "#result", + "\n", + "\n", + "#variable declaraton\n", + "i2=150.0 # wet weight\n", + "i1=125.0 # dry weight\n", + "\n", + "#calculation\n", + "m=(i2-i1)*100/i1\n", + "\n", + "#result\n", "print('Moisture percentage = %d%%'%m)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Moisture percentage = 20%" ] } - ], + ], "prompt_number": 15 } - ] + ], + "metadata": {} } ] }
\ No newline at end of file diff --git a/Industrial_Instrumentation/Chapter_8.ipynb b/Industrial_Instrumentation/Chapter_8.ipynb index 8a84dda0..45717557 100644 --- a/Industrial_Instrumentation/Chapter_8.ipynb +++ b/Industrial_Instrumentation/Chapter_8.ipynb @@ -1,485 +1,507 @@ { "metadata": { - "name": "Chapter_8" - }, - "nbformat": 2, + "name": "", + "signature": "sha256:d75e4cfd03813a2ebb58ae96e012a8b8020f7dffa90e8d93acabe5330e357932" + }, + "nbformat": 3, + "nbformat_minor": 0, "worksheets": [ { "cells": [ { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h1>Chapter 8:Fundamentals of measuring instruments <h1>" ] - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 8.1, Page Number: 507<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Flux density calculation'''", - "", - "#variable declaration", - "fi=10.0*10**-6 # fi-flux", - "inch=2.54*10**-2 # length", - "A=inch**2 # area", - "", - "#calculation", - "B =fi/A", - "", - "#Result", + "\n", + "\n", + "#variable declaration\n", + "fi=10.0*10**-6 # fi-flux\n", + "inch=2.54*10**-2 # length\n", + "A=inch**2 # area\n", + "\n", + "#calculation\n", + "B =fi/A\n", + "\n", + "#Result\n", "print('Flux Density B= %.1f mT'%(B*1000))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "Flux Density B= 15.5 mT" ] } - ], + ], "prompt_number": 1 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 8.2, Page Number: 508<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Power Dissipation and accuracy of result'''", - "", - "#variable Declaration", - "i=10*10**-3 # current in A", - "R=1000.0 # resistance in ohm", - "P=(i**2)*R # Power", - "err_R=10.0 # Error in Resistance measurement", - "err_I=(2.0/100)*25*100/10 # Error in current measurement", - "", - "#calculation", - "err_I2=2*err_I", - "err_p=err_I2+err_R", - "", - "#Result", + "\n", + "\n", + "#variable Declaration\n", + "i=10*10**-3 # current in A\n", + "R=1000.0 # resistance in ohm\n", + "P=(i**2)*R # Power\n", + "err_R=10.0 # Error in Resistance measurement\n", + "err_I=(2.0/100)*25*100/10 # Error in current measurement\n", + "\n", + "#calculation\n", + "err_I2=2*err_I\n", + "err_p=err_I2+err_R\n", + "\n", + "#Result\n", "print('%% error in I^2 = \u00b1 %d%%\\n%% error in Power = \u00b1 %d%%'%(err_I2,err_p))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "% error in I^2 = \u00b1 10%", + "% error in I^2 = \u00b1 10%\n", "% error in Power = \u00b1 20%" ] } - ], + ], "prompt_number": 2 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 8.3, Page Number: 508<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''max and min levels of input supply current'''", - "", - "#variable Declaration", - "i1=37.0 # current in branch 1 ", - "i2=42.0 # current in branch 2", - "i3=13.0 # current in branch 3", - "i4=6.7 # current in branch 4", - "", - "#Calculation", - "Imax=(i1+i2)+(i1+i2)*(3.0/100)+(i3+i4)+(i3+i4)*(1.0/100)", - "Imin=(i1+i2)-(i1+i2)*(3.0/100)+(i3+i4)-(i3+i4)*(1.0/100)", - "", - "#result", - "print('Maximum level of total supply current = %.3f mA'%Imax)", + "\n", + "#variable Declaration\n", + "i1=37.0 # current in branch 1 \n", + "i2=42.0 # current in branch 2\n", + "i3=13.0 # current in branch 3\n", + "i4=6.7 # current in branch 4\n", + "\n", + "#Calculation\n", + "Imax=(i1+i2)+(i1+i2)*(3.0/100)+(i3+i4)+(i3+i4)*(1.0/100)\n", + "Imin=(i1+i2)-(i1+i2)*(3.0/100)+(i3+i4)-(i3+i4)*(1.0/100)\n", + "\n", + "#result\n", + "print('Maximum level of total supply current = %.3f mA'%Imax)\n", "print('\\nMinimum level of total supply current = %.3f mA'%Imin)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "Maximum level of total supply current = 101.267 mA", - "", + "Maximum level of total supply current = 101.267 mA\n", + "\n", "Minimum level of total supply current = 96.133 mA" ] } - ], + ], "prompt_number": 3 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 8.4, Page Number:508<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Time constant for thermometer'''", - "", - "import math", - "", - "#(a)", - "", - "#variable declaration", - "T=200.0 # intermediate temperature ", - "T0=300.0 # final temperature ", - "Ti=70.0 # initial temperature ", - "t=3.0 # time in seconds ", - "", - "#calculation", - "x=(T-T0)/(Ti-T0)", - "tow=-t/math.log(x)", - "", - "#result", - "print('(a)\\nTime constant tow=%.1f s'%tow)", - "", - "", - "#(b)", - "", - "#variable declaration", - "t1=5.0 # time in seconds ", - "#calculation", - "T5=T0+((Ti-T0)*math.e**(-t1/tow))", - "", - "#result", + "\n", + "\n", + "import math\n", + "\n", + "#(a)\n", + "\n", + "#variable declaration\n", + "T=200.0 # intermediate temperature \n", + "T0=300.0 # final temperature \n", + "Ti=70.0 # initial temperature \n", + "t=3.0 # time in seconds \n", + "\n", + "#calculation\n", + "x=(T-T0)/(Ti-T0)\n", + "tow=-t/math.log(x)\n", + "\n", + "#result\n", + "print('(a)\\nTime constant tow=%.1f s'%tow)\n", + "\n", + "\n", + "#(b)\n", + "\n", + "#variable declaration\n", + "t1=5.0 # time in seconds \n", + "#calculation\n", + "T5=T0+((Ti-T0)*math.e**(-t1/tow))\n", + "\n", + "#result\n", "print('\\n(b)\\nTemperature after 5 seconds T5 = %.2f\u00b0C'%T5)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(a)", - "Time constant tow=3.6 s", - "", - "(b)", + "(a)\n", + "Time constant tow=3.6 s\n", + "\n", + "(b)\n", "Temperature after 5 seconds T5 = 242.61\u00b0C" ] } - ], + ], "prompt_number": 4 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 8.5, Page Number:<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Error calculation of second order instrument'''", - "", - "import math", - "", - "#variable declaration", - "w=9.0 # excitation frequency", - "wn=6.0 # natural frequency", - "dr=0.6 # damping ratio", - "", - "#calculations", - "", - "x=w/wn", - "Ar=1/math.sqrt(((1-(x)**2)**2)+(2*dr*x)**2)", - "err=(1-Ar)*100", - "", - "#Result", - "print('A=%.3f'%Ar)", + "\n", + "\n", + "import math\n", + "\n", + "#variable declaration\n", + "w=9.0 # excitation frequency\n", + "wn=6.0 # natural frequency\n", + "dr=0.6 # damping ratio\n", + "\n", + "#calculations\n", + "\n", + "x=w/wn\n", + "Ar=1/math.sqrt(((1-(x)**2)**2)+(2*dr*x)**2)\n", + "err=(1-Ar)*100\n", + "\n", + "#Result\n", + "print('A=%.3f'%Ar)\n", "print('\\nError = %.2f%%'%err)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "A=0.456", - "", + "A=0.456\n", + "\n", "Error = 54.37%" ] } - ], + ], "prompt_number": 5 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 8.6, PAge Number: 510<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Output of first order instrument for unit step input'''", - "", - "#variable Declaration", - "t=2.0 # output to be calculated after t seconds", - "", - "#calculation", - "y=1-math.e**(-(t-1.5)/0.5)", - "", - "#result", + "\n", + "\n", + "#variable Declaration\n", + "t=2.0 # output to be calculated after t seconds\n", + "\n", + "#calculation\n", + "y=1-math.e**(-(t-1.5)/0.5)\n", + "\n", + "#result\n", "print('y(t)at t=2 will be y(t)=%.3f'%y)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "y(t)at t=2 will be y(t)=0.632" ] } - ], + ], "prompt_number": 6 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 8.7, Page Number: 510<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Statistic of Temperature readings'''", - "", - "import math", - "", - "#variable declaration", - "", - "#Temperature Readings", - "x1=98.5 # Reading 1", - "x2=99.0 # Reading 2", - "x3=99.5 # Reading 3 ", - "x4=100.0 # Reading 4", - "x5=100.5 # Reading 5", - "x6=101.0 # Reading 6", - "x7=101.5 # Reading 7", - "# Frequency", - "f1=4.0 # Reading 1", - "f2=13.0 # Reading 2", - "f3=19.0 # Reading 3", - "f4=35.0 # Reading 4", - "f5=17.0 # Reading 5", - "f6=10.0 # Reading 6", - "f7=2.0 # Reading 7", - "", - "#(i) Arithmatic Mean", - "", - "#calculation", - "x_bar=((x1*f1)+(x2*f2)+(x3*f3)+(x4*f4)+(x5*f5)+(x6*f6)+(x7*f7))/(f1+f2+f3+f4+f5+f6+f7)", - "", - "#result", - "print('(i)\\n\\tArithmatic Mean = %.2f\u00b0C'%x_bar)", - "", - "#(ii) Average Deviation", - "", - "#calculation", - "D=(abs(x1-x_bar)*f1)+(abs(x2-x_bar)*f2)+(abs(x3-x_bar)*f3)+(abs(x4-x_bar)*f4)", - "D=D+(abs(x5-x_bar)*f5)+(abs(x6-x_bar)*f6)+(abs(x7-x_bar)*f7)", - "D=D/(f1+f2+f3+f4+f5+f6+f7)", - "", - "#result", - "print('\\n(ii)\\n\\tAverage Deviation =%.4f\u00b0C'%D)", - "", - "#Standard deviation", - "", - "#Calculation", - "sigma=((x1-x_bar)**2*f1)+((x2-x_bar)**2*f2)+((x3-x_bar)**2*f3)+((x4-x_bar)**2*f4)", - "sigma=sigma+((x5-x_bar)**2*f5)+((x6-x_bar)**2*f6)+((x7-x_bar)**2*f7)", - "sigma=math.sqrt(sigma)", - "sigma=sigma/math.sqrt(f1+f2+f3+f4+f5+f6+f7)", - "", - "#result", - "print('\\n(iii)\\n\\tStandard deviation = %.3f\u00b0C'%sigma)", - "", - "#variance", - "", - "#result", - "print('\\n(iv)\\n\\tVariance = %.4f\u00b0C'%(sigma**2))", - "", - "#Probable Error", - "", - "#result", + "\n", + "\n", + "import math\n", + "\n", + "#variable declaration\n", + "\n", + "#Temperature Readings\n", + "x1=98.5 # Reading 1\n", + "x2=99.0 # Reading 2\n", + "x3=99.5 # Reading 3 \n", + "x4=100.0 # Reading 4\n", + "x5=100.5 # Reading 5\n", + "x6=101.0 # Reading 6\n", + "x7=101.5 # Reading 7\n", + "# Frequency\n", + "f1=4.0 # Reading 1\n", + "f2=13.0 # Reading 2\n", + "f3=19.0 # Reading 3\n", + "f4=35.0 # Reading 4\n", + "f5=17.0 # Reading 5\n", + "f6=10.0 # Reading 6\n", + "f7=2.0 # Reading 7\n", + "\n", + "#(i) Arithmatic Mean\n", + "\n", + "#calculation\n", + "x_bar=((x1*f1)+(x2*f2)+(x3*f3)+(x4*f4)+(x5*f5)+(x6*f6)+(x7*f7))/(f1+f2+f3+f4+f5+f6+f7)\n", + "\n", + "#result\n", + "print('(i)\\n\\tArithmatic Mean = %.2f\u00b0C'%x_bar)\n", + "\n", + "#(ii) Average Deviation\n", + "\n", + "#calculation\n", + "D=(abs(x1-x_bar)*f1)+(abs(x2-x_bar)*f2)+(abs(x3-x_bar)*f3)+(abs(x4-x_bar)*f4)\n", + "D=D+(abs(x5-x_bar)*f5)+(abs(x6-x_bar)*f6)+(abs(x7-x_bar)*f7)\n", + "D=D/(f1+f2+f3+f4+f5+f6+f7)\n", + "\n", + "#result\n", + "print('\\n(ii)\\n\\tAverage Deviation =%.4f\u00b0C'%D)\n", + "\n", + "#Standard deviation\n", + "\n", + "#Calculation\n", + "sigma=((x1-x_bar)**2*f1)+((x2-x_bar)**2*f2)+((x3-x_bar)**2*f3)+((x4-x_bar)**2*f4)\n", + "sigma=sigma+((x5-x_bar)**2*f5)+((x6-x_bar)**2*f6)+((x7-x_bar)**2*f7)\n", + "sigma=math.sqrt(sigma)\n", + "sigma=sigma/math.sqrt(f1+f2+f3+f4+f5+f6+f7)\n", + "\n", + "#result\n", + "print('\\n(iii)\\n\\tStandard deviation = %.3f\u00b0C'%sigma)\n", + "\n", + "#variance\n", + "\n", + "#result\n", + "print('\\n(iv)\\n\\tVariance = %.4f\u00b0C'%(sigma**2))\n", + "\n", + "#Probable Error\n", + "\n", + "#result\n", "print('\\n(v)\\n\\tProbable Error= %.4f\u00b0C'%(0.6745*sigma))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(i)", - "\tArithmatic Mean = 99.93\u00b0C", - "", - "(ii)", - "\tAverage Deviation =0.5196\u00b0C", - "", - "(iii)", - "\tStandard deviation = 0.671\u00b0C", - "", - "(iv)", - "\tVariance = 0.4501\u00b0C", - "", - "(v)", + "(i)\n", + "\tArithmatic Mean = 99.93\u00b0C\n", + "\n", + "(ii)\n", + "\tAverage Deviation =0.5196\u00b0C\n", + "\n", + "(iii)\n", + "\tStandard deviation = 0.671\u00b0C\n", + "\n", + "(iv)\n", + "\tVariance = 0.4501\u00b0C\n", + "\n", + "(v)\n", "\tProbable Error= 0.4525\u00b0C" ] } - ], + ], "prompt_number": 7 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 8.8, Page Number: 511<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Calculation of damping coefficient and natural frequency for 2nd order instrument'''", - "", - "import math", - "", - "#variable Declaration", - "wn=math.sqrt(3.0) # natural frequency of osscilation", - "", - "#Calculation", - "x=3.2/(2*wn)", - "", - "#Result", + "\n", + "\n", + "import math\n", + "\n", + "#variable Declaration\n", + "wn=math.sqrt(3.0) # natural frequency of osscilation\n", + "\n", + "#Calculation\n", + "x=3.2/(2*wn)\n", + "\n", + "#Result\n", "print('Damping coefficient = %.3f\\nNatural frequency of Oscillation = %.3f'%(x,wn))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "Damping coefficient = 0.924", + "Damping coefficient = 0.924\n", "Natural frequency of Oscillation = 1.732" ] } - ], + ], "prompt_number": 8 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 8.9, Page Number: 512<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''calculation of Amplitude inaccuracy and phase shift from transfer function'''", - "", - "import math", - "#variable declaration", - "w=100.0 # natural frequency of osscilation", - "", - "#calculation", - "fi=-math.atan(0.1*w)-math.atan(0.5*w)", - "A=1/(math.sqrt(1+(0.1*w)**2)*(math.sqrt(1+(0.5*w)**2)))", - "A=1*1000.0/math.ceil(1000*A)", - "err=(1-1.0/A)*100", - "", - "#Result", + "\n", + "\n", + "import math\n", + "#variable declaration\n", + "w=100.0 # natural frequency of osscilation\n", + "\n", + "#calculation\n", + "fi=-math.atan(0.1*w)-math.atan(0.5*w)\n", + "A=1/(math.sqrt(1+(0.1*w)**2)*(math.sqrt(1+(0.5*w)**2)))\n", + "A=1*1000.0/math.ceil(1000*A)\n", + "err=(1-1.0/A)*100\n", + "\n", + "#Result\n", "print('A=K/%d\\n%% error = %.1f%%\\nfi = %.2f\u00b0'%(A,err,fi*180/math.pi))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "A=K/500", - "% error = 99.8%", + "A=K/500\n", + "% error = 99.8%\n", "fi = -173.14\u00b0" ] } - ], + ], "prompt_number": 9 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 8.10, Page Number: 512<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''temperature and altitude calculation from first order thermometer placed in balloon'''", - "", - "#calculations", - "R=0.15*10/50 # Temperature gradient", - "K=1.0 # constant", - "tow=15.0 # time constant ", - "", - "#Calculations", - "deg=K*R*tow", - "", - "#(i)", - "a=15-deg", - "", - "#(ii)", - "alt_red=deg*50.0/0.15", - "h=5000-alt_red", - "", - "#result", - "print('(i)The actual temperature when instrument reads 15\u00b0C is %.2f\u00b0C'%a)", - "print('\\n The true temperature at 5000 metres = %.2f '%a)", + "\n", + "#calculations\n", + "R=0.15*10/50 # Temperature gradient\n", + "K=1.0 # constant\n", + "tow=15.0 # time constant \n", + "\n", + "#Calculations\n", + "deg=K*R*tow\n", + "\n", + "#(i)\n", + "a=15-deg\n", + "\n", + "#(ii)\n", + "alt_red=deg*50.0/0.15\n", + "h=5000-alt_red\n", + "\n", + "#result\n", + "print('(i)The actual temperature when instrument reads 15\u00b0C is %.2f\u00b0C'%a)\n", + "print('\\n The true temperature at 5000 metres = %.2f '%a)\n", "print('\\n(ii)\\nThe true altitude at which 15\u00b0C occurs is %d metres'%h)" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "(i)The actual temperature when instrument reads 15\u00b0C is 14.55\u00b0C", - "", - " The true temperature at 5000 metres = 14.55 ", - "", - "(ii)", + "(i)The actual temperature when instrument reads 15\u00b0C is 14.55\u00b0C\n", + "\n", + " The true temperature at 5000 metres = 14.55 \n", + "\n", + "(ii)\n", "The true altitude at which 15\u00b0C occurs is 4850 metres" ] } - ], + ], "prompt_number": 10 } - ] + ], + "metadata": {} } ] }
\ No newline at end of file diff --git a/Industrial_Instrumentation/ch2.ipynb b/Industrial_Instrumentation/ch2.ipynb index 22755012..0f54145a 100644 --- a/Industrial_Instrumentation/ch2.ipynb +++ b/Industrial_Instrumentation/ch2.ipynb @@ -1,6 +1,7 @@ { "metadata": { - "name": "" + "name": "", + "signature": "sha256:3203164807ce532b672553754629f11a0a0db0c197fd3e21e75a10e9e0cb2a95" }, "nbformat": 3, "nbformat_minor": 0, @@ -27,7 +28,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "# Convert the following readings of pressure to kPa assuming that barometer reads 760 mm of Hg.\n", "\n", "# Variables\n", "rho_Hg = 13596.; \t\t\t#kg/m**3\n", @@ -89,7 +89,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "# Find the pressure on the piston.\n", "\n", "import math \n", "\n", @@ -130,7 +129,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Find the gauge pressure \n", "\n", "# Variables\n", "SG = 0.9;\n", @@ -171,7 +169,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Find the absolute pressure in the condenser in Pa. \n", "\n", "# Variables\n", "Vacuum_recorded = 740.; \t\t\t#mm of Hg\n", @@ -209,11 +206,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine :\n", - "(i) The absolute pressure of the gas in the vessel in bar.\n", - "(ii) Specific volume and density of the gas.\n", - "'''\n", "\n", "import math \n", "\n", @@ -267,9 +259,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the gas pressure.\n", - "'''\n", "\n", "\n", "# Variables\n", @@ -310,9 +299,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find the absolute pressure of steam.\n", - "'''\n", "\n", "# Variables\n", "h_H2O = 34.; \t\t\t#mm of Hg\n", @@ -354,9 +340,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find the absolute pressure of the gas \n", - "'''\n", "\n", "# Variables\n", "SG = 0.8;\n", @@ -399,9 +382,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Estimate the mass of a piston that can be supported by a gas entrapped\n", - "under the piston '''\n", "\n", "import math \n", "\n", @@ -444,9 +424,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "calculate the kinetic energy of an artificial satellite revolves round the earth \n", - "'''\n", "\n", "# Variables\n", "v = 800.; \t\t\t#m/s\n", @@ -486,11 +463,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "find :\n", - "(i) Heat transferred ;\n", - "(ii) Mean specific heat of the gas.\n", - "'''\n", + "\n", "\n", "import math \n", "from scipy.integrate import quad \n", @@ -543,10 +516,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "what will be the temperature corresponding to the thermometric property of 3.5 on\n", - "Celsius scale.\n", - "'''\n", + "\n", "\n", "import math \n", "from numpy import *\n", @@ -592,9 +562,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "What will be the reading on the thermometer where the gas thermometer reads 70\u00b0C ?\n", - "'''\n", "\n", "def func(t): \n", "\t return 0.20*t-5*10**(-4)*t**2\n", @@ -635,9 +602,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "What is the amount of work done upon the atmosphere by the balloon ? \n", - "'''\n", "\n", "# Variables\n", "p = 101.325; \t\t#kPa\n", @@ -675,9 +639,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the work done by the air which enters into an evacuated vessel\n", - "from atmosphere when the valve is opened'''\n", "\n", "from scipy import integrate\n", "\n", @@ -718,10 +679,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "A piston and cylinder machine containing a fluid system has a stirring\n", - "device as shown in Fig. 2.36. Find the net work transfer for the system.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -766,9 +724,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find the net work done during the process.\n", - "'''\n", "\n", "# Variables\n", "A = 45.*10**(-4); \t #m**2\n", @@ -808,9 +763,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the work done when the pressure increases from 1.5 bar to 7.5 bar.\n", - "'''\n", + "\n", "\n", "import math \n", "from scipy.integrate import quad \n", @@ -857,9 +810,6 @@ "input": [ "import math\n", "\n", - "'''\n", - "To a closed system 150 kJ of work is supplied, determine the final volume and pressure of the system.\n", - "'''\n", "\n", "# Variables\n", "W = 150; \t\t\t#kJ\n", @@ -898,9 +848,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the work done by the fluid on the piston.\n", - "'''\n", "\n", "import math \n", "from scipy.integrate import quad \n", @@ -949,9 +896,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the net work done by the fluid, for an initial volume of 0.05 m 3 .\n", - "'''\n", + "\n", "\n", "import math \n", "from scipy.integrate import quad \n", diff --git a/Industrial_Instrumentation/ch3.ipynb b/Industrial_Instrumentation/ch3.ipynb index 8e397388..e1873694 100644 --- a/Industrial_Instrumentation/ch3.ipynb +++ b/Industrial_Instrumentation/ch3.ipynb @@ -1,6 +1,7 @@ { "metadata": { - "name": "" + "name": "", + "signature": "sha256:ab490015435e8f1ac3990217bb57911661595e73c3c831b703cdf5b3388c40c5" }, "nbformat": 3, "nbformat_minor": 0, @@ -27,9 +28,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the dryness fraction (quality) of steam \n", - "'''\n", + "\n", "\n", "# Variables\n", "m_s = 50. \t\t\t#kg\n", @@ -66,11 +65,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate :\n", - "(i) Mass and volume of liquid ;\n", - "(ii) Mass and volume of vapour.\n", - "'''\n", "\n", "# Variables\n", "V = 0.6; \t\t\t#m**3\n", @@ -129,15 +123,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find the following :\n", - "(i) The pressure,\n", - "(ii) The mass,\n", - "(iii) The specific volume,\n", - "(v) The specific entropy, and\n", - "(iv) The specific enthalpy,\n", - "(vi) The specific internal energy.\n", - "'''\n", + "\n", "\n", "# Variables\n", "V = 0.05; \t\t\t#m**3\n", @@ -214,9 +200,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the amount of heat\n", - "'''\n", "\n", "# Variables\n", "m_w = 2.; \t\t\t#kg\n", @@ -267,9 +250,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "What amount of heat would be required to produce 4.4 kg of steam \n", - "'''\n", "\n", "# Variables\n", "m = 4.4; \t\t\t#kg\n", @@ -322,9 +302,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the mass of 0.15 m 3 of wet steam and calculate the heat of 1 m 3 of steam.\n", - "'''\n", + "\n", "# Variables\n", "v = 0.15; \t\t\t#m**3\n", "p = 4.; \t\t\t#bar\n", @@ -369,11 +347,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "determine\n", - "(i) The total heat supplied to feed water per hour to produce wet steam.\n", - "(ii) The total heat absorbed per hour in the superheater.\n", - "'''\n", "\n", "# Variables\n", "m = 1000.; \t\t\t#kJ/kg.K\n", @@ -421,11 +394,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "determine the mean specific heat for superheated steam :\n", - "(i) at 0.75 bar, between 100\u00b0C and 150\u00b0C ;\n", - "(ii) at 0.5 bar, between 300\u00b0C and 400\u00b0C\n", - "'''\n", "\n", "\n", "print (\"(i) at 0.75 bar, between 100\u00b0C and 150\u00b0C\")\n", @@ -479,9 +447,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the pressure and temperature of the steam at the new state.\n", - "'''\n", + "\n", "# Variables\n", "m = 1.5; \t\t\t#kg\n", "p = 5.; \t\t\t#bar\n", @@ -543,12 +509,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "determine :\n", - "(i) The mass of steam blown off ;\n", - "(ii) The dryness fraction of steam in the vessel after cooling ;\n", - "(iii) The heat lost by steam per kg during cooling.\n", - "'''\n", + "\n", "\n", "# Variables\n", "V = 0.9; \t\t\t#m**3\n", @@ -620,11 +581,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate :\n", - "(i) External work done during evaporation.\n", - "(ii) Internal latent heat of steam.\n", - "'''\n", + "\n", "\n", "# Variables\n", "p = 8*10**5; \t\t\t#Pa\n", @@ -669,10 +626,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the heat supplied to raise the temperature of the steam to 300\u00b0C at constant pressure and\n", - "percentage of this heat which appears as external work.\n", - "'''\n", + "\n", "\n", "p1 = 10; \t\t\t#bar\n", "import math \n", @@ -722,9 +676,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find the specific volume, enthalpy and internal energy of wet steam \n", - "'''\n", "\n", "# Variables\n", "p = 18.; \t\t\t#bar\n", @@ -771,9 +722,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find the dryness fraction, specific volume and internal energy of steam \n", - "'''\n", + "\n", "\n", "# Variables\n", "p = 7.; \t\t\t#bar\n", @@ -821,9 +770,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "find the temperature, enthalpy and the internal energy.\n", - "'''\n", "\n", "# Variables\n", "p = 120.; \t\t\t#bar\n", @@ -865,9 +811,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "find the temperature,the specific volume and the internal energy.\n", - "'''\n", + "\n", "\n", "# Variables\n", "p = 140.; \t\t\t#bar\n", @@ -910,9 +854,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the internal energy per kg of superheated steam \n", - "'''\n", + "\n", "\n", "# At 10 bar: From steam table for superheated steam\n", "\n", @@ -965,11 +907,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find the internal energy of 1 kg of steam at 20 bar when\n", - "(i) it is superheated, its temperature being 400\u00b0C ;\n", - "(ii) it is wet, its dryness being 0.9.\n", - "'''\n", "\n", "# Variables\n", "m = 1.; \t\t\t#kg\n", @@ -1024,9 +961,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the quality of steam supplied by the other boiler. Take c ps = 2.25 kJ/kg.\n", - "'''\n", + "\n", "# Variables\n", "h_g1 = 2797.2; \t\t\t#kJ/kg\n", "c_ps = 2.25;\n", @@ -1071,9 +1006,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the entropy of 1 kg of wet steam \n", - "'''\n", + "\n", "\n", "import math\n", "\n", @@ -1116,11 +1049,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find :\n", - "(i) Drop in enthalpy ;\n", - "(ii) Change in entropy.\n", - "'''\n", + "\n", "\n", "# Variables\n", "p1 = 10.; \t\t\t#bar\n", @@ -1177,10 +1106,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find the entropy of 1 kg of superheated steam \n", - "'''\n", - "\n", "\n", "import math \n", "\n", @@ -1224,9 +1149,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the amount of work and heat transfer to or from steam\n", - "'''\n", + "\n", "# Variables\n", "m = 3.; \t\t\t#kg\n", "v1 = 0.75; \t\t\t#m**3/kg\n", @@ -1281,9 +1204,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the dryness fraction of steam as it enters the tank \n", - "'''\n", "\n", "# Variables\n", "p = 5.; \t\t\t#bar\n", @@ -1328,9 +1248,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "determine the mass of steam condensed\n", - "'''\n", + "\n", "\n", "# Variables\n", "p = 1.1; \t\t\t#bar\n", @@ -1375,9 +1293,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the dryness fraction of the steam \n", - "'''\n", + "\n", "\n", "# Variables\n", "p1 = 8.; \t\t\t#bar\n", @@ -1421,9 +1337,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Estimate the quality of steam supplied.\n", - "'''\n", + "\n", "\n", "# Variables\n", "m_w = 2.; \t\t\t#kg\n", @@ -1472,9 +1386,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the dryness fraction of the sample steam.\n", - "'''\n", + "\n", "\n", "# Variables\n", "p1 = 15.; \t\t\t#bar\n", diff --git a/Industrial_Instrumentation/ch4.ipynb b/Industrial_Instrumentation/ch4.ipynb index 35fec4af..7eb1e631 100644 --- a/Industrial_Instrumentation/ch4.ipynb +++ b/Industrial_Instrumentation/ch4.ipynb @@ -1,6 +1,7 @@ { "metadata": { - "name": "" + "name": "", + "signature": "sha256:75cc662b83a20e10c962bb4b327ffefb7e8b88ef4b321db4fa8f1bf933a9eccf" }, "nbformat": 3, "nbformat_minor": 0, @@ -27,8 +28,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "# Calculate the change in internal energy of the working fluid stating whether it is a gain or loss.\n", - "\n", + "#\n", "# Variables\n", "Q = -50.; \t\t\t#kJ/kg\n", "W = -100.; \t\t\t#kJ/kg\n", @@ -64,9 +64,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "calculate the heat flow to and from the cylinder\n", - "'''\n", + "\n", "\n", "# Variables\n", "u1 = 450.; \t\t\t#kJ/kg\n", @@ -104,9 +102,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the heat transferred from the nitrogen to the surroundings.\n", - "'''\n", + "\n", "\n", "# Variables\n", "m = 0.3; \t\t\t#kg\n", @@ -147,9 +143,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "How much did the internal energy of the gas change ?\n", - "'''\n", + "\n", "# Variables\n", "p1 = 105.; \t\t\t#kPa\n", "V1 = 0.4; \t\t\t#m**3\n", @@ -189,11 +183,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine : (i) Work done ;\n", - "(ii) Change in internal energy ; and\n", - "(iii) Heat transferred\n", - "'''\n", + "\n", "import math\n", "\n", "# Variables\n", @@ -248,9 +238,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the quantity of heat added to the system.\n", - "'''\n", + "\n", "\n", "\n", "# Variables\n", @@ -291,11 +279,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine : \n", - "(i) Work done ;\n", - "(ii) Change in internal energy of the system.\n", - "'''\n", "\n", "# Variables\n", "Q2 = 9000.; \t\t\t#kJ\n", @@ -337,13 +320,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "determine \u2206U, \u2206PE, \u2206KE, Q and W, when\n", - "(i) the stone is about to enter the water,\n", - "(ii) the stone has come to rest in the tank, and\n", - "(iii) the heat is transferred to the surroundings in such an amount that the stone and water\n", - "come to their initial temperature.\n", - "'''\n", + "\n", "\n", "# Variables\n", "m = 20.; \t\t\t#kg\n", @@ -404,14 +381,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(i) How much will be the heat that flows into the system along path lnm if the work done\n", - "is 21 kJ ?\n", - "(ii) When the system is returned from m to l along the curved path, the work done on the\n", - "system is 42 kJ. Does the system absorb or liberate heat, and how much of the heat is absorbed\n", - "or liberated ?\n", - "(iii) If U l = 0 and U n = 84 kJ, find the heat absorbed in the processes ln and nm.\n", - "'''\n", + "\n", "\n", "# Variables\n", "Q_lqm = 168.; \t\t\t#kJ\n", @@ -460,9 +430,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "What will be the change of internal energy of the system when its temperature changes\n", - "'''\n", + "\n", "\n", "import math \n", "from scipy.integrate import quad \n", @@ -510,9 +478,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Completeing the table\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -587,9 +553,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the steam flow round the cycle in kg/s.\n", - "'''\n", "\n", "# Variables\n", "P = 1200.; \t\t\t#kW\n", @@ -630,11 +593,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine :\n", - "(i) The change in internal energy ;\n", - "(ii) The work done.\n", - "'''\n", + "\n", "\n", "# Variables\n", "dT = 25.; \t\t\t#0C\n", @@ -677,12 +636,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(i) Find the change in energy of the system.\n", - "(ii) The system is returned to its initial volume by an adiabatic process which requires\n", - "110 kJ of work. Find the change in energy of the system.\n", - "(iii) For the combined processes of (i) and (ii) determine the change in energy of the system.\n", - "'''\n", "\n", "# Variables\n", "Q = 50.; \t\t\t#kJ\n", @@ -736,11 +689,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine :\n", - "(i) Change in internal energy ;\n", - "(ii) Change in enthalpy.\n", - "'''\n", + "\n", "\n", "import math \n", "from scipy.integrate import quad \n", @@ -791,14 +740,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine:\n", - "(i) If the expansion is quasi-static, find Q, \u2206U and W for the process.\n", - "(ii) In another process, the same system expands according to the same pressure-volume\n", - "relationship as in part (i), and from the same initial state to the same final state as in part (i), but\n", - "the heat transfer in this case is 32 kJ. Find the work transfer for this process.\n", - "(iii) Explain the difference in work transfer in parts (i) and (ii).\n", - "'''\n", + "\n", "\n", "# Variables\n", "V1 = 0.25; \t\t\t#m**3\n", @@ -853,13 +795,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "find\n", - "(i) Heat added/kg ;\n", - "(ii) Work done/kg ;\n", - "(iii) Change in internal energy/kg ;\n", - "(iv) Change in enthalpy/kg.\n", - "'''\n", "\n", "import math \n", "from scipy.integrate import quad \n", @@ -928,9 +863,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the work done during the process.\n", - "'''\n", + "\n", "\n", "# Variables\n", "m = 1.; \t\t\t#kg\n", @@ -971,9 +904,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "find the direction and magnitude of the work and heat transfer.\n", - "'''\n", + "\n", "\n", "from numpy import *\n", "from scipy.integrate import quad \n", @@ -1030,11 +961,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine :\n", - "(i) The adiabatic work ;\n", - "(ii) The values of internal energy at all end states if initial value is 105 kJ.\n", - "'''\n", "\n", "# Variables\n", "Qv = 90.; \t\t\t#kJ\n", @@ -1088,12 +1014,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate :\n", - "(i) The work done ;\n", - "(ii) The index of expansion, if the above processes are replaced by a single reversible polytropic\n", - "process giving the same work between the same initial and final states.\n", - "'''\n", + "\n", "\n", "# Variables\n", "V1 = 0.2; \t\t\t#m**3\n", @@ -1152,11 +1073,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Evaluate :\n", - "(i) The work ;\n", - "(ii) Decrease in internal energy of the system.\n", - "'''\n", "\n", "# Variables\n", "d = 0.15; \t\t\t#m\n", @@ -1203,14 +1119,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine :\n", - "(i) The mass of gas ;\n", - "(ii) The value of index \u2018n\u2019 for compression ;\n", - "(iii) The increase in internal energy of the gas ;\n", - "(iv) The heat received or rejected by the gas during compression.\n", - "Take \u03b3 = 1.4, R = 294.2 J/kg\u00b0C.\n", - "'''\n", + "\n", "import math\n", "\n", "# Variables\n", @@ -1274,12 +1183,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate :\n", - "(i) The final temperature ;\n", - "(ii) The final volume ;\n", - "(iii) The work done.\n", - "'''\n", "\n", "# Variables\n", "p1 = 1.02*10**5; \t#Pa\n", @@ -1336,9 +1239,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate c p and c v .\n", - "'''\n", + "\n", "\n", "from numpy import *\n", "import math\n", @@ -1390,9 +1291,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the heat flow to or from the cylinder walls.\n", - "'''\n", "\n", "# Variables\n", "n = 1.3;\n", @@ -1441,12 +1339,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate :\n", - "(i) Pressure at the end of constant volume cooling.\n", - "(ii) Change in internal energy during constant volume process.\n", - "(iii) Net work done and heat transferred during the cycle. Assume\n", - "'''\n", + "\n", "import math\n", "\n", "# Variables\n", @@ -1513,9 +1406,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the net work done and heat transferred during the cycle.\n", - "'''\n", "\n", "import math\n", "\n", @@ -1571,11 +1461,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(i) Sketch the cycle on p-V diagram.\n", - "(ii) Calculate the work done in each process starting whether it is done on or by the system\n", - "and evaluate the net cyclic work and heat transfer.\n", - "'''\n", + "\n", "\n", "%pylab inline\n", "\n", @@ -1705,9 +1591,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine theamount of heat added to the system so that piston moves by 3.5 cm.\n", - "'''\n", "\n", "import math \n", "from scipy.integrate import quad \n", @@ -1770,11 +1653,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine :\n", - "(i) The change in enthalpy (\u2206 h) ;\n", - "(ii) Work done during the process (W).\n", - "'''\n", + "\n", "\n", "# Variables\n", "r = 10.; \t\t\t#kg/min\n", @@ -1837,12 +1716,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate :\n", - "(i) The rate at which heat is rejected to the turbine, and\n", - "(ii) The area of the inlet pipe given that the specific volume of the gases at the inlet is\n", - "0.45 m 3 /kg.\n", - "'''\n", + "\n", "\n", "# Variables\n", "\n", @@ -1894,11 +1768,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate :\n", - "(i) The power required to drive the compressor ;\n", - "(ii) The inlet and output pipe cross-sectional areas.\n", - "'''\n", + "\n", "\n", "# Variables\n", "m = 0.5; \t\t\t#kg/s\n", @@ -1954,9 +1824,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "calculate the power developed by the turbine. Consider the boiler and turbine as single system\n", - "'''\n", + "\n", "\n", "# Variables\n", "h1 = 800.; \t\t\t#kJ/kg\n", @@ -1998,9 +1866,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the power output of the turbine.\n", - "'''\n", + "\n", "\n", "# Variables\n", "g = 9.8; \t\t\t#m/s**2\n", @@ -2044,9 +1910,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the final enthalpy of steam.\n", - "'''\n", + "\n", "\n", "# Variables\n", "p1 = 6.87; \t\t\t#bar\n", @@ -2088,9 +1952,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the power capacity of the system in MW.\n", - "'''\n", + "\n", "\n", "# Variables\n", "m = 220./60; \t\t\t#kg/s\n", @@ -2135,9 +1997,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the capacity of the turbine if the gas flow is 5 kg/s.\n", - "'''\n", "\n", "\n", "# Variables\n", @@ -2181,10 +2040,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find : (i) Motor power required to drive the compressor ;\n", - "(ii) Ratio of inlet to outlet pipe diameter.\n", - "'''\n", + "\n", "\n", "# Variables\n", "C1 = 12.; \t\t\t#m/s\n", @@ -2235,9 +2091,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Compute the amount of heat transfer to the atmosphere from the compressor per kg of air.\n", - "'''\n", + "\n", "\n", "# Variables\n", "W = -175.; \t\t\t #kJ/kg\n", @@ -2277,12 +2131,6 @@ "collapsed": false, "input": [ "\n", - "'''\n", - "(i) Find the velocity at exit of the nozzle.\n", - "(ii) If the inlet area is 900 cm 2 and the specific volume at inlet is 0.187 m 3 /kg, find the mass\n", - "flow rate.\n", - "(iii) If the specific volume at the nozzle exit is 0.498 m 3 /kg, find the exit area of nozzle.\n", - "'''\n", "import math\n", "\n", "# Variables\n", @@ -2339,9 +2187,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "evaluate the heat transfer from the water per kg of water flowing.\n", - "'''\n", + "\n", "\n", "# Variables\n", "h1 = 240.; \t\t\t#kJ/kg\n", @@ -2380,9 +2226,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "evaluate the relative velocity of gas leaving the jet pipe. For the gas at t = 820\u00b0C, h = 800 kJ/kg and at 910\u00b0C, 915 kJ/kg.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -2424,9 +2268,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the capacity of the electric motor to run the pump.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -2474,9 +2316,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the velocity of the exhaust jet.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -2524,11 +2364,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "calculate :\n", - "(i) Rate of heat transfer to the air in the heat exchanger ;\n", - "(ii) The power output from the turbine assuming no heat loss ;\n", - "'''\n", "\n", "# Variables\n", "t1 = 20.; \t\t\t#0C\n", @@ -2584,11 +2419,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate :\n", - "(i) The state of steam after cooling ;\n", - "(ii) The amount of heat rejected by the steam.\n", - "'''\n", + "\n", "\n", "# Variables\n", "V = 0.028; \t\t\t#m**3\n", @@ -2644,11 +2475,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate :\n", - "(i) Heat supplied ;\n", - "(ii) Work done\n", - "'''\n", "\n", "# Variables\n", "m = 0.08; \t\t\t#kg\n", @@ -2697,9 +2523,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the heat supplied, and show on a T-s diagram the area which represents the heat flow.\n", - "'''\n", + "\n", "from numpy import *\n", "from matplotlib.pyplot import *\n", "\n", @@ -2789,12 +2613,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate per kg :\n", - "(i) The change of internal energy ;\n", - "(ii) The change of enthalpy ;\n", - "(iii) The work done.\n", - "'''\n", + "\n", "\n", "# Variables\n", "p1 = 7.*10**5; \t\t\t#Pa\n", @@ -2858,11 +2677,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "calculate per kg of steam :\n", - "(i) Work done ;\n", - "(ii) Heat flow to or from the cylinder walls.\n", - "'''\n", + "\n", "\n", "import math \n", "from scipy.integrate import quad \n", @@ -2923,11 +2738,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate per kg of steam :\n", - "(i) The heat supplied ;\n", - "(ii) The work done.\n", - "'''\n", + "\n", "\n", "# Variables\n", "p1 = 100.; \t\t\t#bar\n", @@ -2975,9 +2786,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the work done by the steam.\n", - "'''\n", + "\n", "\n", "# Variables\n", "m = 1.; \t\t\t#kg\n", @@ -3020,11 +2829,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate per kg of steam :\n", - "(i) The work done during expansion ;\n", - "(ii) The heat flow to or from the cylinder walls during the expansion.\n", - "'''\n", + "\n", "\n", "# Variables\n", "p1 = 7.*10**5; \t\t\t#N/m**2\n", @@ -3083,9 +2888,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "determine the work done per kg of steam flow through the turbine\n", - "'''\n", + "\n", "\n", "# Variables\n", "p1 = 15.; \t\t\t#bar\n", @@ -3133,9 +2936,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "determine the quality of the steam leaving the nozzle.\n", - "'''\n", + "\n", "# Variables\n", "p1 = 10.; \t\t\t#bar\n", "t1 = 200.; \t\t\t#0C\n", @@ -3178,9 +2979,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the initial dryness fraction of the steam.\n", - "'''\n", + "\n", "\n", "# Variables\n", "h1 = 2776.4; \t\t\t#kJ/kg\n", @@ -3219,9 +3018,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the exit condition of steam using Mollier chart.\n", - "'''\n", + "\n", "\n", "# Variables\n", "p1 = 10.; \t\t\t#bar\n", @@ -3260,11 +3057,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(i) Change in entropy ;\n", - "(ii) Change in enthalpy ;\n", - "(iii) Change in internal energy.\n", - "'''\n", + "\n", "\n", "\n", "import math \n", @@ -3370,8 +3163,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "# Calculate the mass of air which has left the receiver.\n", - "\n", "\n", "# Variables\n", "V1 = 5.5; \t\t\t#m**3\n", @@ -3418,10 +3209,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "determine the work obtainable by utilising the kinetic energy of the discharge air to run a frictionless\n", - "turbine\n", - "'''\n", + "\n", "# Variables\n", "cp = 1.; \t\t\t#kJ/kg.K\n", "cv = 0.711; \t\t\t#kJ/kg.K\n", @@ -3471,11 +3259,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(i) Final state condition ;\n", - "(ii) Work done by the piston ;\n", - "(iii) Heat transferred to oxygen.\n", - "'''\n", + "\n", "\n", "#For oxygen\n", "import math \n", diff --git a/Industrial_Instrumentation/ch5.ipynb b/Industrial_Instrumentation/ch5.ipynb index 575e68d6..66f7a8b4 100644 --- a/Industrial_Instrumentation/ch5.ipynb +++ b/Industrial_Instrumentation/ch5.ipynb @@ -1,6 +1,7 @@ { "metadata": { - "name": "" + "name": "", + "signature": "sha256:12efbfeaa3ed3ebbe140abe577bbac08dcae30fc36caa52e184adf21fd445870" }, "nbformat": 3, "nbformat_minor": 0, @@ -27,11 +28,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine :\n", - "(i) The thermal efficiency \n", - "(ii) The rate of heat rejection.\n", - "'''\n", + "\n", "\n", "# Variables\n", "Q1 = 1500./60; \t\t#kJ/s\n", @@ -74,9 +71,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Is it possible to reach initial state by an adiabatic process ?\n", - "'''\n", "\n", "# Variables\n", "Q_12 = 30.; \t\t#kJ\n", @@ -117,9 +111,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find the co-efficient of performance and heat transfer rate in the condenser of a refrigerator \n", - "'''\n", + "\n", "# Variables\n", "Q2 = 12000.; \t\t\t#kJ/h\n", "W = 0.75*60*60; \t\t#kJ/h\n", @@ -157,10 +149,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "determine the least power necessary to pump this heat out continuously\n", - "'''\n", - "# Variables\n", + "\n", "T2 = 261.; \t\t\t#K\n", "T1 = 308.; \t\t\t#K\n", "Q2 = 2.; \t\t\t#kJ/s\n", @@ -197,11 +186,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine :\n", - "(i) Heat abstracted from outside ;\n", - "(ii) Co-efficient of performance.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -244,10 +229,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "What is the highest possible theoretical efficiency of a heat engine operating\n", - "with a hot reservoir of furnace gases \n", - "'''\n", + "\n", "\n", "# Variables\n", "T1 = 2373; \t\t\t#K\n", @@ -284,12 +266,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "find :\n", - "(i) Efficiency of the system ;\n", - "(ii) The net work transfer ;\n", - "(iii) Heat rejected to sink.\n", - "'''\n", + "\n", "\n", "# Variables\n", "T1 = 523.; \t\t\t#K\n", @@ -333,10 +310,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "An inventor claims that his engine has few specifications :\n", - "State whether his claim is valid or not.\n", - "'''\n", + "\n", "\n", "# Variables\n", "T1 = 1023.; \t\t#K\n", @@ -382,9 +356,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find the least rate of heat rejection per kW net output of the engine ?\n", - "'''\n", "\n", "# Variables\n", "T1 = 1273.; \t\t#K\n", @@ -424,9 +395,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "calculate the power required\n", - "'''\n", "\n", "# Variables\n", "one_ton_of_refrigeration = 210.; \t\t\t#kJ/min\n", @@ -467,10 +435,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Which source (1 or 2) would you choose to supply energy to an ideal reversible heat engine that is to produce large amount of\n", - "power if the temperature of the surroundings is 35\u00b0C ?\n", - "'''\n", + "\n", "\n", "# Variables\n", "E = 12000.; \t\t#kJ/min\n", @@ -522,12 +487,7 @@ "cell_type": "code", "collapsed": false, "input": [ - ".'''\n", - "(i) Determine the heat transfer to the refrigerant and the net heat transfer to the reservoir\n", - "at 50\u00b0C ;\n", - "(ii) Reconsider (i) given that the efficiency of the heat engine and the C.O.P. of the refrig-\n", - "erator are each 45 per cent of their maximum possible values.\n", - "'''\n", + "\n", "\n", "\n", "# Variables\n", @@ -588,10 +548,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(i) determine the C.O.P. of the machine and work input required.\n", - "(ii) determine the overall C.O.P. of the system.\n", - "'''\n", "\n", "# Variables\n", "T1 = 298.; \t\t\t#K\n", @@ -648,12 +604,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine :\n", - "(i) Power developed by the engine ;\n", - "(ii) Fuel consumed per hour.\n", - "Take enthalpy of fusion of ice = 334.5 kJ/kg.\n", - "'''\n", + "\n", "\n", "# Variables\n", "T_e1 = 493.; \t\t\t#K\n", @@ -703,9 +654,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "determine the intermediate temperature.\n", - "'''\n", + "\n", "\n", "# Variables\n", "T1 = 550.; \t\t\t#K\n", @@ -742,12 +691,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "determine :\n", - "(i) The temperature T 3 such that heat supplied to engine Q 1 is equal to the heat absorbed\n", - "by refrigerator Q 2 .\n", - "(ii) The efficiency of Carnot engine and C.O.P. of Carnot refrigerator.\n", - "'''\n", "\n", "# Variables\n", "T1 = 600.; \t\t\t#K\n", @@ -794,9 +737,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "estimate the energy taken from the reservoir at 1077\u00b0C.\n", - "'''\n", "\n", "# Variables\n", "T3 = 278.; \t\t\t#K\n", @@ -835,10 +775,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Classify which of the result report a reversible cycle or irreversible cycle or impossible\n", - "results.\n", - "'''\n", + "\n", "# Variables\n", "Q1 = 300.; \t\t\t#kJ/s\n", "T1 = 290.; \t\t\t#0C\n", @@ -895,9 +832,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Verify the Clausius inequality for the cycle.\n", - "'''\n", + "\n", "\n", "# Variables\n", "P1 = 0.124*10**5; \t\t\t#N/m**2\n", @@ -943,7 +878,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''Verify the Clausius Inequality'''\n", + "\n", "\n", "# Variables\n", "T1 = 437.; \t\t\t#K\n", @@ -990,9 +925,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find the entropy changes for the iron cube and the water. Is the process reversible ? If so why ?\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1044,11 +977,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate :\n", - "(i) The net heat flow from the air.\n", - "(ii) The net entropy change.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1104,12 +1033,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate :\n", - "(i) The change of entropy,\n", - "(ii) The heat flow, and\n", - "(iii) The work done.\n", - "'''\n", "\n", "%pylab inline\n", "\n", @@ -1222,9 +1145,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the change in entropy.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1265,9 +1186,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the change of entropy\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1317,9 +1236,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the change of entropy \n", - "'''\n", "\n", "import math \n", "\n", @@ -1369,10 +1285,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(i) Show that the process is irreversible ;\n", - "(ii) Calculate the change of entropy per kg of air.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1424,14 +1337,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine : \n", - "(i) Change in enthalpy ;\n", - "(ii) Change in internal energy ;\n", - "(iii) Change in entropy ;\n", - "(iv) Heat transfer ;\n", - "(v) Work transfer.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1488,13 +1394,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine :\n", - "(i) Change in internal energy,\n", - "(ii) Work done,\n", - "(iii) Heat transferred, and\n", - "(iv) Change in entropy\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1551,9 +1451,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "determine the net work. Also plot the processes on T-S diagram\n", - "'''\n", + "\n", "\n", "import math \n", "from matplotlib.pyplot import *\n", @@ -1644,11 +1542,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine :\n", - "(i) The heat supplied.\n", - "(ii) The entropy change.\n", - "'''\n", + "\n", "\n", "# Variables\n", "V1 = 0.004; \t\t\t#m**3\n", @@ -1699,11 +1593,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine :\n", - "(i) Change in entropy.\n", - "(ii) Work done\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1756,12 +1646,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate :\n", - "(i) Final specific volume and temperature.\n", - "(ii) Change of internal energy, work done and heat interaction.\n", - "(iii) Change in entropy.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1831,11 +1716,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(b)What would be the percentage error if the entropy change is calculated by dividing the\n", - "quantity of heat exchanged by the mean absolute temperature during the process ?\n", "\n", - "'''\n", "%pylab inline\n", "import math\n", "from matplotlib.pyplot import *\n", @@ -1934,11 +1815,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "calculate :\n", - "(i) The net heat flow.\n", - "(ii) The overall change in entropy.\n", - "'''\n", "\n", "from matplotlib.pyplot import *\n", "from numpy import *\n", @@ -2032,11 +1908,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(i) Constant volume heat addition till pressure becomes 5 bar, \n", - "(ii) Constant pressure cooling, and \n", - "(iii) Isothermal heating to initial state.\n", - "'''\n", "\n", "import math \n", "from matplotlib.pyplot import *\n", @@ -2151,9 +2022,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the entropy change of 4 kg of a perfect gas \n", - "'''\n", + "\n", "\n", "import math \n", "from scipy.integrate import quad \n", @@ -2197,9 +2066,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "find the entropy of the gas at 25 bar and 750 K temperature.\n", - "'''\n", + "\n", "\n", "import math \n", "from scipy.integrate import quad \n", @@ -2250,12 +2117,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate :\n", - "(i) Final equilibrium temperature,\n", - "(ii) Final pressure on each side of the diaphragm, and\n", - "(iii) Entropy change of system.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -2323,9 +2185,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find the change in entropy in each of the adiabatic processes.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -2374,11 +2234,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(i) Determine the heat interactions with the other two sources of heat.\n", - "(ii) Evaluate the entropy change due to each heat interaction with the engine.\n", - "(iii) Total entropy change during the cycle.\n", - "'''\n", + "\n", "\n", "import math \n", "from numpy import *\n", @@ -2448,9 +2304,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the maximum amount of work that can be recovered as the system is cooled down to the temperature of the reservoir.\n", - "'''\n", + "\n", "\n", "import math \n", "from scipy.integrate import quad \n", @@ -2503,9 +2357,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Establish the direction of the flow of the air in the duct.\n", - "'''\n", + "\n", "\n", "import math \n", "from scipy.integrate import quad \n", @@ -2562,9 +2414,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the change of entropy due to mixing process.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -2610,14 +2460,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(a)find :\n", - "(i) Entropy change of water ;\n", - "(ii) Entropy change of the heat reservoir ;\n", - "(iii) Entropy change of the universe.\n", - "(b)what will the entropy change of the universe be ?\n", - "(c) Explain how water might be heated from 0\u00b0C to 90\u00b0C \n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -2694,10 +2537,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(i) Determine the entropy increase of the universe.\n", - "(ii) What is the minimum amount of work necessary to convert the water back into ice at \u2013 5\u00b0C ?\n", - "'''\n", + "\n", "\n", "import math \n", "\n", diff --git a/Industrial_Instrumentation/ch6.ipynb b/Industrial_Instrumentation/ch6.ipynb index a3874b6a..2fc63442 100644 --- a/Industrial_Instrumentation/ch6.ipynb +++ b/Industrial_Instrumentation/ch6.ipynb @@ -1,6 +1,7 @@ { "metadata": { - "name": "" + "name": "", + "signature": "sha256:b3244020b726410d1f880fd32ec7c61d578b2f34e3bde3131de02645aee53468" }, "nbformat": 3, "nbformat_minor": 0, @@ -27,9 +28,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the irreversibility if the sink temperature is 293 K. \n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -78,11 +77,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "find\n", - "(i) The entropy produced during heat transfer ;\n", - "(ii) The decrease in available energy after heat transfer.\n", - "'''\n", "\n", "# Variables\n", "T1 = 1000.; \t\t\t#K\n", @@ -132,13 +126,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine :\n", - "(i) The availability if the system goes through the ideal work producing process.\n", - "(ii) The availability and effectiveness if the air is cooled at constant pressure to atmos-\n", - "pheric temperature without bringing it to complete dead state. Take c v = 0.718 kJ/kg K ;\n", - "c p = 1.005 kJ/kg K\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -204,9 +192,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Obtain the results on the basis of 1 kg of water.\n", - "'''\n", "\n", "import math \n", "\n", @@ -257,9 +242,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "find the loss in available energy due to above heat transfer.\n", - "'''\n", "\n", "import math\n", "\n", @@ -309,9 +291,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the unavailable energy in 60 kg of water at 60\u00b0C \n", - "'''\n", + "\n", "\n", "import math \n", "from scipy.integrate import quad \n", @@ -360,9 +340,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "find the loss in availability for the process.\n", - "'''\n", "\n", "import math \n", "\n", @@ -407,11 +384,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(i) Determine the availability of the system if the surrounding pressure and temperature\n", - "are 1 bar and 290 K respectively.\n", - "(ii) determine the availability and effectiveness\n", - "'''\n", "\n", "import math \n", "\n", @@ -472,9 +444,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine actual and minimum power required to run the compressor. \n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -527,9 +497,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the loss in availability if the surrounding temperature is 290 K.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -584,9 +552,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the decrease in available energy \n", - "'''\n", "\n", "import math \n", "from scipy.integrate import quad \n", @@ -650,9 +615,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the loss in availability on the basis of one kg of oil per second.\n", - "'''\n", "\n", "import math\n", "\n", @@ -706,9 +668,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "calculate the net increase in entropy and unavailable energy when the system reaches common temperature\n", - "'''\n", "\n", "import math \n", "\n", @@ -760,10 +719,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "What is the fraction of the available energy in the heat transferred from the process vapour\n", - "at 400\u00b0C that is lost due to the irreversible heat transfer at 200\u00b0C ?\n", - "'''\n", "\n", "# Variables\n", "T1 = 673.; \t\t\t#K\n", @@ -802,9 +757,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the effectiveness of the heating process when the atmospheric temperature is 15\u00b0C.\n", - "'''\n", + "\n", "import math \n", "\n", "# Variables\n", @@ -848,11 +801,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "calculate :\n", - "(i) The ratio of mass flow of air initially at 100\u00b0C to that initially at 20\u00b0C.\n", - "(ii) The effectiveness of heating process, if the atmospheric temperature is 20\u00b0C.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -902,12 +851,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "determine :\n", - "(i) The maximum work ;\n", - "(ii) The change in availability ;\n", - "(iii) The irreversibility.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -964,12 +908,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "determine per kg of air :\n", - "(i) The decrease in availability ;\n", - "(ii) The maximum work ;\n", - "(iii) The irreversibility.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1027,11 +966,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "determine\n", - "(i) The irreversibility ;\n", - "(ii) The effectiveness.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1085,11 +1020,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(i) find the rise in the temperature of the bearings when the flywheel has come to rest.\n", - "(ii) Calculate the greatest possible amount of the above heat which may be returned to the\n", - "flywheel? What would be the final r.p.m. of the flywheel, if it is set in motion with this available energy ?\n", - "'''\n", + "\n", "\n", "import math \n", "from scipy.integrate import quad \n", @@ -1160,11 +1091,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine :\n", - "(i) Reversible work and actual work assuming the process to be adiabatic ;\n", - "(ii) Irreversibility and effectiveness of the system on the basis of 1 kg of air flow.\n", - "'''\n", + "\n", "\n", "import math\n", "\n", @@ -1230,12 +1157,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate :\n", - "(i) The isentropic efficiency of the process ;\n", - "(ii) The loss of availability of the system assuming an atmospheric temperature of 20\u00b0C ;\n", - "(iii) The effectiveness of the process ;\n", - "'''\n", + "\n", "\n", "# Variables\n", "p1 = 20.; \t\t\t#bar\n", diff --git a/Industrial_Instrumentation/ch7.ipynb b/Industrial_Instrumentation/ch7.ipynb index f35bb080..50954e24 100644 --- a/Industrial_Instrumentation/ch7.ipynb +++ b/Industrial_Instrumentation/ch7.ipynb @@ -1,6 +1,7 @@ { "metadata": { - "name": "" + "name": "", + "signature": "sha256:83b04c725ceaf9254a1b319f62cfdfa8f3ba518f51286a3d08dbbb299f685e47" }, "nbformat": 3, "nbformat_minor": 0, @@ -27,14 +28,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the following :\n", - "(i) Work done on the copper during the process,\n", - "(ii) Change in entropy,\n", - "(iii) The heat transfer,\n", - "(iv) Change in internal energy, and\n", - "(v) (c p \u2013 c v ) for this change of state.\n", - "'''\n", + "\n", "\n", "# Variables\n", "B = 5.*10**(-5); \t\t\t# /K\n", @@ -89,9 +83,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Using Clausius-Claperyon\u2019s equation, find enthalpy of vapourisation.\n", - "'''\n", + "\n", "\n", "# Variables\n", "vg = 0.1274; \t\t\t#m**3/kg\n", @@ -130,9 +122,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the pressure an ice skate blade must exert to allow smooth ice skate at \u2013 10\u00b0C.\n", - "'''\n", + "\n", "\n", "import math\n", "\n", @@ -175,9 +165,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the specific volume v g of saturation mercury vapour at 0.1 bar\n", - "'''\n", + "\n", "\n", "# Variables\n", "h_fg = 294.54; \t\t\t#kJ/kg\n", diff --git a/Industrial_Instrumentation/ch8.ipynb b/Industrial_Instrumentation/ch8.ipynb index 5b548006..0650ff08 100644 --- a/Industrial_Instrumentation/ch8.ipynb +++ b/Industrial_Instrumentation/ch8.ipynb @@ -1,6 +1,7 @@ { "metadata": { - "name": "" + "name": "", + "signature": "sha256:417a431bb73c0f7340e3aa0171c3fc4bd9ac17c782d95798e961af6aeee610ed" }, "nbformat": 3, "nbformat_minor": 0, @@ -27,10 +28,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "How many kg of air must be removed from the chamber during the process ? Express this\n", - "mass as a volume measured at 1 bar and 25\u00b0C.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -81,11 +79,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(i) How many kg of nitrogen will the flask hold at the designed conditions ?\n", - "(ii) At what temperature must the fusible plug melt in order to limit the pressure of a full\n", - "flask to a maximum of 150 bar ?\n", - "'''\n", + "\n", "\n", "# Variables\n", "V = 0.04; \t\t\t#m**3\n", @@ -135,12 +129,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(i) What mass of original gas must have escaped if the dimensions of the balloon is not\n", - "changed ?\n", - "(ii) Find the amount of heat to be removed to cause the same drop in pressure at constant\n", - "volume.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -195,13 +184,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(i) Calculate pressure and the specific volume of the gas.\n", - "(ii) evaluate the values of c p and c v .\n", - "(iii) evaluate the final pressure of gas.\n", - "(iv) Evaluate the increase in specific internal energy, the increase in specific enthalpy, increase\n", - "in specific entropy and magnitude and sign of heat transfer.\n", - "'''\n", + "\n", "\n", "from numpy import *\n", "import math \n", @@ -292,13 +275,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(a) \n", - "determine :\n", - "(i) The final specific volume, temperature and increase in entropy ;\n", - "(ii) The work done and the heat transfer.\n", - "(b) Repeat (a) assuming the process to be irreversible and adiabatic between end states.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -383,9 +360,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "determine the pressure in the spheres when the system attains equilibrium.\n", - "'''\n", + "\n", "\n", "# Variables\n", "d = 2.5; \t\t\t#m; diameter\n", @@ -430,9 +405,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "evaluate the heat transfer rate from the gas and the power delivered by the turbine.\n", - "'''\n", + "\n", "\n", "# Variables\n", "m = 6.5/60; \t\t\t#kg/s\n", @@ -500,12 +473,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Evaluate the following :\n", - "(i) The heat received in the cycle ;\n", - "(ii) The heat rejected in the cycle ;\n", - "(iii) Efficiency of the cycle.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -579,11 +547,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Compute the pressure by\n", - "(i) Van der Waals\u2019 equation\n", - "(ii) Perfect gas equation.\n", - "'''\n", + "\n", "\n", "\n", "# Variables\n", @@ -633,13 +597,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Estimate the\n", - "pressure exerted by CO 2 by using :\n", - "(i) Perfect gas equation\n", - "(ii) Van der Waals\u2019 equation\n", - "(iii) Beattie Bridgeman equation.\n", - "'''\n", + "\n", "# Variables\n", "V = 3.; \t\t\t#m**3\n", "m = 10.; \t\t\t#kg\n", @@ -699,11 +657,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "find :\n", - "(i) The work done during the process\n", - "(ii) The final pressure.\n", - "'''\n", + "\n", "\n", "import math \n", "from scipy.integrate import quad \n", @@ -760,9 +714,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "compute the temperature.\n", - "'''\n", "\n", "# Variables\n", "pr = 20;\n", @@ -801,9 +752,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the density using the compressibility chart\n", - "'''\n", + "\n", "\n", "# Variables\n", "p = 260.*10**5; \t\t\t#Pa\n", @@ -846,9 +795,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "What should be the temperature of 1.3 kg of CO 2 gas to behave as an ideal ?\n", - "'''\n", + "\n", "# Variables\n", "p = 200.*10**5; \t\t\t#Pa\n", "pc = 73.86*10**5; \t\t\t#Pa\n", @@ -888,9 +835,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find the mass of H 2 in the balloon using real gas equation.\n", - "'''\n", "\n", "import math \n", "\n", @@ -937,9 +881,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine the value of compressibility factor \n", - "'''\n", + "\n", "# Calculations\n", "Z_cp = 3./2-9./8;\n", "\n", diff --git a/Industrial_Instrumentation/ch9.ipynb b/Industrial_Instrumentation/ch9.ipynb index db39a5a3..fb7369a6 100644 --- a/Industrial_Instrumentation/ch9.ipynb +++ b/Industrial_Instrumentation/ch9.ipynb @@ -1,6 +1,7 @@ { "metadata": { - "name": "" + "name": "", + "signature": "sha256:48e3494ec100096b5d245db7f5c631c3ee779596f8c61001fb43d1b21ba3707b" }, "nbformat": 3, "nbformat_minor": 0, @@ -27,11 +28,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate :\n", - "(i) The partial pressure of each constituent,\n", - "(ii) The total pressure in the vessel, and\n", - "'''\n", "\n", "# Variables\n", "V = 0.35; \t\t\t#m**3\n", @@ -91,10 +87,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate : (i) Gas constant for air ;\n", - "(ii) Apparent molecular weight.\n", - "'''\n", + "\n", "\n", "# Variables\n", "R0 = 8.314;\n", @@ -151,9 +144,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the analysis by volume and the partial pressure \n", - "'''\n", + "\n", "\n", "# Variables\n", "p = 1.; \t\t\t#bar\n", @@ -237,13 +228,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate for the mixture :\n", - "(i) The masses of CO 2 , O 2 and N 2 , and the total mass ;\n", - "(ii) The percentage carbon content by mass ;\n", - "(iii) The apparent molecular weight and the gas constant for the mixture ;\n", - "(iv) The specific volume of the mixture\n", - "'''\n", + "\n", "\n", "# Variables\n", "p = 1.*10**5; \t\t\t#Pa\n", @@ -335,11 +320,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "calculate :\n", - "(ii) The volume of the container.\n", - "(i) The mass of O 2 required ;\n", - "'''\n", "\n", "# Variables\n", "p = 1.*10**5; \t\t\t#Pa\n", @@ -394,9 +374,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate per mole of mixture the mass of mixture to be removed, and mass of CO to be added.\n", - "'''\n", + "\n", "\n", "#Let composition of mixture by volume be denoted by c1\n", "#Let Final composition desired be denoted by c2\n", @@ -446,12 +424,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate per kg of gas :\n", - "(i) The workdone ;\n", - "(ii) The heat flow ;\n", - "(iii) Change of entropy per kg of mixture.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -601,8 +574,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "# determine :\n", - "# (i) Partial pressures of the constituents ; (ii) Gas constant of mixture.\n", "\n", "import math \n", "\n", @@ -680,16 +651,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Find :\n", - "(i) The mole fraction of each constituent,\n", - "(ii) The equivalent molecular weight of the mixture,\n", - "(iii) The equivalent gas constant of the mixture,\n", - "(iv) The partial pressures and partial volumes,\n", - "(v) The volume and density of the mixture, and\n", - "(vi) The c p and c v of the mixture.\n", - "\n", - "'''\n", "\n", "# Variables\n", "p = 4.*10**5; \t\t \t#Pa\n", @@ -829,12 +790,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate :\n", - "(i) The final temperature and pressure of the mixture ;\n", - "(ii) The change of entropy of the system.\n", "\n", - "'''\n", "\n", "# Variables\n", "Cv_O2 = 21.07; \t\t\t#kJ/mole K\n", @@ -905,10 +861,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "(a) Calculate : (i) The final equilibrium pressure ;\n", - "(ii) The amount of heat transferred to the surroundings ;\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -994,9 +947,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate the increase in entropy \n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1042,7 +993,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "# Calculate the mass of O 2 added.\n", + "\n", "# Variables\n", "m_N2 = 2.5; \t\t\t#kg \n", "M_N2 = 28.;\n", @@ -1084,13 +1035,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine :\n", - "(i) The moles of nitrogen per mole of oxygen ;\n", - "(ii) The partial pressure of oxygen and nitrogen if the total pressure is atmosphere ;\n", - "(iii) The kg of nitrogen per kg of mixture.\n", "\n", - "'''\n", "\n", "# Variables\n", "n_O2 = 1.;\n", @@ -1146,7 +1091,7 @@ "cell_type": "code", "collapsed": false, "input": [ - " # Find the masses of O 2 , N 2 and CO 2 in the cylinder.\n", + "\n", "\n", "import math \n", "\n", @@ -1216,12 +1161,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate-\n", - "(i) The partial pressure ;\n", - "(ii) The total pressure ;\n", - "(iii) The mean value of R for the mixture.\n", - "'''\n", + "\n", "# Variables\n", "V = 6; \t\t \t#m**3\n", "A = 0.45; \n", @@ -1283,13 +1223,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine-\n", - "(i) The mole fraction of each component ; (ii) The average molecular weight ;\n", - "(iii) The specific gas constant ;\n", - "(iv) The volume and density ;\n", - "(v) The partial pressures and partial volumes.\n", - "'''\n", + "\n", "\n", "# Variables\n", "m_O2 = 4.; \t\t\t#kg\n", @@ -1381,11 +1315,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Calculate :\n", - "(i) The final temperature of the mixture ; \n", - "(ii) The change in entropy.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1450,9 +1380,6 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "calculate the entropy change in the mixing process.\n", - "'''\n", "\n", "import math \n", "\n", @@ -1506,12 +1433,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "'''\n", - "Determine :\n", - "(i) The temperature of the equilibrium mixture ;\n", - "(ii) The pressure of the mixture ;\n", - "(iii) The change in entropy for each component and total value.\n", - "'''\n", + "\n", "\n", "import math \n", "\n", @@ -1590,7 +1512,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "# Calculate c v and c p of the mixture.\n", + "\n", "\n", "import math \n", "\n", |