diff options
Diffstat (limited to 'Machine_Design_by_T_H_Wentzell')
19 files changed, 3646 insertions, 0 deletions
diff --git a/Machine_Design_by_T_H_Wentzell/1-What_Is_Mechanical_Design.ipynb b/Machine_Design_by_T_H_Wentzell/1-What_Is_Mechanical_Design.ipynb new file mode 100644 index 0000000..5b819c1 --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/1-What_Is_Mechanical_Design.ipynb @@ -0,0 +1,71 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: What Is Mechanical Design" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: Sample_Engineering_Calculation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-1.2 Page 13 ') //Example 1.2\n", +"Sy=61000 //[psi] Tensile strength of AISI 1020 cold drawn steel from Appendix 4 Page no 470\n", +"SF=2; //[] safety factor\n", +"F=300; //[lb] Weight of the ball\n", +"L=36; //[in] Length of round bar\n", +"Sy=61000; //[psi] Tensile strength from Appendix 4\n", +"M=F*L; //[in*lb] Bending moment Appendix 2\n", +"Sall=Sy/SF; //[psi] Allowable stress \n", +"Z=M/Sall; //[in^3] Section modulus for bending Sall=M/Z\n", +"D=(32*Z/%pi)^(1/3); //[in] Diameter of bar\n", +"//Use 13/8 in bar\n", +"D1=1.625;\n", +"mprintf('\n\n Diameter of Bar is %f in',D1);\n", +"//Checking Deflection\n", +"I=%pi*D1^4/64; //[in^4] Moment of inertia Appendix 3\n", +"E=30*10^6; //[lb/in^2] Modulus of elasticity\n", +"Delta=F*L^3/(3*E*I); //[in] Deflection \n", +"//Note- In the book I=0.342 in^4 is used instead of I=0.3422814 in^4\n", +"mprintf('\n The deflection of bar is %f in',Delta);\n", +"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/10-Pneumatic_and_Hydraulic_Drives.ipynb b/Machine_Design_by_T_H_Wentzell/10-Pneumatic_and_Hydraulic_Drives.ipynb new file mode 100644 index 0000000..47ba7d2 --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/10-Pneumatic_and_Hydraulic_Drives.ipynb @@ -0,0 +1,118 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Pneumatic and Hydraulic Drives" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1: Calculation_of_Hydraulic_Cylinder_Diameter_and_Standard_Rod_Size.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-10.1 Page No.195\n');\n", +"P=100; //[lb/in^2] Hydraulic pressure\n", +"F=450; //[lb] Extension force\n", +"Fr=400; //[lb] Retraction force\n", +"A=F/P; //[in^2] Cross section area\n", +"D=sqrt(4*A/%pi); //[in] Bore of cylinder\n", +"mprintf('\n The bore of cylinder is %f in.',D);\n", +"//Use 2.5in bore cylinder\n", +"Dm=2.5; //[in] Bore of cylinder\n", +"Dr=1; //[in] Diameter of rod\n", +"A2=%pi*Dm^2/4-%pi*Dr^2/4; //[in^2]\n", +"F2=P*A2; //[lb] Force\n", +"if F2>=Fr then\n", +" mprintf('\n The diameter of rod is %f in.',Dr);\n", +"else \n", +" mprintf('\n This would not meet requirement');\n", +"end\n", +"//This would meet requirement\n", +"Ab=%pi*Dm^2/4; //[in^2] Cross section area\n", +"//Note-In the book V=180.7 is used instead of V=180.64158 \n", +"d=20; //[in] stroke\n", +"V=Ab*d+A2*d; //[in^3] Volume per cycle\n", +"t=2; //[s] Cycle time\n", +"FR=V/t; //[in^3/s] Flowrate\n", +"FR=FR*7.48*60/1728; //[gal/min] Flowrate\n", +"mprintf('\n Flow rate required is %f gal/min.',FR);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.2: Pneumatic_Pop_Rivet_Gun.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-10.2 Page No.198\n');\n", +"Pa=100; //[lb/in^2] Air pressure\n", +"Da=4; //[in] Diameter\n", +"Aa=%pi*Da^2/4; //[in^2] Cross section area\n", +"F1=Pa*Aa; //[lb] \n", +"Do=1; //[in] \n", +"Ao=%pi*Do^2/4; //[in] \n", +"Po=F1/Ao; //[lb/in^2]\n", +"mprintf('\n The oil pressure is %f lb/in^2.',Po);\n", +"D2o=3; //[in]\n", +"A2o=%pi*D2o^2/4; //[in^2]\n", +"F2=Po*A2o;\n", +"mprintf('\n Force F on piston rod is %f lb.',F2);\n", +"D=1; //[in]\n", +"d=4; //[in] \n", +"A=%pi*D^2/4; //[in^2]\n", +"V=A*d; //[in^3]\n", +"mprintf('\n The volume in 1-inch cylinder for the 4-inch travel is %f in^3.',V);\n", +"A3=%pi*3^2/4; //[in^2]\n", +"l3=V/A3; //[in]\n", +"mprintf('\n Travel for 3-inch cylinder is %f in.',l3);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/11-Gear_Design.ipynb b/Machine_Design_by_T_H_Wentzell/11-Gear_Design.ipynb new file mode 100644 index 0000000..984f0e3 --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/11-Gear_Design.ipynb @@ -0,0 +1,255 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: Gear Design" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.1: Double_Reduction_Spur_Gear_Set.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.1 Page No.217\n');\n", +"N2=60;\n", +"N1=20;\n", +"N3=20;\n", +"N4=60;\n", +"Vr=(N2/N1)*(N4/N3);\n", +"//Output speed\n", +"n1=3600;\n", +"n4=n1/Vr;\n", +"mprintf('\n The output speed is %f rpm.',n4);\n", +"//Output torque\n", +"T1=200;\n", +"T4=T1*Vr;\n", +"mprintf('\n The output torque is %f lb*in.',T4);\n", +"//Input horsepower\n", +"hpi=T1*n1/63000;\n", +"mprintf('\n The input horsepower is %f hp.',hpi);\n", +"//Output horsepower\n", +"hpo=T4*n4/63000;\n", +"mprintf('\n The output horsepower is %f hp.',hpo);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.2: Double_Reduction_Spur_Gear_Set_with_Idler.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.2 Page No.219\n');\n", +"Na=20;\n", +"Nb=65;\n", +"Nc=20;\n", +"Nd=22;\n", +"Ne=60;\n", +"//train value\n", +"Vr=(Nb/Na)*(Nd/Nc)*(Ne/Nd);\n", +"mprintf('\n Train value = %f ',Vr);\n", +"//Output speed\n", +"na=3000;\n", +"ne=na/Vr;\n", +"mprintf('\n \Output speed = %f rpm.',ne);\n", +"//Output torque\n", +"Ta=10;\n", +"Te=Ta*Vr;\n", +"mprintf('\n Output torque = %f lb*in.',Te);\n", +"//Direction\n", +"mprintf('\n Direction\n If Gear A is clockwise,\n Gear B is counterclockwise.\n Gear C is counterclockwise.\n Gear D is clockwise. \n Gear E is counterclockwise.');\n", +"//Output power\n", +"P=Te*ne;\n", +"P=P*%pi/60;\n", +" mprintf('\n Output power = %f W.',P);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.3: Calculation_of_Pitch_Diameter_Circular_Pitch_and_Shaft_Centre_to_Centre_Distance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.3 Page No.231\n');\n", +"Np=16;\n", +"Ng=32;\n", +"Pd=8;\n", +"//Pitch diameter\n", +"Dp=Np/Pd;\n", +"mprintf('\n Pinion pitch diameter is %f in.',Dp);\n", +"Dg=Ng/Pd;\n", +"mprintf('\n Gear pitch diameter is %f in.',Dg);\n", +"//Circular pitch\n", +"Pc=%pi*Dp/Np;\n", +"mprintf('\n Circular pitch is %f in.',Pc);\n", +"//Centerline distance\n", +"CC=(Dp+Dg)/2;\n", +"mprintf('\n Centerline distance is %f in.',CC);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.4: Bevel_Gear.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.4 Page No.236\n');\n", +"//Torque in input shaft\n", +"hp=1.5;\n", +"n=3450;\n", +"T=63000*hp/n;\n", +"mprintf('\n Torque in input shaft is %f lb*in.',T);\n", +"//Note-In the book T=27.4 in-lb is used instead of T=27.391304\n", +"//Output torque\n", +"Ng=24;\n", +"Np=10;\n", +"Tout=(Ng/Np)*T;\n", +"mprintf('\n Output torque is %f lb*in.',Tout);\n", +"//Output speed\n", +"nout=(Np/Ng)*n;\n", +"mprintf('\n Output speed is %f rpm.',nout);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.5: Calculation_of_Gear_Train_Value_Input_and_Output_Torque_and_Speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.5 Page No.241\n');\n", +"//Gear train value\n", +"Na=12;\n", +"Nb=36;\n", +"Nc=16;\n", +"Nd=64;\n", +"Vr=(Nb/Na)*(Nd/Nc);\n", +"mprintf('\n Gear train value is %f ',Vr);\n", +"//Motor torque\n", +"hp=1.5;\n", +"n=1750;\n", +"T=63000*hp/n;\n", +"mprintf('\n Motor torque is %f in-lb.',T);\n", +"//Output torque\n", +"Tout=T*Vr;\n", +"mprintf('\n Output torque is %f in-lb.',Tout);\n", +"//Output speed\n", +"nout=n/Vr;\n", +"mprintf('\n Output speed is %f rpm.',nout);\n", +"//Directions\n", +"mprintf('\n Directions\n Gear A is clockwise.\n Gear B is counterclockwise.\n Gear C is counterclockwise.\n Gear D is clockwise.');\n", +"//Output power\n", +"hp=T*n/63000;\n", +"mprintf('\n Output power is %f hp.',hp);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.6: Precision_Spur_Gears.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.6 Page No.243\n');\n", +"//Velocity ratio\n", +"N2=2400;\n", +"N1=20;\n", +"Vr=N2/N1;\n", +"mprintf('\n Velocity ratio = %f ',Vr);\n", +"mprintf('\n Possible Solution: \n Three sets of gears \n -20 tooth and 80 tooth\n -20 tooth and 100 tooth\n -20 tooth and 120 tooth.');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/12-Spur_Gear_Design_and_Selection.ipynb b/Machine_Design_by_T_H_Wentzell/12-Spur_Gear_Design_and_Selection.ipynb new file mode 100644 index 0000000..60519a7 --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/12-Spur_Gear_Design_and_Selection.ipynb @@ -0,0 +1,344 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Spur Gear Design and Selection" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: Forces_on_Spur_Gear_Teeth.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.1 Page No.254\n');\n", +"P=5;\n", +"n=1725;\n", +"T=63000*P/n;\n", +"//Pitch circle diameter\n", +"Np=20;\n", +"Pd=8;\n", +"Dp=Np/Pd;\n", +"mprintf('\n Pitch circle diameter = %f in.',Dp);\n", +"//Transmitted force\n", +"Ft=2*T/Dp;\n", +"mprintf('\n Transmitted force = %f lb.',Ft);\n", +"//Separating force\n", +"theta=20*%pi/180;\n", +"Fn=Ft*tan(theta);\n", +"mprintf('\n Separating force = %f lb.',Fn);\n", +"//Maximum force\n", +"Fr=Ft/cos(theta);\n", +"mprintf('\n Maximum force = %f lb.',Fr);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: Surface_Speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.2 Page No.256\n');\n", +"//Surface speed\n", +"Dp=2.5;\n", +"n=1725;\n", +"Vm=%pi*Dp*n/12;\n", +"mprintf('\n Surface speed = %f ft/min.',Vm);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: Strength_of_Gear_Teeth.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.3 Page No.258\n');\n", +"//Pinion\n", +"Su=95*10^3;\n", +"Sn=0.5*Su;\n", +"Y=0.320;\n", +"b=1;\n", +"Pd=8;\n", +"Fsp=Sn*b*Y/Pd;\n", +"mprintf('\n Force allowable for pinion = %f lb.',Fsp);\n", +"//Gear\n", +"Sn=0.5*88*10^3;\n", +"Y=0.421;\n", +"Fsg=Sn*b*Y/Pd;\n", +"mprintf('\n Force allowable for gear = %f lb.',Fsg);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.4: Dynamic_Load.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.4 Page No.262\n');\n", +"//Dynamic load\n", +"Vm=1129;\n", +"Ft=146;\n", +"Fd=(600+Vm)*Ft/600;\n", +"mprintf('\n Dynamic load = %f lb.',Fd);\n", +"Fs=1900;\n", +"Nsf=2;\n", +"//Comparing to the allowable stress\n", +"if (Fs/Nsf)>Fd then\n", +" mprintf('\n This is an acceptable design.');\n", +"end" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.5: Calculation_of_Factor_of_Safety_Used_in_Catalog.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.5 Page No.263\n');\n", +"Su=55*10^3;\n", +"Sn=0.5*Su;\n", +"Np=24;\n", +"Pd=12;\n", +"Dp=Np/Pd;\n", +"mprintf('\n Pitch circle diameter = %f in.',Dp);\n", +"n=1800;\n", +"Vm=%pi*Dp*n/12;\n", +"mprintf('\n Surface speed = %f ft/min.',Vm);\n", +"b=3/4;\n", +"Y=0.302;\n", +"Fs=Sn*b*Y/Pd;\n", +"mprintf('\n Allowable stress = %f lb.',Fs);\n", +"Fd=Fs;\n", +"Ft=600*Fd/(600+Vm);\n", +"mprintf('\n Force transmitted = %f lb.',Ft);\n", +"T=Ft*Dp/2;\n", +"P=T*n/63000;\n", +"mprintf('\n Power transmitted = %f hp.',P);\n", +"//Compared to catalog\n", +"hp_catalog=4.14;\n", +"Nsf=P/hp_catalog;\n", +"mprintf('\n Safety factor = %f .',Nsf);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.6: Spur_Gear_Desig.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.6 Page No.266\n');\n", +"//Miscellaneous properties\n", +"Np=48;\n", +"Pd=12;\n", +"Dp=Np/Pd;\n", +"Vr=3;\n", +"Ng=Np*Vr;\n", +"//Surface speed\n", +"n=900;\n", +"Vm=%pi*Dp*n/12;\n", +"mprintf('\n Surface speed = %f ft/min.',Vm);\n", +"//Force on teeth\n", +"hp=2;\n", +"Ft=33000*hp/Vm;\n", +"mprintf('\n Force on teeth = %f lb.',Ft);\n", +"//Dynamic force\n", +"Fd=(600+Vm)*Ft/600;\n", +"mprintf('\n Dynamic force = %f lb.',Fd);\n", +"//Width\n", +"Su=30*10^3;\n", +"Sn=0.4*Su;\n", +"Y=0.344;\n", +"Nsf=2;\n", +"b=Fd*Nsf*Pd/(Sn*Y);\n", +"b=round(b);\n", +"mprintf('\n Width = %f in.',b);\n", +"if (8/Pd)<b&b<(12.5/Pd) then\n", +" mprintf('\n This is an acceptable design.');\n", +"end" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.7: Buckingham_Method_of_Gear_Design.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.7 Page No.270\n');\n", +"Su=95*10^3;\n", +"Sn=0.5*Su;\n", +"Np=24;\n", +"Pd=16;\n", +"Dp=Np/Pd;\n", +"//Torque\n", +"n=3450;\n", +"P=3;\n", +"T=P*63000/n;\n", +"mprintf('\n Torque = %f in-lb.',T);\n", +"//Force transmitted\n", +"Ft=2*T/Dp;\n", +"mprintf('\n Force transmitted = %f lb.',Ft);\n", +"//Surface speed\n", +"Vm=%pi*Dp*n/12;\n", +"mprintf('\n Surface speed = %f ft/min.',Vm);\n", +"//Force allowable\n", +"Y=0.337;\n", +"b=1;\n", +"Fs=Sn*b*Y/Pd;\n", +"mprintf('\n Force allowable = %f lb.',Fs);\n", +"//Dynamic load using Buckingham's equation\n", +"C=830;\n", +"Fd=Ft+0.05*Vm*(b*C+Ft)/(0.05*Vm+(b*C+Ft)^0.5);\n", +"Nsf=1.4;\n", +"if (Fs/Nsf)>Fd then\n", +" mprintf('\n This is a suitable design');\n", +"end" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.8: Wear_of_Gears.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.8 Page No.272\n');\n", +"Ng=42;\n", +"Np=24;\n", +"Q=2*Ng/(Ng+Np);\n", +"Kg=270;\n", +"Dp=1.5;\n", +"b=1;\n", +"Fw=Dp*b*Q*Kg;\n", +"Fd=699;\n", +"Nsf=1.2;\n", +"if (Fw/Nsf)<Fd then\n", +" mprintf('\n (Fw/Nsf)<Fd So this would not be suitable design');\n", +"end\n", +"//If the surfaces each had a BHN = 450\n", +"Kg=470;\n", +"Fw=Dp*b*Q*Kg;\n", +"if(Fw/Nsf)>Fd then\n", +" mprintf('\n\n If the surfaces each had a BHN = 450');\n", +" mprintf('\n (Fw/Nsf)>Fd So this would be suitable design.');\n", +"end" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/13-Helical_Bevel_and_Worm_Gears.ipynb b/Machine_Design_by_T_H_Wentzell/13-Helical_Bevel_and_Worm_Gears.ipynb new file mode 100644 index 0000000..f04fdac --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/13-Helical_Bevel_and_Worm_Gears.ipynb @@ -0,0 +1,317 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Helical Bevel and Worm Gears" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1: Helical_Gears.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.1 Page No.280\n');\n", +"//Pitch-line velocity\n", +"Nt=24;\n", +"Pd=12;\n", +"Dp=Nt/Pd;\n", +"n=1750;\n", +"Vm=%pi*Dp*n/12;\n", +"mprintf('\n Pitch-line velocity = %f ft/min.',Vm);\n", +"//Transmitted force\n", +"hp=5;\n", +"Ft=33000*hp/Vm;\n", +"mprintf('\n Transmitted force = %f lb.',Ft);\n", +"//Axial force\n", +"psi=15*%pi/180;\n", +"Fa=Ft*tan(psi);\n", +"mprintf('\n Axial force = %f lb.',Fa);\n", +"//Separating force\n", +"theta=20*%pi/180;\n", +"psit=atan(tan(theta)/cos(psi));\n", +"Fn=Ft*tan(psit);\n", +"mprintf('\n Separating force = %f lb.',Fn);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2: Helical_Gear_Stresses.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.2 Page No.282\n');\n", +"//Normal plane pitch\n", +"Pd=16;\n", +"psi=45*%pi/180;\n", +"Pdn=Pd/cos(psi);\n", +"mprintf('\n Normal plane pitch = %f in.',Pdn);\n", +"N=24;\n", +"S=30000;\n", +"b=0.5;\n", +"Ne=N/cos(psi)^3;\n", +"Y=0.427;\n", +"Fs=S*b*Y/Pdn;\n", +"mprintf('\n Allowable force = %f lb.',Fs);\n", +"Dp=24/16;\n", +"n=600;\n", +"Vm=%pi*Dp*n/12;\n", +"mprintf('\n Surface speed = %f ft/min.',Vm);\n", +"Ft=Fs/((600+Vm)/600);\n", +"mprintf('\n Force transmitted = %f lb.',Ft);\n", +"P=Ft*Vm/33000;\n", +"mprintf('\n Power rating = %f hp.',P);\n", +"//Note-There is an error in the answer given in textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3: Bevel_Gear_Forces.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.3 Page No.286\n');\n", +"Np=24;\n", +"Ng=36;\n", +"Pd=8;\n", +"Yp=33.7*%pi/180;\n", +"Yg=56.3*%pi/180;\n", +"theta=14.5*%pi/180;\n", +"//Pitch diameter\n", +"Dp=Np/Pd;\n", +"mprintf('\n Pitch diameter = %f in.',Dp);\n", +"//Transmitted force\n", +"n=2200;\n", +"P=8;\n", +"T=63000*P/n;\n", +"Ft=2*T/Dp;\n", +"mprintf('\n Transmitted force = %f lb.',Ft);\n", +"//Separating force - Pinion\n", +"Fnp=Ft*tan(theta)*cos(Yp);\n", +"mprintf('\n Separating force-Pinion = %f lb.',Fnp);\n", +"//Separating force-Gear\n", +"Fng=Ft*tan(theta)*cos(Yg);\n", +"mprintf('\n Separating force = %f lb.',Fng);\n", +"//Axial force-Pinion\n", +"Fap=Ft*tan(theta)*sin(Yp);\n", +"mprintf('\n Axial force-Pinion= %f lb.',Fap);\n", +"//Axial force-Gear\n", +"Fag=Ft*tan(theta)*sin(Yg);\n", +"mprintf('\n Axial force-Gear = %f lb.',Fag);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.4: Worm_Gear_Forces.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.4 Page No.288\n');\n", +"//Pitch diameter\n", +"Ng=60;\n", +"Pd=6;\n", +"Dp=Ng/Pd;\n", +"mprintf('\n Pitch diameter = %f in.',Dp);\n", +"//Circular pitch\n", +"Pc=%pi*Dp/Ng;\n", +"mprintf('\n Circular pitch = %f in.',Pc);\n", +"L=Pc;\n", +"//Lead angle\n", +"D=2;\n", +"LA=atan(L/(%pi*D));\n", +"LA=LA*180/%pi;\n", +"mprintf('\n Lead angle = %f deg.',LA);\n", +"//Centerline distance\n", +"CC=(D+Dp)/2;\n", +"mprintf('\n Centerline distance = %f in.',CC);\n", +"//Velocity ratio\n", +"Ntgear=60;\n", +"Nstarts_worm=1;\n", +"Vr=Ntgear/Nstarts_worm;\n", +"mprintf('\n Velocity ratio = %f',Vr);\n", +"//Output speed\n", +"nin=1750;\n", +"nout=nin/Vr;\n", +"mprintf('\n Output speed = %f rpm.',nout);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.5: Calculation_of_Normal_Circular_Pitch_Dynamic_Load_Force_Allowable.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.5 Page No.292\n');\n", +"//Normal circular pitch\n", +"Pc=0.524;\n", +"LA=4.77*%pi/180;\n", +"Pcn=Pc*cos(LA);\n", +"mprintf('\n Normal circular pitch = %f in.',Pcn);\n", +"//Force transmitted\n", +"hp=5;\n", +"n=29.2;\n", +"T=63000*hp/n;\n", +"Dp=10;\n", +"Ft=2*T/Dp;\n", +"mprintf('\n Force transmitted = %f lb.',Ft);\n", +"Vm=%pi*Dp*n/12;\n", +"//Dynamic load\n", +"Fd=(1200+Vm)*Ft/1200;\n", +"mprintf('\n Dynamic load = %f lb.',Fd);\n", +"//Force allowable\n", +"Su=95*10^3;\n", +"Y=0.392;\n", +"b=1;\n", +"Sn=0.5*Su;\n", +"Fs=Sn*Y*b*Pcn/%pi;\n", +"mprintf('\n Force allowable = %f lb.',Fs);\n", +"//Safty factor\n", +"Nsf=Fs/Fd;\n", +"mprintf('\n Safty factor = %f .',Nsf);\n", +"//Note-There is an error in the answer given in textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.6: Efficiency_of_Worm_Gear_Drive.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.6 Page No.294\n');\n", +"//Efficiency\n", +"LA=4.77*%pi/180;\n", +"f=0.03;\n", +"e=tan(LA)*(1-f*tan(LA))/(f+tan(LA));\n", +"mprintf('\n Efficiency = %f .',e);\n", +"//Torque input\n", +"hp=5;\n", +"n=1750;\n", +"T=63000*hp/n;\n", +"mprintf('\n Torque input = %f in-lb.',T);\n", +"Vr=60;\n", +"Tout=0.73*Vr*T;\n", +"mprintf('\n Output torque = %f in-lb.',Tout);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.7: Heat_Generated.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.7 Page No.296\n');\n", +"hpin=5\n", +"e=0.73;\n", +"Q=(1-e)*hpin*2544;\n", +"mprintf('\n Heat generated by system = %f Btu/hr.',Q);\n", +"//Note-There is an error in the answer given in textbook" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/14-Belt_and_Chain_Drives.ipynb b/Machine_Design_by_T_H_Wentzell/14-Belt_and_Chain_Drives.ipynb new file mode 100644 index 0000000..b08b6e4 --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/14-Belt_and_Chain_Drives.ipynb @@ -0,0 +1,204 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 14: Belt and Chain Drives" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.1: Calculation_of_Front_Force_Net_Driving_Force_Force_on_Shaft_etc.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-14.1 Page No.306\n');\n", +"//Torque on small pulley\n", +"hp=2;\n", +"n=2450;\n", +"T=63000*hp/n;\n", +"mprintf('\n Torque on small pulley = %f in-lb.',T);\n", +"r=6/2;\n", +"Fd=T/r;\n", +"//Front force\n", +"Fb=10;\n", +"Ff=Fd+Fb;\n", +"mprintf('\n Front force = %f lb.',Ff);\n", +"//Force pulling the shafts\n", +"Ft=Ff+Fb\n", +"mprintf('\n Force pulling the shafts = %f lb.',Ft);\n", +"//Surface speed\n", +"D=2*r;\n", +"Vm=%pi*D*n/12;\n", +"mprintf('\n Surface speed = %f ft/min.',Vm);\n", +"//Ratio\n", +"D2=10;\n", +"Mw=D2/D;\n", +"mprintf('\n Ratio = %f .',Mw);\n", +"//Output speed\n", +"no=n/Mw;\n", +"mprintf('\n Output speed = %f rpm.',no);\n", +"//Note-There is an error in the answer given in textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.2: Calculation_of_Angle_of_Contact_Length_of_Belt_Ratio_and_Surface_Speed_etc.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-14.2 Page No.310\n');\n", +"//Length of belt\n", +"C=19;\n", +"D1=4;\n", +"D2=6;\n", +"L1=2*C+1.57*(D1+D2)+(D2-D1)^2/(4*C);\n", +"//Assuming a 54-inch belt is available\n", +"L=54;\n", +"mprintf('\n Length of belt = %f in.',L);\n", +"//Centerline distance\n", +"B=4*L-6.28*(D2+D1);\n", +"C=(B+sqrt(B^2-32*(D2-D1)^2))/16;\n", +"mprintf('\n Centerline distance = %f in.',C);\n", +"//Ratio\n", +"Mw=D2/D1;\n", +"mprintf('\n Ratio = %f.',Mw);\n", +"//Surface speed\n", +"n=1800;\n", +"Vm=%pi*D1*n/12;\n", +"mprintf('\n Surface speed = %f ft/min.',Vm);\n", +"//Angle of contact\n", +"theta=180-2*(180/%pi)*asin((D2-D1)/(2*C));\n", +"mprintf('\n Angle of contact = %f deg.',theta);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.3: V_Belts.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-14.3 Page No.315\n');\n", +"//Power rating of belt\n", +"P1=27+2.98;\n", +"SF=1.5;\n", +"P=P1/SF;\n", +"P=round(P);\n", +"mprintf('\n Power rating = %f hp.',P);\n", +"//Length of belt\n", +"C=20;\n", +"D1=8;\n", +"D2=16;\n", +"L1=2*C+1.57*(D1+D2)+(D2-D1)^2/(4*C);\n", +"//Use an 80-inch belt\n", +"L=80;\n", +"mprintf('\n Length of belt = %f in.',L);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.4: Chain_Drive.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-14.4 Page No.321\n');\n", +"P=5.31;\n", +"mprintf('\n Horsepower rating = %f hp.',P);\n", +"Nti=12;\n", +"N1=1800;\n", +"N2=900;\n", +"//Output sprocket\n", +"Nto=(N1/N2)*Nti;\n", +"mprintf('\n Number of tooth on output sprocket = %f.',Nto);\n", +"//Surface speed\n", +"Pc=0.5;\n", +"D1=Pc*Nti/%pi;\n", +"n=1800;\n", +"Vm=%pi*D1*n/12;\n", +"mprintf('\n Surface speed = %f ft/min.',Vm);\n", +"mprintf('\n Type of lubrication - Bath or disc lubrication');\n", +"//Length of chain\n", +"C=10;\n", +"D2=Pc*Nto/%pi;\n", +"L1=2*C+1.57*(D1+D2)+(D2-D1)^2/(4*C);\n", +"//Use 29 or 30 inch chain\n", +"L=30;\n", +"mprintf('\n Length of chain = %f in.', L);\n", +"hp=5.31;\n", +"T=63000*hp/n;\n", +"F=2*T/D1;\n", +"mprintf('\n Force in chain = %f lb.',F);\n", +"//Comparism with ultimate strength 3700 lb - not a valid comparison because of speed etc." + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/15-Keys_and_Couplings.ipynb b/Machine_Design_by_T_H_Wentzell/15-Keys_and_Couplings.ipynb new file mode 100644 index 0000000..e273136 --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/15-Keys_and_Couplings.ipynb @@ -0,0 +1,108 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 15: Keys and Couplings" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.1: Design_of_Keys.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-15.1 Page No.332\n');\n", +"//Torque\n", +"P=5;\n", +"n=1750;\n", +"T=63000*P/n;\n", +"mprintf('\n Torque = %f in-lb.',T);\n", +"//Length of key for shear\n", +"Su=61000;\n", +"Ss=0.5*Su;\n", +"b=0.125;\n", +"D=0.5;\n", +"Ls1=2*T/(Ss*b*D);\n", +"SF=2.5;\n", +"Ls=SF*Ls1;\n", +"mprintf('\n Length of key for shear = %f in.',Ls);\n", +"//Length of key for compression\n", +"Sc=51000;\n", +"t=0.125;\n", +"Lc1=4*T/(Sc*t*D);\n", +"Lc=SF*Lc1;\n", +"mprintf('\n Length of key for compression = %f in.',Lc);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.2: Splines.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-15.2 Page No.335\n');\n", +"//Torque capacity\n", +"Ss=30500;\n", +"D=1;\n", +"L=2;\n", +"T1=Ss*%pi*D^2*L/16;\n", +"SF=2;\n", +"T=T1/SF;\n", +"mprintf('\n Torque capacity 1 = %f in-lb.',T);\n", +"n=6;\n", +"d=0.81;\n", +"A=(D-d)*L*n/2;\n", +"S=1000;\n", +"rm=(1+0.810)/4;\n", +"T2=S*A*rm;\n", +"mprintf('\n Torque capacity 2 = %f in-lb.',T2);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/16-Clutches_and_Brakes.ipynb b/Machine_Design_by_T_H_Wentzell/16-Clutches_and_Brakes.ipynb new file mode 100644 index 0000000..8d73712 --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/16-Clutches_and_Brakes.ipynb @@ -0,0 +1,214 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 16: Clutches and Brakes" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.1: Calculation_of_Torque_and_Power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.1 Page No.358\n');\n", +"//Torque capacity\n", +"f=0.3;\n", +"N=120;\n", +"ro=12;\n", +"ri=9;\n", +"Tf=f*N*(ro+ri)/2;\n", +"mprintf('\n Torque capacity = %f in-lb.',Tf);\n", +"n=2000;\n", +"//Power\n", +"Pf=Tf*n/63000;\n", +"mprintf('\n Power = %f hp.',Pf);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.2: Determination_of_Breaking_Torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.2 Page No.359\n');\n", +"//Normal force\n", +"W=100;\n", +"L=20;\n", +"a=4;\n", +"N=(W*L)/a;\n", +"mprintf('\n Normal force = %f lb.',N);\n", +"//Torque friction\n", +"f=0.4;\n", +"D=12;\n", +"Tf=f*N*D/2;\n", +"mprintf('\n Torque friction = %f in-lb.',Tf);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.3: Torque_Transmitting_Capacity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.3 Page No.360\n');\n", +"//For alpha=20 deg.\n", +"alpha=20*(%pi/180);\n", +"f=0.35;\n", +"rm=12/2;\n", +"Fa=75;\n", +"Tf=(f*rm*Fa)/(sin(alpha)+f*cos(alpha));\n", +"mprintf('\n Torque capacity (alpha=20 deg.) = %f in-lb.',Tf);\n", +"//For alpha=10 deg.\n", +"alpha=10*(%pi/180);\n", +"Tf=(f*rm*Fa)/(sin(alpha)+f*cos(alpha));\n", +"mprintf('\n Torque capacity (alpha=10 deg.) = %f in-lb.',Tf);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.4: Calculation_of_Stopping_Force_Torque_per_Brake_Normal_Brake_Force_etc.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.4 Page No.361\n');\n", +"//Stopping rate\n", +"V=60*5280/3600;\n", +"Va=0.5*V;\n", +"D=400;\n", +"t=D/Va;\n", +"a=V/t;\n", +"mprintf('\n Stopping rate = %f ft/sec^2.',a);\n", +"//Stopping force\n", +"W=40000;\n", +"g=32.2;\n", +"F=W*a/g;\n", +"//Torque\n", +"r=36/2;\n", +"T=F*r;\n", +"mprintf('\n Torque = %f in-lb.',T);\n", +"//For each wheel\n", +"T=T/10;\n", +"//Braking normal force\n", +"rm=10;\n", +"f=0.4;\n", +"N=T/(f*rm);\n", +"mprintf('\n Braking normal force = %f lb.',N);\n", +"//Note-There is an error in the answer given in textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.5: Rotational_Inertia_and_Brake_Power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.5 Page No.365\n');\n", +"W=3500;\n", +"V=73;\n", +"g=32.2;\n", +"V=50*5280/3600;\n", +"V=round(V);\n", +"//Kinetic energy to be absorbed\n", +"KE=W*V^2/(2*g);\n", +"mprintf('\n Kinetic energy to be absorbed = %f ft-lb.',KE);\n", +"//Temperature rise\n", +"Uf=KE;\n", +"Wb=40;\n", +"c=93;\n", +"deltaT=Uf/(Wb*c);\n", +"mprintf('\n Temperature rise = %f deg.',deltaT);\n", +"//Stopping time\n", +"a=20;\n", +"t=V/a;\n", +"mprintf('\n Stopping time = %f sec.',t);\n", +"//Frictional power\n", +"t=round(t*10)/10;\n", +"fhp=Uf/(550*t);\n", +"mprintf('\n Frictional power = %f hp.',fhp)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/17-Shaft_Design.ipynb b/Machine_Design_by_T_H_Wentzell/17-Shaft_Design.ipynb new file mode 100644 index 0000000..05f685e --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/17-Shaft_Design.ipynb @@ -0,0 +1,200 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 17: Shaft Design" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.1: Design_Stresses_in_Shaft.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-17.1 Page No.379\n');\n", +"hp=5;\n", +"n=1750;\n", +"T=63000*hp/n;\n", +"//Torsional stress in the shaft\n", +"D=0.75;\n", +"Z1=%pi*D^3/16;\n", +"Ss=T/Z1;\n", +"mprintf('\n Torsional stress in the shaft = %f lb/in^2.',Ss);\n", +"//Load at the gear pitch circle\n", +"Nt=40;\n", +"Pd=10;\n", +"Dp=Nt/Pd;\n", +"Ft=2*T/Dp;\n", +"mprintf('\n Load at gear pitch circle = %f lb.',Ft);\n", +"//Resultant force on the shaft\n", +"theta=20*%pi/180;\n", +"Fr=Ft/cos(theta);\n", +"mprintf('\n Resultant force = %f lb.',Fr);\n", +"//Maximum moment\n", +"L=15;\n", +"Mm=Fr*L/4;\n", +"mprintf('\n Maximum moment = %f in-lb.',Mm);\n", +"//Stress\n", +"D2=0.75;\n", +"Z2=%pi*D2^3/32;\n", +"Z2=round(Z2*1000)*10^-3;\n", +"S=Mm/Z2;\n", +"mprintf('\n Stress = %f lb/in^2.',S);\n", +"//Note-There is an error in the answer given in textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.2: Combined_Stresses_in_Shaft.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-17.2 Page No.383\n');\n", +"//Combined stress using the maximum shear stress theorem\n", +"Ss=2170;\n", +"S=8780;\n", +"Sr=sqrt(Ss^2+(S/2)^2);\n", +"mprintf('\n Combined stress = %f lb/in^2.',Sr);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.3: Combined_Stress_Using_Maximum_Normal_Stress_Theory.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-17.3 Page No.383\n');\n", +"//Combined stress using the maximum normal stress theory\n", +"Ss=2170;\n", +"S=8780;\n", +"Sr=S/2+sqrt(Ss^2+(S/2)^2);\n", +"mprintf('\n Combined stress = %f lb/in^2.',Sr);\n", +"//Note-There is an error in the answer given in textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.4: Comparison_of_Stresses_to_Allowable_Values_and_Endurance_Limit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-17.4 Page No.385\n');\n", +"//Modifying factors for Sn\n", +"Su=88000;\n", +"Csize=0.85;\n", +"Csurface=0.88;\n", +"Ctype=1;\n", +"Sn=Csize*Csurface*Ctype*(0.5*Su);\n", +"Kt=2.3;\n", +"S=9300;\n", +"N=Sn/(Kt*S);\n", +"if N>2 then\n", +" mprintf('\n It would be an acceptable design.');\n", +"else\n", +" mprintf('\n N<2,So this is not a suitable design for long term use.');\n", +"end" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.5: Critical_Speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-17.5 Page No.388\n');\n", +"//Deflection\n", +"D=0.75;\n", +"E=30*10^6;\n", +"L=15;\n", +"F=96;\n", +"I=%pi*D^4/64;\n", +"delta=F*L^4/(48*E*I);\n", +"delta=floor(100*delta)*10^-2;\n", +"Nc=188/sqrt(delta);\n", +"mprintf('\n Critical speed = %f rpm.',Nc);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/18-Power_Screws_and_Ball_Screws.ipynb b/Machine_Design_by_T_H_Wentzell/18-Power_Screws_and_Ball_Screws.ipynb new file mode 100644 index 0000000..4b4324e --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/18-Power_Screws_and_Ball_Screws.ipynb @@ -0,0 +1,163 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 18: Power Screws and Ball Screws" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.1: Torque_and_Power_in_Power_Screw.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-18.1 Page No.399\n');\n", +"//Torque\n", +"Dp=(1.5+1.208)/2;\n", +"F=5800;\n", +"L=1/3;\n", +"f=0.15;\n", +"Tup=(F*Dp/4)*(L+%pi*f*Dp)/(%pi*Dp-f*L);\n", +"mprintf('\n Torque up = %f in-lb.',Tup);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.2: Efficiency_of_a_Power_Screw.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-18.2 Page No.400\n');\n", +"//Lead angle\n", +"L=1/3;\n", +"Dp=1.354;\n", +"LA=atan(L/(%pi*Dp));\n", +"mprintf('\n Lead angle = %f deg.',LA*180/%pi);\n", +"//Efficiency\n", +"f=0.15;\n", +"e=tan(LA)*(1-f*tan(LA))/(tan(LA)+f);\n", +"mprintf('\n Efficiency = %f',e*100);\n", +"//Power\n", +"n=175;\n", +"T=454;\n", +"P=T*n/63000;\n", +"Pt=P*2;\n", +"mprintf('\n Power = %f hp per lead screw.',P);\n", +"if f>tan(LA) then\n", +" mprintf('\n It is self-locking');\n", +"end" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.3: Acme_Threads.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-18.3 Page No.402\n');\n", +"L=1/4;\n", +"Dp=1.375;\n", +"LA=atan(L/(%pi*Dp));\n", +"mprintf('\n Lead angle = %f deg.',LA*180/%pi);\n", +"//Torque\n", +"phi=14.5*%pi/180;\n", +"f=0.15;\n", +"F=5800;\n", +"Tup=(F*Dp/4)*(cos(phi)*tan(LA)+f)/(cos(phi)-f*tan(LA));\n", +"mprintf('\n Torque = %f in-lb.',Tup);\n", +"//Power\n", +"n=175*4/3;\n", +"P=Tup*n/63000;\n", +"mprintf('\n Power = %f hp per lead screw.',P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.4: Torque_and_Ball_Screws.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-18.4 Page No.405\n');\n", +"//Torque\n", +"L=0.5;\n", +"F=5800/2;\n", +"T=0.177*F*L;\n", +"mprintf('\n Torque = %f in-lb.',T);\n", +"//Power\n", +"n=175*2/3;\n", +"P=T*n/63000;\n", +"mprintf('\n Power = %f hp.',P);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/19-Plain_Surface_Bearings.ipynb b/Machine_Design_by_T_H_Wentzell/19-Plain_Surface_Bearings.ipynb new file mode 100644 index 0000000..cbfc478 --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/19-Plain_Surface_Bearings.ipynb @@ -0,0 +1,97 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 19: Plain Surface Bearings" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 19.1: Shaft_Considerations.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-19.1 Page No.417\n');\n", +"//Length\n", +"F=20;\n", +"n=500;\n", +"PV=3000;\n", +"L1=%pi*F*n/(12*PV);\n", +"//Use 7/8-inch or longer bearing\n", +"L=7/8;\n", +"mprintf('\n Length of bearing = %f in.',L);\n", +"//Maximum pressure\n", +"A=(3/4)*(7/8);\n", +"P=F/A;\n", +"mprintf('\n Maximum pressure = %f lb/in^2.',P);\n", +"//Maximum velocity\n", +"D=3/4;\n", +"V=%pi*D*n/12;\n", +"mprintf('\n Maximum velocity = %f ft/min.',V);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 19.2: Wear.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-19.2 Page No.421\n');\n", +"//Life in hours of operation\n", +"t=0.01;\n", +"K=12*10^-10;\n", +"P=30.5;\n", +"V=98;\n", +"T=t/(K*P*V);\n", +"mprintf('\n Life = %f hours.',T);\n", +"//Note-There is an error in the answer given in textbook" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/2-Force_Work_and_Power.ipynb b/Machine_Design_by_T_H_Wentzell/2-Force_Work_and_Power.ipynb new file mode 100644 index 0000000..423bb0c --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/2-Force_Work_and_Power.ipynb @@ -0,0 +1,122 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Force Work and Power" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: Torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-2.1 Page 26 ') //Example 2.1\n", +"T=1080*12; //[in*lb] Torque in axle\n", +"d=30; //[in] Diameter of tire\n", +"F=T/(d/2); //[lb] Force exerted on the road surface\n", +"mprintf('\n\n The tire exerts %f lb force on the road surface',F);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: Work_and_Power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-2.2 Page 28 ') //Example 2.2\n", +"G=3.6; //Diffential ratio\n", +"N=3500/G; //[rpm] Axle rotational speed\n", +"d=30; //[in] Diameter of tire\n", +"dist=N/(60)*(%pi*d) //[in] Distance traveled in 1 sec\n", +"dist=dist/12; //[ft] Distance traveled in 1 sec\n", +"t=1; //[sec] Time period\n", +"F=864; //[lb] Force exerted by tire on road surface\n", +"W=F*dist; //[ft*lb] Workdone in 1 sec\n", +"P=F*dist/t; //[ft*lb/sec] Power\n", +"hp=P/550; //[hp] Power in horse power 1hp=550 ft*lb/sec\n", +"mprintf('\n\n Power to do work %f hp',hp);\n", +"//Comparing it to motor output:\n", +"Tm=300*12; //[in*lb] Engine torque\n", +"Nm=3500; //[rpm] Engine speed\n", +"Pm=Tm*Nm/63000; \n", +"mprintf('\n Motor output %f hp',Pm);\n", +"mprintf('\n The power output equaled the power at tire/road surface.');\n", +"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Force_Pressure_Relationship.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-2.3 Page 29 ') //Example 2.3\n", +"T=300*12; //[in*lb] Engine torque \n", +"d=8; //[in] Crankshaft effective diameter\n", +"F=T/(d/2); //[lb] Force exerted by piston\n", +"A=%pi*(2^2)/4; //[in^2] Area of cross section of piston\n", +"P=F/A; //[lb/in^2] Pressure in cylinder\n", +"mprintf('\n\n Pressure inside cylinder %f lb/in^2',P);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/20-Ball_and_Roller_Bearings.ipynb b/Machine_Design_by_T_H_Wentzell/20-Ball_and_Roller_Bearings.ipynb new file mode 100644 index 0000000..e391314 --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/20-Ball_and_Roller_Bearings.ipynb @@ -0,0 +1,180 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 20: Ball and Roller Bearings" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.1: Life_Expectancy_of_Ball_Bearing.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-20.1 Page No.431\n');\n", +"//L10 design life\n", +"Cd=5050;\n", +"Pd=2400;\n", +"k=3;\n", +"Ld1=(Cd/Pd)^k*10^6;\n", +"Ld=Ld1/(1750*60);\n", +"mprintf('\n L10 design life = %f hr.',Ld);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.2: Selection_of_Bearing_to_Meet_Given_Criteria.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-20.2 Page No.432\n');\n", +"//Dynamic load capacity\n", +"T=200;\n", +"n=1750;\n", +"L=T*n*60/10^6;\n", +"Pd=2400;\n", +"Ld=21;\n", +"Lc=1;\n", +"k=1/3;\n", +"Cd=Pd*(Ld/Lc)^k\n", +"mprintf('\n Dynamic load capacity required = %f lb.',Cd);\n", +"mprintf('\n Bearing 6211 meets this criterion.');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.3: Selection_of_Bearing_to_Meet_Given_Criteria.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-20.3 Page No.434\n');\n", +"R=1200;\n", +"Ft=500;\n", +"n=1500;\n", +"L10=5000;\n", +"//Assume thrust factor=1.6\n", +"Y=1.6;\n", +"Pd=0.56*R+Y*Ft;\n", +"Ld=n*L10*60/10^6;\n", +"Lc=1;\n", +"k=3;\n", +"Cd=Pd*(Ld/Lc)^(1/k);\n", +"//For bearing number 6215\n", +"Cd1=11400;\n", +"Cs1=9700;\n", +"//Verify the assumption for Y\n", +"Ft_Cs1=Ft/Cs1;\n", +"Y=(0.056-Ft_Cs1)*(1.99-1.71)/(0.056-0.028)+1.71;\n", +"Pd=0.56*R+Y*Ft;\n", +"Cd=Pd*(Ld/Lc)^(1/k);\n", +"if Cd>Cd1 then\n", +" mprintf('\n Since Cd of bearing < Cd required, So bearing number 6215 is not acceptable.'); \n", +"end\n", +"//For bearing number 6216\n", +"Cd2=12600;\n", +"Cs2=10500;\n", +"Ft_Cs2=Ft/Cs2;\n", +"Y=(0.056-Ft_Cs2)*(1.99-1.71)/(0.056-0.028)+1.71;\n", +"Pd=0.56*R+Y*Ft;\n", +"Cd=Pd*(Ld/Lc)^(1/k);\n", +"if Cd<Cd2 then\n", +" mprintf('\n Since Cd of bearing > Cd required, So bearing number 6215 meets the design criteria.');\n", +"end" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.4: Life_of_6200_Series_Bearing.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-20.4 Page No.436\n');\n", +"//Thrust factor\n", +"Ft=300;\n", +"Cs=2320;\n", +"Ft_Cs=Ft/Cs;\n", +"Y=(0.17-Ft_Cs)*(1.45-1.31)/(0.17-0.11)+1.31;\n", +"mprintf('\n Thrust factor = %f ',Y);\n", +"V=1.2;\n", +"X=0.56;\n", +"R=1000;\n", +"P=V*X*R+Y*Ft;\n", +"Cd=3350;\n", +"Pd=1095;\n", +"k=3;\n", +"Ld=(Cd/Pd)^k*10^6;\n", +"mprintf('\n Life = %f revolutions.',Ld);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/3-Stress_and_Deformation.ipynb b/Machine_Design_by_T_H_Wentzell/3-Stress_and_Deformation.ipynb new file mode 100644 index 0000000..26df9e6 --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/3-Stress_and_Deformation.ipynb @@ -0,0 +1,272 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Stress and Deformation" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: Stress_and_Deflection_under_Compressive_Axial_Load.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.1 Page No-41 \n');\n", +"F=20000; //[lb] Load applied to steel bar\n", +"L=6; //[in] Length of steel bar\n", +"d=1; //[in] Diameter of steel bar\n", +"A=%pi*(d^2)/4; //[in^2] Area of cross section of steel bar\n", +"E=30*10^6; //[lb/in^2] Modulus of elasticity for AISI 1020 hot-rolled steel\n", +"Sy=30000; //[lb/in^2] Yield limit\n", +"S=F/A; //[lb/in^2] Stress in bar\n", +"mprintf('\na. Stress in bar=%f lb/in^2.',S);\n", +"delta=F*L/(A*E); //[in] Change in length of bar\n", +"mprintf('\nb. bar shorten by %f in.',delta);\n", +"if Sy>S then\n", +" mprintf('\nc. The stress of %f psi is less than Sy of %f psi, so it will\n return to its original size because the yield limit was not exceeded.',S,Sy);\n", +"else \n", +" mprintf('The bar will not return to its original length')\n", +"end\n", +"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: Stress_and_Deflection_due_to_Bending.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.2 Page No.43\n');\n", +"b=2; //[in] Width of beam\n", +"h=2; //[in] Height of beam\n", +"I=(b*h^3)/12; //[in^4] Moment of inertia\n", +"F=3000; //[lb] Load applied to beam\n", +"L=36; //[in] Length of beam\n", +"c=1; //[in] Distance of outer most fiber from neutral axis\n", +"E=30*10^6; //[lb/in^2] Modulus of elasticity\n", +"Sy=30000; //[lb/in^2] Yield strength\n", +"Su=55000; //[lb/in^2] Ultimate strength\n", +"SF=2; //[] Safety factor based on ultimate stress\n", +"M=F*L/4; //[lb*in] Bending moment\n", +"S=(M/I)*c; //[lb/in^2] Bending stress\n", +"//Note-In the book I=1.33 in^4 is used instead of I=1.3333333 in^2\n", +"mprintf('\na. The maximum stress in beam is %f lb/in^2',S);\n", +"delta=-F*L^3/(48*E*I); //[in] Maximum deflection in this beam\n", +"mprintf('\nb. The maximum deflection in this beam is %f in.',delta);\n", +"if Sy>S then\n", +" mprintf('\nc. Yes, the stress of %f lb/in^2 is less than the yield of Sy=%f lb/in^2.',S,Sy);\n", +"else\n", +" mprintf('\nc. No, the stress of %f lb/in^2 is greater than the yield of Sy=%f lb/in^2',S,Sy);\n", +"end\n", +"Sall=Su/SF; //[lb/in^2] Allowable stress\n", +"if Sall>S then\n", +" mprintf('\nd. It is acceptable because allowable stress is greater than the acttual stress of %f lb/in^2.',S);\n", +"else\n", +" mprintf('\nd. Design is not acceptable because allowable stress is less than the actual stress of %f lb/in^2.',S)\n", +"end\n", +"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: Shear_Stress.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.3 Page No.45\n');\n", +"Su=80*10^3; //[lb/in^2] Ultimate strength\n", +"d=0.5; //[in] Diameter of pin\n", +"As=%pi*d^2/4; //[in^2] Area of cross section of pin\n", +"F=20*10^3; //[lb] Load acting\n", +"Ss=F/(2*As); //[lb/in^2] Shear stress\n", +"if 0.5*Su>=Ss & 0.6*Su>=Ss then\n", +" mprintf('Pin would not fail');\n", +"else\n", +" mprintf('\n Actual stress is too high and the pin would fail.');\n", +"end" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: Torsional_Shear_Stress.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.4 Page No.46\n');\n", +"hp=10; //[hp] Power transmitted\n", +"rpm=1750; //[rpm] Turning speed\n", +"d=0.5; //[in] Diameter of shaft\n", +"L=12; //[in] Length of shaft\n", +"G=11.5*10^6 //[lb/in^2] shear modulus of elasticity\n", +"Su=62000; //[lb/in^2] \n", +"T=63000*hp/rpm; //[in*lb] Torque transmitted\n", +"Z=%pi*d^3/16; //[in^3] Polar section modulus\n", +"Ss=T/Z; //[lb/in^2] Torsional shear stress\n", +"//Note- In the book Z=0.025 in^3 is used instead of Z=0.0245437 in^3\n", +"mprintf('\na. Stress in the shaft is %f lb/in^2.',Ss)\n", +"J=%pi*d^4/32; //[in^4] Polar moment of inertia\n", +"theta=T*L/(J*G); //[radians] \n", +"//Note- In the book J=0.0061 in^4 is used instead of J=0.0061359 in^4\n", +"mprintf('\nb. The angular deflection of shaft would be %f radians',theta);\n", +"SF=3; //[] Safety factor based on ultimate strength\n", +"Zd=T/(0.5*Su/SF); //[in^3] Polar section modulus required for SF=3\n", +"Dd=(16*Zd/%pi)^(1/3); //[in] Diameter of shaft required Z=%pi*d^3/16\n", +"mprintf('\nc. Diameter of shaft required is %f in.',Dd);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: Critical_Load_in_Pinned_End_Column.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.5 Page No.53\n');\n", +"L=30; //[in] Length of link\n", +"d=5/8; //[in] Diameter of link\n", +"I=%pi*d^4/64; //[in^4] Moment of inertia\n", +"A=%pi*d^2/4; //[in^2] Area of cross section\n", +"E=30*10^6; //[lb/in^2] Modulus of elasticity\n", +"r=sqrt(I/A); //[in] Radius of gyration\n", +"mprintf('\n The radius of gyration %f in.',r);\n", +"K=1; //[] End support condition factor\n", +"Le=K*L; //[in] Effective length\n", +"mprintf('\n Effective length is %f in',Le);\n", +"SR=Le/r; //[] Slenderness ratio\n", +"mprintf('\n Slenderness ratio is %f.',SR)\n", +"Sy=42000; //[lb/in^2] Yield strength\n", +"Cc=sqrt(2*%pi^2*E/Sy); //[] Column constant\n", +"mprintf('The column constant is %f.',Cc);\n", +"if SR>Cc then\n", +" mprintf('\n Slenderness ratio is greater than column constant, so use the euler formula')\n", +"end\n", +"I=%pi*d^4/64; //[in^4] Moment of inertia\n", +"mprintf('\n The moment of inertia is %f in^4',I);\n", +"Pc=%pi^2*E*I/Le^2; //[lb] Critical force\n", +"//Note- In the book I=0.0075 in^4 is used instead of I=0.0074901 in^4\n", +"mprintf('\n The critical force is %f lb.',Pc);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: Critical_Load_in_Fixed_End_Column.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.6 Page No.55\n');\n", +"L=60; //[in] Length of column\n", +"Sy=36000; //[lb/in^2] Yield strength\n", +"SF=2; //[]Safty factor\n", +"E=30*10^6; //[lb/in^2] Modulus of elasticity\n", +"A=2.26; //[in^2] Area of cross section (Appendix 5.4)\n", +"I=0.764; //[in^4] Moment of inertia (Appendix 5.4)\n", +"r=sqrt(I/A); //[in] Radius of gyration\n", +"K=0.65; //[] End support condition factor from Figure 3.8\n", +"Le=K*L; //[in] Effective length\n", +"mprintf('\n The effective length is %f in.',Le);\n", +"SR=Le/r; //[] Slenderness ratio\n", +"mprintf('\n The slenderness ratio is %f.',SR);\n", +"Cc=sqrt(2*%pi^2*E/Sy); //[] Column constant\n", +"mprintf('\n The column constant is %f.',Cc);\n", +"if Cc>SR then\n", +" mprintf('\n The column constant is greater than slenderness ratio, so use the Johnson formula.');\n", +"end\n", +"F=(A*Sy/SF)*(1-Sy*SR^2/(4*%pi^2*E));\n", +"mprintf('\n The acceptable load for a safty factor of 2 is %f lb.',F);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/4-Combined_Stress_and_Failure_Theories.ipynb b/Machine_Design_by_T_H_Wentzell/4-Combined_Stress_and_Failure_Theories.ipynb new file mode 100644 index 0000000..515f57e --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/4-Combined_Stress_and_Failure_Theories.ipynb @@ -0,0 +1,188 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Combined Stress and Failure Theories" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: Design_of_Short_Column_with_Eccentric_Load.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-4.1 Page 66 ')\n", +" \n", +"D=2; //[in] Dia. of short column\n", +"F=10000; //[lb] Load applied\n", +"L=15; //[in] Length of column\n", +"e=2; //[in] Offset of load\n", +"\n", +"A=(%pi*D^2)/4; //[in^2] Area of cross section of column\n", +"SA=F/A; //[lb/in^2] Axial Stress\n", +"\n", +"Z=(%pi*D^3)/32; //[in^4] Section modulus for bending\n", +"M=F*e; //[lb*in] Bending moment\n", +"SB=M/Z; //[lb/in^2] Bemding stress\n", +"\n", +"S=-SA-SB; //S=(+-)SA+(+-)SB Max. stress\n", +"\n", +"//The bending stress and axial stress are added on inner side of column \n", +"\n", +"mprintf('\n\n Maximum stress in column is %f lb/in^2.\n',S)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: Coplanar_Shear.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-4.2 Page 67 ')\n", +"\n", +"F1=800; //[lb] Vertical force\n", +"F2=600; //[lb] Horizontal force\n", +"D=0.5; //[in] Pin diameter\n", +"A=(%pi*D^2)/4; //[in^2] Area of cross section of pin\n", +"\n", +"F=sqrt(F1^2+F2^2); //[lb] Resultant force on pin\n", +"S=F/A; //[lb/in^2] Shear stress in pin\n", +"\n", +"//If forces were not perpendicular, they would be added vectorially.\n", +"mprintf('\n\n Shear stress in pin is %f lb/in^2.',S);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: Combined_Torsion_and_Shear.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN\n Timothy H. Wentzell, P.E.\n Example 4.3 Page no 68');\n", +"\n", +"P=50; //[hp] Power transmitted\n", +"N=300; //[rpm] Speed\n", +"D=10; //[in] Effective pitch diameter of sprocket\n", +"d=1; //[in] Diameter of shaft from figure 4.3\n", +"Z=(%pi*d^3)/16; //[in^3] Section modulus of shaft\n", +"A=(%pi*d^2)/4; //[in^2] Area of cross section\n", +"\n", +"T=(63000/N)*P; //[lb*in] Torque required to transmit power\n", +"F=T/(D/2); //[lb] Driving force in chain\n", +"\n", +"Ss=F/A; //[lb/in^2] Shear stress in shaft\n", +"\n", +"St=T/Z; //[lb/in^2] Torsional stress in shaft\n", +"\n", +"S=Ss+St; //[lb/in^2] Resultant stress\n", +"\n", +"//Note-There is mistake in addition of Ss and St.\n", +"\n", +"//This value would be compared to shear stress allowable for shaft material\n", +"\n", +"mprintf('\n\n The combined stress in 1 inch diameter shaft is %f lb/in^2.',S);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: Combined_Normal_and_Shear_Stress.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN\n Timothy H. Wentzell, P.E.\n Example 4.4 Page no 71')\n", +"P=20; //[hp] Power transmitted by chain drive\n", +"n=500; //[rpm] speed\n", +"d=8; //[in] Pitch diameter of sprocket\n", +"fos=2;\n", +"D=1.25; //[in] Diameter of shaft\n", +"L=12; //[in] Distance between two supporting bearings\n", +"Z1=%pi*D^3/16; //[in^3] Section modulus for torsion\n", +"Z2=%pi*D^3/32; //[in^3] Section modulus for bending\n", +"T=63000*P/n; //[in*lb] Torque on shaft\n", +"F=T/(d/2); //[lb] Force in chain\n", +"M=F*L/4; //[in*lb] Bending moment in shaft\n", +"Ss=T/Z1; //[lb/in^2] Torsional shear stress\n", +"Sb=M/Z2; //[lb/in^2] Bending normal stress\n", +"//Note- In the book Sb=9860 lb/in^2 is used instead of Sb=9856.7075 lb/in^2\n", +"S=(Sb/2)+sqrt(Ss^2+(Sb/2)^2); //[lb/in^2] Combined max. stress\n", +"Sy=30000; //[lb/in^2]From APPENDIX 4 Page no-470 for AISI 1020 and Hot-rolled steel\n", +"FOS=(Sy/2)/S; //[]Actual factor of safty\n", +"if S < Sy/2 then //Strength is greater than combined stress so design is safe\n", +" mprintf('\n\n Design is acceptable and Combined stress is %f lb/in^2',S);\n", +"else \n", +" mprintf('\n\n Design is not acceptable');\n", +"end" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb b/Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb new file mode 100644 index 0000000..a8093c5 --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb @@ -0,0 +1,258 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Repeated Loading" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: Design_of_a_Shaft_using_the_Soderberg_Method.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.1 Page No.93\n');\n", +"SF=2; //[] Safety factor\n", +"F=500; //[lb] Load\n", +"L=40; //[in] Length of shaft\n", +"Su=95000; //[lb/in^2] Ultimate strength (Appendix 4)\n", +"Sy=60000; //[lb/in^2] Yield strength (Appendix 4)\n", +"Mmax=F*L/4; //[lb*in] Maximum bending moment\n", +"Mmin=-F*L/4; //[lb/in^2] Minimum bending moment\n", +"Csurface=1; //[] As surface is polished\n", +"Csize=0.85; //[] Assuming 0.5<D<2\n", +"Ctype=1; //[] Bending stress\n", +"Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2] Endurance limit\n", +"if Mmax==abs(Mmin) then\n", +" Sm=0; //[lb/in^2] Mean stress\n", +"end\n", +"Sa=Sn/SF; //[lb/in^2] As (1/SF)=(Sm/Sy)+(Sa/Sn) from soderberg equation\n", +"Sa_Z=(Mmax-Mmin)/2; //[lb*in^2] Product of altenating stress and section modulus\n", +"Z=Sa_Z/Sa; //[in^4] Section modulus\n", +"D=(32*Z/%pi)^(1/3); //[in] Diameter of shaft\n", +"D1=1.375; //[in] Next higher available is 1.375 in. so use D1\n", +"mprintf('\n The required diameter of rotating shaft is %f in.', D1);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: Design_of_a_Cantilever_Beam_using_the_Soderberg_Method.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.2 Page No.95\n');\n", +"Su=90000; //[lb/in^2] Ultimate strength (Appendix 8)\n", +"Sy=37000; //[lb/in^2] Yield strength (Appendix 8)\n", +"Sni=34000; //[lb/in^2] Endurance limit (Appendix 8)\n", +"SF=1.6; //[] Safety factor\n", +"F=1000; //[lb] Load\n", +"L=12; //[in] Length of cantilever beam\n", +"Mmax=F*L; //[lb*in] Maximum bending moment\n", +"Mmin=0; //[lb*in] Minimum bending moment\n", +"Csize=0.85 //[] Assuming 0.5<D<2 in\n", +"Ctype=1; //[] Bending stress\n", +"Csurface=1; //[] As surface is polished\n", +"Malt=(Mmax-Mmin)/2; //[lb*in] Alternating bending moment\n", +"Mmean=(Mmax+Mmin)/2; //[lb*in] Mean bending moment\n", +"Sn=Csize*Csurface*Ctype*Sni; //[lb/in^2] Modified endurance limit\n", +"Z=((Mmean/Sy)+(Malt/Sn))*SF; //[in^3] Section modulus\n", +"D=(32*(Z)/%pi)^(1/3); //[in] Diameter of bar\n", +"mprintf('\n The required diameter of bar using the soderberg method is %f in.',D);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: Design_of_a_Cantilever_Beam_using_the_Modified_Goodman_Method.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.3 Page No.97\n');\n", +"Su=90000; //[lb/in^2] Ultimate strength (Appendix 8)\n", +"Sy=37000; //[lb/in^2] Yield strength (Appendix 8)\n", +"Sni=34000; //[lb/in^2] Endurance limit (Appendix 8)\n", +"SF=1.6; //[] Safety factor\n", +"F=1000; //[lb] Load\n", +"L=12; //[in] Length of cantilever beam\n", +"Mmax=F*L; //[lb*in] Maximum bending moment\n", +"Mmin=0; //[lb*in] Minimum bending moment\n", +"Csize=0.85 //[] Assuming 0.5<D<2 in\n", +"Ctype=1; //[] Bending stress\n", +"Csurface=1; //[] As surface is polished\n", +"Malt=(Mmax-Mmin)/2; //[lb*in] Alternating bending moment\n", +"Mmean=(Mmax+Mmin)/2; //[lb*in] Mean bending moment\n", +"Sn=Csize*Csurface*Ctype*Sni; //[lb/in^2] Modified endurance limit\n", +"Z=((Mmean/Su)+(Malt/Sn))*SF; //[in^3] Section modulus\n", +"D=(32*(Z)/%pi)^(1/3); //[in] Diameter of bar\n", +"mprintf('\n The required diameter of bar using the soderberg method is %f in.',D);\n", +"//Note that the modified Goodman results in a less conservative size as would be expected from figure 5.10" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: Design_of_Water_Pump_Connecting_Rod.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.4 Page No.98\n');\n", +"Su=95000; //[lb/in^2] Ultimate strength\n", +"Sy=60000; //[lb/in^2] Yield strength\n", +"SF=1.5; //[] Safety factor\n", +"Fmax=1000; //[lb] Maximum load\n", +"Fmin=-6000; //[lb] Minimum load\n", +"Fmean=(Fmax+Fmin)/2; //[lb] Mean load\n", +"Fmean=abs(Fmean); //[lb] Considering absolute value\n", +"Falt=(Fmax-Fmin)/2; //[lb] Alternating load\n", +"Csize=1 //[] Assuming b<0.5 in\n", +"Ctype=0.8 //[] Axial stress\n", +"Csurface=0.86 //[] Machined surface Figure 5.7b\n", +"Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2] Modified endurance limit\n", +"A=((Fmean/Sy)+(Falt/Sn))*SF; //[in^2] Area of cross section of rod\n", +"b=sqrt(A); //[in] Side of square cross section\n", +"mprintf('\n The required square size in the center section is %f in.',b);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: Factor_of_Safety_for_Design_with_Stress_Concentration_Factor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.5 Page No.100\n');\n", +"Su=80000; //[lb/in^2] Ultimate strength\n", +"Sy=71000; //[lb/in^2] Yield strength\n", +"D=0.6; //[in] Diameter of shaft\n", +"d=0.5; //[in] Diameter of shaft at notch\n", +"r=0.05; //[in] Radius of notch\n", +"Z=%pi*d^3/16; //[in^3] Polar section modulus\n", +"Tmax=200; //[lb*in] Maximum load\n", +"Tmin=0; //[lb*in] Minimum load\n", +"Smax=Tmax/Z; //[lb/in^2] Maximum stress\n", +"Smin=Tmin/Z; //[lb/in^2] Minimum stress\n", +"Smean=(Smax+Smin)/2; //[lb/in^2] Mean stress\n", +"Salt=(Smax-Smin)/2; //[lb/in^2] Alternating stress\n", +"Csize=0.85; //[] Assume 0.5<D<2 in\n", +"Csurface=0.88; //[] Machined surface Figure 5.7b\n", +"Ctype=0.6; //[] Torsional stress\n", +"Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2] Modified endurance limit\n", +"Kt=1.32; //[] (D/d)=1.2, (r/d)=0.1 from Appendix 6c\n", +"N=inv(Smean/(0.5*Sy)+Kt*Salt/Sn); //[] Safety factor\n", +"mprintf('\n The factor of safety for this design is %f',N);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.6: Factor_of_Safety_for_Design_when_Desired_Life_is_known.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.6 Page No.102\n');\n", +"//From Example Problem 5.5\n", +"Sy=71000; //[lb/in^2] Yield strength\n", +"Smax=8148.7331 ; //[lb/in^2] Maximum stress\n", +"Smin=0; //[lb/in^2] Minimum stress\n", +"Smean=(Smax+Smin)/2; //[lb/in^2] Mean stress\n", +"Salt=(Smax-Smin)/2; //[lb/in^2] Alternating stress\n", +"Sn=18000; //[lb/in^2] Modified endurance strength\n", +"Kt=1.32 //[] Stress concentration factor\n", +"Nd=100000; //[cycles] Desired life\n", +"Snn=Sn*(10^6/Nd)^0.09; //[lb/in^2]\n", +"N=inv(Smean/(0.5*Sy)+Kt*Salt/Snn); //[] Factor of safety\n", +"mprintf('\n The new factor of safety for this condition is %f.',N);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/6-Fasteners_and_Fastening_Methods.ipynb b/Machine_Design_by_T_H_Wentzell/6-Fasteners_and_Fastening_Methods.ipynb new file mode 100644 index 0000000..1f4d039 --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/6-Fasteners_and_Fastening_Methods.ipynb @@ -0,0 +1,154 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Fasteners and Fastening Methods" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: Torquing_Method.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-6.1 Page No.120\n');\n", +"As=0.334; //[in^2] Tensile stress area (Table 6.1)\n", +"Sp=85000; //[lb/in^2] Proof strength (Table 6.3)\n", +"D=3/4; //[in] Nominal diameter of thread\n", +"Fi=0.85*As*Sp; //[lb] Desired intial preload\n", +"C=0.2; //[] Torque coefficient\n", +"T=C*D*Fi; //[in*lb] Torque\n", +"mprintf('\n The required torque is %f lb*in.',T);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: Turn_of_Nut_Method.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-6.2 Page No.121\n');\n", +"L=5; //[in] Length of engagement\n", +"E=30*10^6; //[lb/in^2] Modulus of elasticity\n", +"As=0.334; //[in^2] Tensile stress area (Table 6.1)\n", +"Sp=85000; //[lb/in^2] Proof strength (Table 6.3)\n", +"Fi=0.85*As*Sp; //[lb] Desired intial preload\n", +"Delta=Fi*L/(As*E) //[in] Elongation\n", +"pitch=0.1; //[in] Pitch for 3/4 UNC\n", +"TA=Delta*360/pitch; //[Degree] Torque angle\n", +"mprintf('\n The angle of rotation needed is %f degree.',TA);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: Elastic_Analysis_of_Bolted_Connections.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-6.3 Page No.122\n');\n", +"Alpha=6.5*10^-6; //[in/(in*F)] Thermal expansion coefficient (Appendix 8)\n", +"L=5; //[in] Length of engagement\n", +"Delta=0.01204; //[Degree] Elongation\n", +"DT=Delta/(Alpha*L); //[F] The temperature we would need to heat this bolt above the sevice temperature\n", +"mprintf('\n The temperature we would need to heat this bolt above the sevice temperature is %f F.',DT);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: Elastic_Analysis_of_Bolted_Connections.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-6.4 Page No.124\n');\n", +"Dp=20; //[in] Pressure vessel head diameter\n", +"Ds=1.25; //[in] Stud diameter\n", +"Ls=6; //[in] Stud length\n", +"Af=50; //[in^2] Clamped area of flanges\n", +"E=30*10^6; //[lb/in^2] Modulus of elasticity\n", +"C=0.15; //[] Torque coefficient\n", +"Si=120000; //[lb/in^2] Proof strength (Table 6.3)\n", +"A=1.073; //[in^2] Tensile stress area (Table 6.1)\n", +"Fi=0.9*Si*A; //[lb] Desired intial load\n", +"T=C*Ds*Fi; //[lb*in] Torque\n", +"mprintf('\n1. The required torque is %f lb*in.',T);\n", +"Pp=500; //[lb/in^2] Pressure inside the pressure vessel\n", +"Ap=%pi*Dp^2/4; //[in^2] Pressure vessel head cross section area\n", +"Kb=A*E/Ls; //[lb/in] Stiffness per stud\n", +"Kf=Af*E/Ls; //[lb/in] Stiffness per flange\n", +"Fe=Pp*Ap; //[lb] Force on pressure vessel head\n", +"Ft=10*Fi+(10*Kb/(10*Kb+Kf))*Fe; //[lb] Total load on the bolt\n", +"mprintf('\n2. The total load on the bolt is %f lb.',Ft);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/7-Impact_and_Energy_Analysis.ipynb b/Machine_Design_by_T_H_Wentzell/7-Impact_and_Energy_Analysis.ipynb new file mode 100644 index 0000000..96ecf81 --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/7-Impact_and_Energy_Analysis.ipynb @@ -0,0 +1,176 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Impact and Energy Analysis" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: Impact_Energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-7.1 Page No.137\n');\n", +"D=2; //[in] Diameter of bar\n", +"W=500; //[lb] Weight\n", +"h=1; //[in] Height from which the weight falls\n", +"A=%pi*D^2/4; //[in^2] Area of cross section of bar\n", +"L=10; //[in] Length of bar\n", +"E=30*10^6; //[lb/in^2] Modulus of elasticity\n", +"S=(W/A)+(W/A)*(1+(2*h*E*A/(L*W)))^(0.5); //[lb/in^2] Stress in the bar\n", +"mprintf('\n Stress in the bar is %f lb/in^2.',S);\n", +"Delta=S*L/E; //[in] Deflection\n", +"mprintf('\n Deflecton in the bar is %f in.',Delta);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: Velocity_and_Impact.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-7.2 Page No.139\n');\n", +"W=2000; //[lb] Weight of automobile\n", +"L=36; //[in] Length of stop\n", +"D=2; //[in] Diameter of steel bar\n", +"V=5*5280*12/3600; //[in/s] Velocity of automobile\n", +"A=%pi*D^2/4; //[in^2] Area of cross section of bar\n", +"E=30*10^6; //[lb/in^2] Modulus of elasticity\n", +"k=A*E/L; //[lb/in] Stiffness of the bar\n", +"g=386; //[in/s^2] Acceleration due to gravity\n", +"Delta=sqrt(2/k*W*(V^2/(2*g)+0)); //[in] Deflection\n", +"mprintf('\n The deflection in the bar is %f in.',Delta);\n", +"S=Delta*E/L; //[in] Stress in the bar\n", +"//Note-In the book Delta=0.124 is used instead of Delta=0.123800\n", +"mprintf('\n The stress in the bar is %f lb/in^2.',S);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: Impact_on_Beam.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-7.3 Page No.141\n');\n", +"W=3000; //[lb] Weight of automobile\n", +"L=40*12; //[in] Length of the beam\n", +"I=64.2; //[in^4] Moment of inertia of the beam\n", +"Sy=48000; //[lb/in^2] Yield strength of the beam\n", +"c=8/2; //[in] Distance from the outermost fiber to neutral axis\n", +"E=30*10^6; //[lb/in^2] Modulus of elasticity\n", +"g=32.2; //[ft/s^2] Acceleration due to gravity\n", +"M=I*Sy/c; //[lb*in] Moment at which beam will yield\n", +"F=4*M/L; //[lb] Force at which beam will yield\n", +"Delta=F*L^3/(48*E*I); //[in] Deflection\n", +"KE=F*Delta/2; //[lb*in] Kinetic energy\n", +"V=sqrt(2*g*KE/W); //[in/s] Velocity\n", +"V=V/5280*3600; //[miles/hr] Velocity\n", +"mprintf('\n At %f miles/hr velocity the beam will yield.',V);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4: Designing_for_Impact.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-7.4 Page No.143\n');\n", +"D=3/4; //[in] Diameter of the bolt\n", +"At=0.334; //[in^2] Area of thread\n", +"As=%pi*D^2/4; //[in^2] Area of shank\n", +"//Note-In the book As=0.442 in^2 is used instead of As=0.4417865 in.\n", +"E=30*10^6; //[lb/in^2] Modulus of elasticity\n", +"Lt=2; //[in] Length of the thread\n", +"Ls=6; //[in] Length of the shank\n", +"h=0.03; //[in] Height from which the weight falls\n", +"W=500; //[lb] Falling load\n", +"Kt=At*E/Lt; //[lb/in] Stiffness of threaded portion\n", +"Ks=As*E/Ls; //[lb/in] Stiffness of shank\n", +"K=Kt*Ks/(Kt+Ks); //[lb/in] Overall stiffness\n", +"Delta=(W/K)+(W/K)*sqrt(1+2*h*K/W); //[in] Deflection\n", +"A=[Ls/E, Lt/E; 0.442, -0.334];\n", +"b=[Delta; 0];\n", +"S=A\b;\n", +"S=max(S); //[lb/in^2] Maximum stress in the bolt\n", +"//Note-In the book Delta=0.0048 in is used instead of Delta=0.0047619 in.\n", +"mprintf('\n The maximum stress in this bolt is %f lb/in^2.',S);\n", +"Ln=8; //[in] Length when shank has same area as threads\n", +"Kn=At*E/Ln; //[lb/in] Stiffness\n", +"Deltan=(W/Kn)+(W/Kn)*sqrt(1+2*h*Kn/W); //[in] Deflection\n", +"S=Deltan*E/Ln; //[ln/in^2] Stress\n", +"mprintf('\n If shank has the same area as threads then stress is %f lb/in^2 and deflection is %f in.',S,Deltan);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb b/Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb new file mode 100644 index 0000000..ddd65f2 --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb @@ -0,0 +1,205 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Spring Design" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: Design_of_Helical_Compression_Spring.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.1 Page No.160\n');\n", +"Dm=0.625; //[in] Mean diameter of spring\n", +"F=35; //[lb] Load\n", +"K=1.25; //[] Wahl factor for Dm/Dw=6.25 (figure 8.8)\n", +"Q=190000; //[lb/in^2] Expected ultimate strength \n", +"LF=0.263; //[] Loading factor\n", +"Dw=(K*8*F*Dm/(LF*%pi*Q))^(1/2.846); //[in] Wire diameter\n", +"mprintf('\n The wire diameter of spring is %f in.',Dw);\n", +"//Use U.S Steel 12-gage wire: Dw=0.105 in." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: Determination_of_number_of_coils.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.2 Page No.163\n');\n", +"Dw=0.105; //[in] Wire diameter\n", +"Dm=0.620; //[in] Mean diameter of spring\n", +"F=35; //[lb] Load\n", +"G=11.85*10^6; //[lb/in^2] Shear modulus of elasticity\n", +"Delta=0.5; //[in] Deflection\n", +"Na=Delta*G*Dw^4/(8*F*Dm^3); //[] Number of active coils\n", +"Nat=Na+2; //[] Total number of coils\n", +"Lf=2; //[in] Free length of spring\n", +"P=(Lf-2*Dw)/Nat; //[in] Pitch (Table 8.1)\n", +"mprintf('\n Pitch is %f in.',P);\n", +"k=G*Dw^4/(8*Dm^3*Na); //[lb/in] Spring rate\n", +"mprintf('\n Spring rate is %f lb/in.',k);\n", +"mprintf('\n The total number of coils necessary to meet design criteria are %f.',Nat);\n", +"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)\n", +"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: Stability_of_Spring.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.3 Page No.165\n');\n", +"Lf=2; //[in] Free length of spring\n", +"Dm=0.620; //[in] Mean diameter of spring\n", +"R=Lf/Dm; //[] Free lengtth to mean diameter ratio\n", +"mprintf('\n The ratio of the free length of spring to mean diameter of spring is %f.',R);\n", +"mprintf(' From Figure 8.9 for squared and ground ends, this is a stable spring.');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: Deflection_of_Spring.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.4 Page No.165\n');\n", +"F=35; //[lb] Load\n", +"k=73.3; //[lb/in] Spring rate\n", +"x=F/k; //[in] Deflection \n", +"mprintf('\n The deflection in the spring would be %f in.',x);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: Flat_Springs.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.5 Page No.166\n');\n", +"b=12; //[in] Width of plate\n", +"h=1; //[in] Thickness of plate\n", +"L=72; //[in] Length of plate\n", +"I=b*h^3/12; //[in^4] Moment of inertia\n", +"Delta=4; //[in] Deflection\n", +"E=10*10^6; //[lb/in^2] Modulus of elasticity\n", +"F=3*Delta*E*I/L^3; //[lb] Force\n", +"mprintf('\n The force at this point is %f lb.',F);\n", +"k=F/Delta; //[lb/in] Stiffness\n", +"mprintf('\n stiffness is %f lb/in.',k);\n", +"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)\n", +"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.6: Energy_from_Deflection.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.6 Page No.167\n');\n", +"F=322; //[lb] Force\n", +"Delta=4; //[in] Deflection\n", +"U=F*Delta/2; //[in*lb] Energy\n", +"mprintf('\n The energy from the 4-inch deflection was %f lb*in.',U);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |