summaryrefslogtreecommitdiff
path: root/Machine_Design_by_T_H_Wentzell
diff options
context:
space:
mode:
Diffstat (limited to 'Machine_Design_by_T_H_Wentzell')
-rw-r--r--Machine_Design_by_T_H_Wentzell/1-What_Is_Mechanical_Design.ipynb71
-rw-r--r--Machine_Design_by_T_H_Wentzell/10-Pneumatic_and_Hydraulic_Drives.ipynb118
-rw-r--r--Machine_Design_by_T_H_Wentzell/11-Gear_Design.ipynb255
-rw-r--r--Machine_Design_by_T_H_Wentzell/12-Spur_Gear_Design_and_Selection.ipynb344
-rw-r--r--Machine_Design_by_T_H_Wentzell/13-Helical_Bevel_and_Worm_Gears.ipynb317
-rw-r--r--Machine_Design_by_T_H_Wentzell/14-Belt_and_Chain_Drives.ipynb204
-rw-r--r--Machine_Design_by_T_H_Wentzell/15-Keys_and_Couplings.ipynb108
-rw-r--r--Machine_Design_by_T_H_Wentzell/16-Clutches_and_Brakes.ipynb214
-rw-r--r--Machine_Design_by_T_H_Wentzell/17-Shaft_Design.ipynb200
-rw-r--r--Machine_Design_by_T_H_Wentzell/18-Power_Screws_and_Ball_Screws.ipynb163
-rw-r--r--Machine_Design_by_T_H_Wentzell/19-Plain_Surface_Bearings.ipynb97
-rw-r--r--Machine_Design_by_T_H_Wentzell/2-Force_Work_and_Power.ipynb122
-rw-r--r--Machine_Design_by_T_H_Wentzell/20-Ball_and_Roller_Bearings.ipynb180
-rw-r--r--Machine_Design_by_T_H_Wentzell/3-Stress_and_Deformation.ipynb272
-rw-r--r--Machine_Design_by_T_H_Wentzell/4-Combined_Stress_and_Failure_Theories.ipynb188
-rw-r--r--Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb258
-rw-r--r--Machine_Design_by_T_H_Wentzell/6-Fasteners_and_Fastening_Methods.ipynb154
-rw-r--r--Machine_Design_by_T_H_Wentzell/7-Impact_and_Energy_Analysis.ipynb176
-rw-r--r--Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb205
19 files changed, 3646 insertions, 0 deletions
diff --git a/Machine_Design_by_T_H_Wentzell/1-What_Is_Mechanical_Design.ipynb b/Machine_Design_by_T_H_Wentzell/1-What_Is_Mechanical_Design.ipynb
new file mode 100644
index 0000000..5b819c1
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/1-What_Is_Mechanical_Design.ipynb
@@ -0,0 +1,71 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: What Is Mechanical Design"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: Sample_Engineering_Calculation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-1.2 Page 13 ') //Example 1.2\n",
+"Sy=61000 //[psi] Tensile strength of AISI 1020 cold drawn steel from Appendix 4 Page no 470\n",
+"SF=2; //[] safety factor\n",
+"F=300; //[lb] Weight of the ball\n",
+"L=36; //[in] Length of round bar\n",
+"Sy=61000; //[psi] Tensile strength from Appendix 4\n",
+"M=F*L; //[in*lb] Bending moment Appendix 2\n",
+"Sall=Sy/SF; //[psi] Allowable stress \n",
+"Z=M/Sall; //[in^3] Section modulus for bending Sall=M/Z\n",
+"D=(32*Z/%pi)^(1/3); //[in] Diameter of bar\n",
+"//Use 13/8 in bar\n",
+"D1=1.625;\n",
+"mprintf('\n\n Diameter of Bar is %f in',D1);\n",
+"//Checking Deflection\n",
+"I=%pi*D1^4/64; //[in^4] Moment of inertia Appendix 3\n",
+"E=30*10^6; //[lb/in^2] Modulus of elasticity\n",
+"Delta=F*L^3/(3*E*I); //[in] Deflection \n",
+"//Note- In the book I=0.342 in^4 is used instead of I=0.3422814 in^4\n",
+"mprintf('\n The deflection of bar is %f in',Delta);\n",
+"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/10-Pneumatic_and_Hydraulic_Drives.ipynb b/Machine_Design_by_T_H_Wentzell/10-Pneumatic_and_Hydraulic_Drives.ipynb
new file mode 100644
index 0000000..47ba7d2
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/10-Pneumatic_and_Hydraulic_Drives.ipynb
@@ -0,0 +1,118 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Pneumatic and Hydraulic Drives"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1: Calculation_of_Hydraulic_Cylinder_Diameter_and_Standard_Rod_Size.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-10.1 Page No.195\n');\n",
+"P=100; //[lb/in^2] Hydraulic pressure\n",
+"F=450; //[lb] Extension force\n",
+"Fr=400; //[lb] Retraction force\n",
+"A=F/P; //[in^2] Cross section area\n",
+"D=sqrt(4*A/%pi); //[in] Bore of cylinder\n",
+"mprintf('\n The bore of cylinder is %f in.',D);\n",
+"//Use 2.5in bore cylinder\n",
+"Dm=2.5; //[in] Bore of cylinder\n",
+"Dr=1; //[in] Diameter of rod\n",
+"A2=%pi*Dm^2/4-%pi*Dr^2/4; //[in^2]\n",
+"F2=P*A2; //[lb] Force\n",
+"if F2>=Fr then\n",
+" mprintf('\n The diameter of rod is %f in.',Dr);\n",
+"else \n",
+" mprintf('\n This would not meet requirement');\n",
+"end\n",
+"//This would meet requirement\n",
+"Ab=%pi*Dm^2/4; //[in^2] Cross section area\n",
+"//Note-In the book V=180.7 is used instead of V=180.64158 \n",
+"d=20; //[in] stroke\n",
+"V=Ab*d+A2*d; //[in^3] Volume per cycle\n",
+"t=2; //[s] Cycle time\n",
+"FR=V/t; //[in^3/s] Flowrate\n",
+"FR=FR*7.48*60/1728; //[gal/min] Flowrate\n",
+"mprintf('\n Flow rate required is %f gal/min.',FR);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2: Pneumatic_Pop_Rivet_Gun.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-10.2 Page No.198\n');\n",
+"Pa=100; //[lb/in^2] Air pressure\n",
+"Da=4; //[in] Diameter\n",
+"Aa=%pi*Da^2/4; //[in^2] Cross section area\n",
+"F1=Pa*Aa; //[lb] \n",
+"Do=1; //[in] \n",
+"Ao=%pi*Do^2/4; //[in] \n",
+"Po=F1/Ao; //[lb/in^2]\n",
+"mprintf('\n The oil pressure is %f lb/in^2.',Po);\n",
+"D2o=3; //[in]\n",
+"A2o=%pi*D2o^2/4; //[in^2]\n",
+"F2=Po*A2o;\n",
+"mprintf('\n Force F on piston rod is %f lb.',F2);\n",
+"D=1; //[in]\n",
+"d=4; //[in] \n",
+"A=%pi*D^2/4; //[in^2]\n",
+"V=A*d; //[in^3]\n",
+"mprintf('\n The volume in 1-inch cylinder for the 4-inch travel is %f in^3.',V);\n",
+"A3=%pi*3^2/4; //[in^2]\n",
+"l3=V/A3; //[in]\n",
+"mprintf('\n Travel for 3-inch cylinder is %f in.',l3);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/11-Gear_Design.ipynb b/Machine_Design_by_T_H_Wentzell/11-Gear_Design.ipynb
new file mode 100644
index 0000000..984f0e3
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/11-Gear_Design.ipynb
@@ -0,0 +1,255 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: Gear Design"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1: Double_Reduction_Spur_Gear_Set.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.1 Page No.217\n');\n",
+"N2=60;\n",
+"N1=20;\n",
+"N3=20;\n",
+"N4=60;\n",
+"Vr=(N2/N1)*(N4/N3);\n",
+"//Output speed\n",
+"n1=3600;\n",
+"n4=n1/Vr;\n",
+"mprintf('\n The output speed is %f rpm.',n4);\n",
+"//Output torque\n",
+"T1=200;\n",
+"T4=T1*Vr;\n",
+"mprintf('\n The output torque is %f lb*in.',T4);\n",
+"//Input horsepower\n",
+"hpi=T1*n1/63000;\n",
+"mprintf('\n The input horsepower is %f hp.',hpi);\n",
+"//Output horsepower\n",
+"hpo=T4*n4/63000;\n",
+"mprintf('\n The output horsepower is %f hp.',hpo);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2: Double_Reduction_Spur_Gear_Set_with_Idler.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.2 Page No.219\n');\n",
+"Na=20;\n",
+"Nb=65;\n",
+"Nc=20;\n",
+"Nd=22;\n",
+"Ne=60;\n",
+"//train value\n",
+"Vr=(Nb/Na)*(Nd/Nc)*(Ne/Nd);\n",
+"mprintf('\n Train value = %f ',Vr);\n",
+"//Output speed\n",
+"na=3000;\n",
+"ne=na/Vr;\n",
+"mprintf('\n \Output speed = %f rpm.',ne);\n",
+"//Output torque\n",
+"Ta=10;\n",
+"Te=Ta*Vr;\n",
+"mprintf('\n Output torque = %f lb*in.',Te);\n",
+"//Direction\n",
+"mprintf('\n Direction\n If Gear A is clockwise,\n Gear B is counterclockwise.\n Gear C is counterclockwise.\n Gear D is clockwise. \n Gear E is counterclockwise.');\n",
+"//Output power\n",
+"P=Te*ne;\n",
+"P=P*%pi/60;\n",
+" mprintf('\n Output power = %f W.',P);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3: Calculation_of_Pitch_Diameter_Circular_Pitch_and_Shaft_Centre_to_Centre_Distance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.3 Page No.231\n');\n",
+"Np=16;\n",
+"Ng=32;\n",
+"Pd=8;\n",
+"//Pitch diameter\n",
+"Dp=Np/Pd;\n",
+"mprintf('\n Pinion pitch diameter is %f in.',Dp);\n",
+"Dg=Ng/Pd;\n",
+"mprintf('\n Gear pitch diameter is %f in.',Dg);\n",
+"//Circular pitch\n",
+"Pc=%pi*Dp/Np;\n",
+"mprintf('\n Circular pitch is %f in.',Pc);\n",
+"//Centerline distance\n",
+"CC=(Dp+Dg)/2;\n",
+"mprintf('\n Centerline distance is %f in.',CC);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.4: Bevel_Gear.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.4 Page No.236\n');\n",
+"//Torque in input shaft\n",
+"hp=1.5;\n",
+"n=3450;\n",
+"T=63000*hp/n;\n",
+"mprintf('\n Torque in input shaft is %f lb*in.',T);\n",
+"//Note-In the book T=27.4 in-lb is used instead of T=27.391304\n",
+"//Output torque\n",
+"Ng=24;\n",
+"Np=10;\n",
+"Tout=(Ng/Np)*T;\n",
+"mprintf('\n Output torque is %f lb*in.',Tout);\n",
+"//Output speed\n",
+"nout=(Np/Ng)*n;\n",
+"mprintf('\n Output speed is %f rpm.',nout);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.5: Calculation_of_Gear_Train_Value_Input_and_Output_Torque_and_Speed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.5 Page No.241\n');\n",
+"//Gear train value\n",
+"Na=12;\n",
+"Nb=36;\n",
+"Nc=16;\n",
+"Nd=64;\n",
+"Vr=(Nb/Na)*(Nd/Nc);\n",
+"mprintf('\n Gear train value is %f ',Vr);\n",
+"//Motor torque\n",
+"hp=1.5;\n",
+"n=1750;\n",
+"T=63000*hp/n;\n",
+"mprintf('\n Motor torque is %f in-lb.',T);\n",
+"//Output torque\n",
+"Tout=T*Vr;\n",
+"mprintf('\n Output torque is %f in-lb.',Tout);\n",
+"//Output speed\n",
+"nout=n/Vr;\n",
+"mprintf('\n Output speed is %f rpm.',nout);\n",
+"//Directions\n",
+"mprintf('\n Directions\n Gear A is clockwise.\n Gear B is counterclockwise.\n Gear C is counterclockwise.\n Gear D is clockwise.');\n",
+"//Output power\n",
+"hp=T*n/63000;\n",
+"mprintf('\n Output power is %f hp.',hp);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.6: Precision_Spur_Gears.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-11.6 Page No.243\n');\n",
+"//Velocity ratio\n",
+"N2=2400;\n",
+"N1=20;\n",
+"Vr=N2/N1;\n",
+"mprintf('\n Velocity ratio = %f ',Vr);\n",
+"mprintf('\n Possible Solution: \n Three sets of gears \n -20 tooth and 80 tooth\n -20 tooth and 100 tooth\n -20 tooth and 120 tooth.');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/12-Spur_Gear_Design_and_Selection.ipynb b/Machine_Design_by_T_H_Wentzell/12-Spur_Gear_Design_and_Selection.ipynb
new file mode 100644
index 0000000..60519a7
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/12-Spur_Gear_Design_and_Selection.ipynb
@@ -0,0 +1,344 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Spur Gear Design and Selection"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.1: Forces_on_Spur_Gear_Teeth.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.1 Page No.254\n');\n",
+"P=5;\n",
+"n=1725;\n",
+"T=63000*P/n;\n",
+"//Pitch circle diameter\n",
+"Np=20;\n",
+"Pd=8;\n",
+"Dp=Np/Pd;\n",
+"mprintf('\n Pitch circle diameter = %f in.',Dp);\n",
+"//Transmitted force\n",
+"Ft=2*T/Dp;\n",
+"mprintf('\n Transmitted force = %f lb.',Ft);\n",
+"//Separating force\n",
+"theta=20*%pi/180;\n",
+"Fn=Ft*tan(theta);\n",
+"mprintf('\n Separating force = %f lb.',Fn);\n",
+"//Maximum force\n",
+"Fr=Ft/cos(theta);\n",
+"mprintf('\n Maximum force = %f lb.',Fr);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2: Surface_Speed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.2 Page No.256\n');\n",
+"//Surface speed\n",
+"Dp=2.5;\n",
+"n=1725;\n",
+"Vm=%pi*Dp*n/12;\n",
+"mprintf('\n Surface speed = %f ft/min.',Vm);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3: Strength_of_Gear_Teeth.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.3 Page No.258\n');\n",
+"//Pinion\n",
+"Su=95*10^3;\n",
+"Sn=0.5*Su;\n",
+"Y=0.320;\n",
+"b=1;\n",
+"Pd=8;\n",
+"Fsp=Sn*b*Y/Pd;\n",
+"mprintf('\n Force allowable for pinion = %f lb.',Fsp);\n",
+"//Gear\n",
+"Sn=0.5*88*10^3;\n",
+"Y=0.421;\n",
+"Fsg=Sn*b*Y/Pd;\n",
+"mprintf('\n Force allowable for gear = %f lb.',Fsg);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.4: Dynamic_Load.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.4 Page No.262\n');\n",
+"//Dynamic load\n",
+"Vm=1129;\n",
+"Ft=146;\n",
+"Fd=(600+Vm)*Ft/600;\n",
+"mprintf('\n Dynamic load = %f lb.',Fd);\n",
+"Fs=1900;\n",
+"Nsf=2;\n",
+"//Comparing to the allowable stress\n",
+"if (Fs/Nsf)>Fd then\n",
+" mprintf('\n This is an acceptable design.');\n",
+"end"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.5: Calculation_of_Factor_of_Safety_Used_in_Catalog.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.5 Page No.263\n');\n",
+"Su=55*10^3;\n",
+"Sn=0.5*Su;\n",
+"Np=24;\n",
+"Pd=12;\n",
+"Dp=Np/Pd;\n",
+"mprintf('\n Pitch circle diameter = %f in.',Dp);\n",
+"n=1800;\n",
+"Vm=%pi*Dp*n/12;\n",
+"mprintf('\n Surface speed = %f ft/min.',Vm);\n",
+"b=3/4;\n",
+"Y=0.302;\n",
+"Fs=Sn*b*Y/Pd;\n",
+"mprintf('\n Allowable stress = %f lb.',Fs);\n",
+"Fd=Fs;\n",
+"Ft=600*Fd/(600+Vm);\n",
+"mprintf('\n Force transmitted = %f lb.',Ft);\n",
+"T=Ft*Dp/2;\n",
+"P=T*n/63000;\n",
+"mprintf('\n Power transmitted = %f hp.',P);\n",
+"//Compared to catalog\n",
+"hp_catalog=4.14;\n",
+"Nsf=P/hp_catalog;\n",
+"mprintf('\n Safety factor = %f .',Nsf);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.6: Spur_Gear_Desig.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.6 Page No.266\n');\n",
+"//Miscellaneous properties\n",
+"Np=48;\n",
+"Pd=12;\n",
+"Dp=Np/Pd;\n",
+"Vr=3;\n",
+"Ng=Np*Vr;\n",
+"//Surface speed\n",
+"n=900;\n",
+"Vm=%pi*Dp*n/12;\n",
+"mprintf('\n Surface speed = %f ft/min.',Vm);\n",
+"//Force on teeth\n",
+"hp=2;\n",
+"Ft=33000*hp/Vm;\n",
+"mprintf('\n Force on teeth = %f lb.',Ft);\n",
+"//Dynamic force\n",
+"Fd=(600+Vm)*Ft/600;\n",
+"mprintf('\n Dynamic force = %f lb.',Fd);\n",
+"//Width\n",
+"Su=30*10^3;\n",
+"Sn=0.4*Su;\n",
+"Y=0.344;\n",
+"Nsf=2;\n",
+"b=Fd*Nsf*Pd/(Sn*Y);\n",
+"b=round(b);\n",
+"mprintf('\n Width = %f in.',b);\n",
+"if (8/Pd)<b&b<(12.5/Pd) then\n",
+" mprintf('\n This is an acceptable design.');\n",
+"end"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.7: Buckingham_Method_of_Gear_Design.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.7 Page No.270\n');\n",
+"Su=95*10^3;\n",
+"Sn=0.5*Su;\n",
+"Np=24;\n",
+"Pd=16;\n",
+"Dp=Np/Pd;\n",
+"//Torque\n",
+"n=3450;\n",
+"P=3;\n",
+"T=P*63000/n;\n",
+"mprintf('\n Torque = %f in-lb.',T);\n",
+"//Force transmitted\n",
+"Ft=2*T/Dp;\n",
+"mprintf('\n Force transmitted = %f lb.',Ft);\n",
+"//Surface speed\n",
+"Vm=%pi*Dp*n/12;\n",
+"mprintf('\n Surface speed = %f ft/min.',Vm);\n",
+"//Force allowable\n",
+"Y=0.337;\n",
+"b=1;\n",
+"Fs=Sn*b*Y/Pd;\n",
+"mprintf('\n Force allowable = %f lb.',Fs);\n",
+"//Dynamic load using Buckingham's equation\n",
+"C=830;\n",
+"Fd=Ft+0.05*Vm*(b*C+Ft)/(0.05*Vm+(b*C+Ft)^0.5);\n",
+"Nsf=1.4;\n",
+"if (Fs/Nsf)>Fd then\n",
+" mprintf('\n This is a suitable design');\n",
+"end"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.8: Wear_of_Gears.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-12.8 Page No.272\n');\n",
+"Ng=42;\n",
+"Np=24;\n",
+"Q=2*Ng/(Ng+Np);\n",
+"Kg=270;\n",
+"Dp=1.5;\n",
+"b=1;\n",
+"Fw=Dp*b*Q*Kg;\n",
+"Fd=699;\n",
+"Nsf=1.2;\n",
+"if (Fw/Nsf)<Fd then\n",
+" mprintf('\n (Fw/Nsf)<Fd So this would not be suitable design');\n",
+"end\n",
+"//If the surfaces each had a BHN = 450\n",
+"Kg=470;\n",
+"Fw=Dp*b*Q*Kg;\n",
+"if(Fw/Nsf)>Fd then\n",
+" mprintf('\n\n If the surfaces each had a BHN = 450');\n",
+" mprintf('\n (Fw/Nsf)>Fd So this would be suitable design.');\n",
+"end"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/13-Helical_Bevel_and_Worm_Gears.ipynb b/Machine_Design_by_T_H_Wentzell/13-Helical_Bevel_and_Worm_Gears.ipynb
new file mode 100644
index 0000000..f04fdac
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/13-Helical_Bevel_and_Worm_Gears.ipynb
@@ -0,0 +1,317 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 13: Helical Bevel and Worm Gears"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1: Helical_Gears.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.1 Page No.280\n');\n",
+"//Pitch-line velocity\n",
+"Nt=24;\n",
+"Pd=12;\n",
+"Dp=Nt/Pd;\n",
+"n=1750;\n",
+"Vm=%pi*Dp*n/12;\n",
+"mprintf('\n Pitch-line velocity = %f ft/min.',Vm);\n",
+"//Transmitted force\n",
+"hp=5;\n",
+"Ft=33000*hp/Vm;\n",
+"mprintf('\n Transmitted force = %f lb.',Ft);\n",
+"//Axial force\n",
+"psi=15*%pi/180;\n",
+"Fa=Ft*tan(psi);\n",
+"mprintf('\n Axial force = %f lb.',Fa);\n",
+"//Separating force\n",
+"theta=20*%pi/180;\n",
+"psit=atan(tan(theta)/cos(psi));\n",
+"Fn=Ft*tan(psit);\n",
+"mprintf('\n Separating force = %f lb.',Fn);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.2: Helical_Gear_Stresses.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.2 Page No.282\n');\n",
+"//Normal plane pitch\n",
+"Pd=16;\n",
+"psi=45*%pi/180;\n",
+"Pdn=Pd/cos(psi);\n",
+"mprintf('\n Normal plane pitch = %f in.',Pdn);\n",
+"N=24;\n",
+"S=30000;\n",
+"b=0.5;\n",
+"Ne=N/cos(psi)^3;\n",
+"Y=0.427;\n",
+"Fs=S*b*Y/Pdn;\n",
+"mprintf('\n Allowable force = %f lb.',Fs);\n",
+"Dp=24/16;\n",
+"n=600;\n",
+"Vm=%pi*Dp*n/12;\n",
+"mprintf('\n Surface speed = %f ft/min.',Vm);\n",
+"Ft=Fs/((600+Vm)/600);\n",
+"mprintf('\n Force transmitted = %f lb.',Ft);\n",
+"P=Ft*Vm/33000;\n",
+"mprintf('\n Power rating = %f hp.',P);\n",
+"//Note-There is an error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.3: Bevel_Gear_Forces.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.3 Page No.286\n');\n",
+"Np=24;\n",
+"Ng=36;\n",
+"Pd=8;\n",
+"Yp=33.7*%pi/180;\n",
+"Yg=56.3*%pi/180;\n",
+"theta=14.5*%pi/180;\n",
+"//Pitch diameter\n",
+"Dp=Np/Pd;\n",
+"mprintf('\n Pitch diameter = %f in.',Dp);\n",
+"//Transmitted force\n",
+"n=2200;\n",
+"P=8;\n",
+"T=63000*P/n;\n",
+"Ft=2*T/Dp;\n",
+"mprintf('\n Transmitted force = %f lb.',Ft);\n",
+"//Separating force - Pinion\n",
+"Fnp=Ft*tan(theta)*cos(Yp);\n",
+"mprintf('\n Separating force-Pinion = %f lb.',Fnp);\n",
+"//Separating force-Gear\n",
+"Fng=Ft*tan(theta)*cos(Yg);\n",
+"mprintf('\n Separating force = %f lb.',Fng);\n",
+"//Axial force-Pinion\n",
+"Fap=Ft*tan(theta)*sin(Yp);\n",
+"mprintf('\n Axial force-Pinion= %f lb.',Fap);\n",
+"//Axial force-Gear\n",
+"Fag=Ft*tan(theta)*sin(Yg);\n",
+"mprintf('\n Axial force-Gear = %f lb.',Fag);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.4: Worm_Gear_Forces.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.4 Page No.288\n');\n",
+"//Pitch diameter\n",
+"Ng=60;\n",
+"Pd=6;\n",
+"Dp=Ng/Pd;\n",
+"mprintf('\n Pitch diameter = %f in.',Dp);\n",
+"//Circular pitch\n",
+"Pc=%pi*Dp/Ng;\n",
+"mprintf('\n Circular pitch = %f in.',Pc);\n",
+"L=Pc;\n",
+"//Lead angle\n",
+"D=2;\n",
+"LA=atan(L/(%pi*D));\n",
+"LA=LA*180/%pi;\n",
+"mprintf('\n Lead angle = %f deg.',LA);\n",
+"//Centerline distance\n",
+"CC=(D+Dp)/2;\n",
+"mprintf('\n Centerline distance = %f in.',CC);\n",
+"//Velocity ratio\n",
+"Ntgear=60;\n",
+"Nstarts_worm=1;\n",
+"Vr=Ntgear/Nstarts_worm;\n",
+"mprintf('\n Velocity ratio = %f',Vr);\n",
+"//Output speed\n",
+"nin=1750;\n",
+"nout=nin/Vr;\n",
+"mprintf('\n Output speed = %f rpm.',nout);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.5: Calculation_of_Normal_Circular_Pitch_Dynamic_Load_Force_Allowable.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.5 Page No.292\n');\n",
+"//Normal circular pitch\n",
+"Pc=0.524;\n",
+"LA=4.77*%pi/180;\n",
+"Pcn=Pc*cos(LA);\n",
+"mprintf('\n Normal circular pitch = %f in.',Pcn);\n",
+"//Force transmitted\n",
+"hp=5;\n",
+"n=29.2;\n",
+"T=63000*hp/n;\n",
+"Dp=10;\n",
+"Ft=2*T/Dp;\n",
+"mprintf('\n Force transmitted = %f lb.',Ft);\n",
+"Vm=%pi*Dp*n/12;\n",
+"//Dynamic load\n",
+"Fd=(1200+Vm)*Ft/1200;\n",
+"mprintf('\n Dynamic load = %f lb.',Fd);\n",
+"//Force allowable\n",
+"Su=95*10^3;\n",
+"Y=0.392;\n",
+"b=1;\n",
+"Sn=0.5*Su;\n",
+"Fs=Sn*Y*b*Pcn/%pi;\n",
+"mprintf('\n Force allowable = %f lb.',Fs);\n",
+"//Safty factor\n",
+"Nsf=Fs/Fd;\n",
+"mprintf('\n Safty factor = %f .',Nsf);\n",
+"//Note-There is an error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.6: Efficiency_of_Worm_Gear_Drive.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.6 Page No.294\n');\n",
+"//Efficiency\n",
+"LA=4.77*%pi/180;\n",
+"f=0.03;\n",
+"e=tan(LA)*(1-f*tan(LA))/(f+tan(LA));\n",
+"mprintf('\n Efficiency = %f .',e);\n",
+"//Torque input\n",
+"hp=5;\n",
+"n=1750;\n",
+"T=63000*hp/n;\n",
+"mprintf('\n Torque input = %f in-lb.',T);\n",
+"Vr=60;\n",
+"Tout=0.73*Vr*T;\n",
+"mprintf('\n Output torque = %f in-lb.',Tout);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.7: Heat_Generated.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-13.7 Page No.296\n');\n",
+"hpin=5\n",
+"e=0.73;\n",
+"Q=(1-e)*hpin*2544;\n",
+"mprintf('\n Heat generated by system = %f Btu/hr.',Q);\n",
+"//Note-There is an error in the answer given in textbook"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/14-Belt_and_Chain_Drives.ipynb b/Machine_Design_by_T_H_Wentzell/14-Belt_and_Chain_Drives.ipynb
new file mode 100644
index 0000000..b08b6e4
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/14-Belt_and_Chain_Drives.ipynb
@@ -0,0 +1,204 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 14: Belt and Chain Drives"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.1: Calculation_of_Front_Force_Net_Driving_Force_Force_on_Shaft_etc.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-14.1 Page No.306\n');\n",
+"//Torque on small pulley\n",
+"hp=2;\n",
+"n=2450;\n",
+"T=63000*hp/n;\n",
+"mprintf('\n Torque on small pulley = %f in-lb.',T);\n",
+"r=6/2;\n",
+"Fd=T/r;\n",
+"//Front force\n",
+"Fb=10;\n",
+"Ff=Fd+Fb;\n",
+"mprintf('\n Front force = %f lb.',Ff);\n",
+"//Force pulling the shafts\n",
+"Ft=Ff+Fb\n",
+"mprintf('\n Force pulling the shafts = %f lb.',Ft);\n",
+"//Surface speed\n",
+"D=2*r;\n",
+"Vm=%pi*D*n/12;\n",
+"mprintf('\n Surface speed = %f ft/min.',Vm);\n",
+"//Ratio\n",
+"D2=10;\n",
+"Mw=D2/D;\n",
+"mprintf('\n Ratio = %f .',Mw);\n",
+"//Output speed\n",
+"no=n/Mw;\n",
+"mprintf('\n Output speed = %f rpm.',no);\n",
+"//Note-There is an error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.2: Calculation_of_Angle_of_Contact_Length_of_Belt_Ratio_and_Surface_Speed_etc.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-14.2 Page No.310\n');\n",
+"//Length of belt\n",
+"C=19;\n",
+"D1=4;\n",
+"D2=6;\n",
+"L1=2*C+1.57*(D1+D2)+(D2-D1)^2/(4*C);\n",
+"//Assuming a 54-inch belt is available\n",
+"L=54;\n",
+"mprintf('\n Length of belt = %f in.',L);\n",
+"//Centerline distance\n",
+"B=4*L-6.28*(D2+D1);\n",
+"C=(B+sqrt(B^2-32*(D2-D1)^2))/16;\n",
+"mprintf('\n Centerline distance = %f in.',C);\n",
+"//Ratio\n",
+"Mw=D2/D1;\n",
+"mprintf('\n Ratio = %f.',Mw);\n",
+"//Surface speed\n",
+"n=1800;\n",
+"Vm=%pi*D1*n/12;\n",
+"mprintf('\n Surface speed = %f ft/min.',Vm);\n",
+"//Angle of contact\n",
+"theta=180-2*(180/%pi)*asin((D2-D1)/(2*C));\n",
+"mprintf('\n Angle of contact = %f deg.',theta);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.3: V_Belts.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-14.3 Page No.315\n');\n",
+"//Power rating of belt\n",
+"P1=27+2.98;\n",
+"SF=1.5;\n",
+"P=P1/SF;\n",
+"P=round(P);\n",
+"mprintf('\n Power rating = %f hp.',P);\n",
+"//Length of belt\n",
+"C=20;\n",
+"D1=8;\n",
+"D2=16;\n",
+"L1=2*C+1.57*(D1+D2)+(D2-D1)^2/(4*C);\n",
+"//Use an 80-inch belt\n",
+"L=80;\n",
+"mprintf('\n Length of belt = %f in.',L);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.4: Chain_Drive.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-14.4 Page No.321\n');\n",
+"P=5.31;\n",
+"mprintf('\n Horsepower rating = %f hp.',P);\n",
+"Nti=12;\n",
+"N1=1800;\n",
+"N2=900;\n",
+"//Output sprocket\n",
+"Nto=(N1/N2)*Nti;\n",
+"mprintf('\n Number of tooth on output sprocket = %f.',Nto);\n",
+"//Surface speed\n",
+"Pc=0.5;\n",
+"D1=Pc*Nti/%pi;\n",
+"n=1800;\n",
+"Vm=%pi*D1*n/12;\n",
+"mprintf('\n Surface speed = %f ft/min.',Vm);\n",
+"mprintf('\n Type of lubrication - Bath or disc lubrication');\n",
+"//Length of chain\n",
+"C=10;\n",
+"D2=Pc*Nto/%pi;\n",
+"L1=2*C+1.57*(D1+D2)+(D2-D1)^2/(4*C);\n",
+"//Use 29 or 30 inch chain\n",
+"L=30;\n",
+"mprintf('\n Length of chain = %f in.', L);\n",
+"hp=5.31;\n",
+"T=63000*hp/n;\n",
+"F=2*T/D1;\n",
+"mprintf('\n Force in chain = %f lb.',F);\n",
+"//Comparism with ultimate strength 3700 lb - not a valid comparison because of speed etc."
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/15-Keys_and_Couplings.ipynb b/Machine_Design_by_T_H_Wentzell/15-Keys_and_Couplings.ipynb
new file mode 100644
index 0000000..e273136
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/15-Keys_and_Couplings.ipynb
@@ -0,0 +1,108 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 15: Keys and Couplings"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.1: Design_of_Keys.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-15.1 Page No.332\n');\n",
+"//Torque\n",
+"P=5;\n",
+"n=1750;\n",
+"T=63000*P/n;\n",
+"mprintf('\n Torque = %f in-lb.',T);\n",
+"//Length of key for shear\n",
+"Su=61000;\n",
+"Ss=0.5*Su;\n",
+"b=0.125;\n",
+"D=0.5;\n",
+"Ls1=2*T/(Ss*b*D);\n",
+"SF=2.5;\n",
+"Ls=SF*Ls1;\n",
+"mprintf('\n Length of key for shear = %f in.',Ls);\n",
+"//Length of key for compression\n",
+"Sc=51000;\n",
+"t=0.125;\n",
+"Lc1=4*T/(Sc*t*D);\n",
+"Lc=SF*Lc1;\n",
+"mprintf('\n Length of key for compression = %f in.',Lc);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.2: Splines.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-15.2 Page No.335\n');\n",
+"//Torque capacity\n",
+"Ss=30500;\n",
+"D=1;\n",
+"L=2;\n",
+"T1=Ss*%pi*D^2*L/16;\n",
+"SF=2;\n",
+"T=T1/SF;\n",
+"mprintf('\n Torque capacity 1 = %f in-lb.',T);\n",
+"n=6;\n",
+"d=0.81;\n",
+"A=(D-d)*L*n/2;\n",
+"S=1000;\n",
+"rm=(1+0.810)/4;\n",
+"T2=S*A*rm;\n",
+"mprintf('\n Torque capacity 2 = %f in-lb.',T2);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/16-Clutches_and_Brakes.ipynb b/Machine_Design_by_T_H_Wentzell/16-Clutches_and_Brakes.ipynb
new file mode 100644
index 0000000..8d73712
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/16-Clutches_and_Brakes.ipynb
@@ -0,0 +1,214 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 16: Clutches and Brakes"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.1: Calculation_of_Torque_and_Power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.1 Page No.358\n');\n",
+"//Torque capacity\n",
+"f=0.3;\n",
+"N=120;\n",
+"ro=12;\n",
+"ri=9;\n",
+"Tf=f*N*(ro+ri)/2;\n",
+"mprintf('\n Torque capacity = %f in-lb.',Tf);\n",
+"n=2000;\n",
+"//Power\n",
+"Pf=Tf*n/63000;\n",
+"mprintf('\n Power = %f hp.',Pf);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.2: Determination_of_Breaking_Torque.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.2 Page No.359\n');\n",
+"//Normal force\n",
+"W=100;\n",
+"L=20;\n",
+"a=4;\n",
+"N=(W*L)/a;\n",
+"mprintf('\n Normal force = %f lb.',N);\n",
+"//Torque friction\n",
+"f=0.4;\n",
+"D=12;\n",
+"Tf=f*N*D/2;\n",
+"mprintf('\n Torque friction = %f in-lb.',Tf);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.3: Torque_Transmitting_Capacity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.3 Page No.360\n');\n",
+"//For alpha=20 deg.\n",
+"alpha=20*(%pi/180);\n",
+"f=0.35;\n",
+"rm=12/2;\n",
+"Fa=75;\n",
+"Tf=(f*rm*Fa)/(sin(alpha)+f*cos(alpha));\n",
+"mprintf('\n Torque capacity (alpha=20 deg.) = %f in-lb.',Tf);\n",
+"//For alpha=10 deg.\n",
+"alpha=10*(%pi/180);\n",
+"Tf=(f*rm*Fa)/(sin(alpha)+f*cos(alpha));\n",
+"mprintf('\n Torque capacity (alpha=10 deg.) = %f in-lb.',Tf);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.4: Calculation_of_Stopping_Force_Torque_per_Brake_Normal_Brake_Force_etc.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.4 Page No.361\n');\n",
+"//Stopping rate\n",
+"V=60*5280/3600;\n",
+"Va=0.5*V;\n",
+"D=400;\n",
+"t=D/Va;\n",
+"a=V/t;\n",
+"mprintf('\n Stopping rate = %f ft/sec^2.',a);\n",
+"//Stopping force\n",
+"W=40000;\n",
+"g=32.2;\n",
+"F=W*a/g;\n",
+"//Torque\n",
+"r=36/2;\n",
+"T=F*r;\n",
+"mprintf('\n Torque = %f in-lb.',T);\n",
+"//For each wheel\n",
+"T=T/10;\n",
+"//Braking normal force\n",
+"rm=10;\n",
+"f=0.4;\n",
+"N=T/(f*rm);\n",
+"mprintf('\n Braking normal force = %f lb.',N);\n",
+"//Note-There is an error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.5: Rotational_Inertia_and_Brake_Power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.5 Page No.365\n');\n",
+"W=3500;\n",
+"V=73;\n",
+"g=32.2;\n",
+"V=50*5280/3600;\n",
+"V=round(V);\n",
+"//Kinetic energy to be absorbed\n",
+"KE=W*V^2/(2*g);\n",
+"mprintf('\n Kinetic energy to be absorbed = %f ft-lb.',KE);\n",
+"//Temperature rise\n",
+"Uf=KE;\n",
+"Wb=40;\n",
+"c=93;\n",
+"deltaT=Uf/(Wb*c);\n",
+"mprintf('\n Temperature rise = %f deg.',deltaT);\n",
+"//Stopping time\n",
+"a=20;\n",
+"t=V/a;\n",
+"mprintf('\n Stopping time = %f sec.',t);\n",
+"//Frictional power\n",
+"t=round(t*10)/10;\n",
+"fhp=Uf/(550*t);\n",
+"mprintf('\n Frictional power = %f hp.',fhp)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/17-Shaft_Design.ipynb b/Machine_Design_by_T_H_Wentzell/17-Shaft_Design.ipynb
new file mode 100644
index 0000000..05f685e
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/17-Shaft_Design.ipynb
@@ -0,0 +1,200 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 17: Shaft Design"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.1: Design_Stresses_in_Shaft.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-17.1 Page No.379\n');\n",
+"hp=5;\n",
+"n=1750;\n",
+"T=63000*hp/n;\n",
+"//Torsional stress in the shaft\n",
+"D=0.75;\n",
+"Z1=%pi*D^3/16;\n",
+"Ss=T/Z1;\n",
+"mprintf('\n Torsional stress in the shaft = %f lb/in^2.',Ss);\n",
+"//Load at the gear pitch circle\n",
+"Nt=40;\n",
+"Pd=10;\n",
+"Dp=Nt/Pd;\n",
+"Ft=2*T/Dp;\n",
+"mprintf('\n Load at gear pitch circle = %f lb.',Ft);\n",
+"//Resultant force on the shaft\n",
+"theta=20*%pi/180;\n",
+"Fr=Ft/cos(theta);\n",
+"mprintf('\n Resultant force = %f lb.',Fr);\n",
+"//Maximum moment\n",
+"L=15;\n",
+"Mm=Fr*L/4;\n",
+"mprintf('\n Maximum moment = %f in-lb.',Mm);\n",
+"//Stress\n",
+"D2=0.75;\n",
+"Z2=%pi*D2^3/32;\n",
+"Z2=round(Z2*1000)*10^-3;\n",
+"S=Mm/Z2;\n",
+"mprintf('\n Stress = %f lb/in^2.',S);\n",
+"//Note-There is an error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.2: Combined_Stresses_in_Shaft.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-17.2 Page No.383\n');\n",
+"//Combined stress using the maximum shear stress theorem\n",
+"Ss=2170;\n",
+"S=8780;\n",
+"Sr=sqrt(Ss^2+(S/2)^2);\n",
+"mprintf('\n Combined stress = %f lb/in^2.',Sr);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.3: Combined_Stress_Using_Maximum_Normal_Stress_Theory.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-17.3 Page No.383\n');\n",
+"//Combined stress using the maximum normal stress theory\n",
+"Ss=2170;\n",
+"S=8780;\n",
+"Sr=S/2+sqrt(Ss^2+(S/2)^2);\n",
+"mprintf('\n Combined stress = %f lb/in^2.',Sr);\n",
+"//Note-There is an error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.4: Comparison_of_Stresses_to_Allowable_Values_and_Endurance_Limit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-17.4 Page No.385\n');\n",
+"//Modifying factors for Sn\n",
+"Su=88000;\n",
+"Csize=0.85;\n",
+"Csurface=0.88;\n",
+"Ctype=1;\n",
+"Sn=Csize*Csurface*Ctype*(0.5*Su);\n",
+"Kt=2.3;\n",
+"S=9300;\n",
+"N=Sn/(Kt*S);\n",
+"if N>2 then\n",
+" mprintf('\n It would be an acceptable design.');\n",
+"else\n",
+" mprintf('\n N<2,So this is not a suitable design for long term use.');\n",
+"end"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.5: Critical_Speed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-17.5 Page No.388\n');\n",
+"//Deflection\n",
+"D=0.75;\n",
+"E=30*10^6;\n",
+"L=15;\n",
+"F=96;\n",
+"I=%pi*D^4/64;\n",
+"delta=F*L^4/(48*E*I);\n",
+"delta=floor(100*delta)*10^-2;\n",
+"Nc=188/sqrt(delta);\n",
+"mprintf('\n Critical speed = %f rpm.',Nc);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/18-Power_Screws_and_Ball_Screws.ipynb b/Machine_Design_by_T_H_Wentzell/18-Power_Screws_and_Ball_Screws.ipynb
new file mode 100644
index 0000000..4b4324e
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/18-Power_Screws_and_Ball_Screws.ipynb
@@ -0,0 +1,163 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 18: Power Screws and Ball Screws"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.1: Torque_and_Power_in_Power_Screw.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-18.1 Page No.399\n');\n",
+"//Torque\n",
+"Dp=(1.5+1.208)/2;\n",
+"F=5800;\n",
+"L=1/3;\n",
+"f=0.15;\n",
+"Tup=(F*Dp/4)*(L+%pi*f*Dp)/(%pi*Dp-f*L);\n",
+"mprintf('\n Torque up = %f in-lb.',Tup);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.2: Efficiency_of_a_Power_Screw.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-18.2 Page No.400\n');\n",
+"//Lead angle\n",
+"L=1/3;\n",
+"Dp=1.354;\n",
+"LA=atan(L/(%pi*Dp));\n",
+"mprintf('\n Lead angle = %f deg.',LA*180/%pi);\n",
+"//Efficiency\n",
+"f=0.15;\n",
+"e=tan(LA)*(1-f*tan(LA))/(tan(LA)+f);\n",
+"mprintf('\n Efficiency = %f',e*100);\n",
+"//Power\n",
+"n=175;\n",
+"T=454;\n",
+"P=T*n/63000;\n",
+"Pt=P*2;\n",
+"mprintf('\n Power = %f hp per lead screw.',P);\n",
+"if f>tan(LA) then\n",
+" mprintf('\n It is self-locking');\n",
+"end"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.3: Acme_Threads.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-18.3 Page No.402\n');\n",
+"L=1/4;\n",
+"Dp=1.375;\n",
+"LA=atan(L/(%pi*Dp));\n",
+"mprintf('\n Lead angle = %f deg.',LA*180/%pi);\n",
+"//Torque\n",
+"phi=14.5*%pi/180;\n",
+"f=0.15;\n",
+"F=5800;\n",
+"Tup=(F*Dp/4)*(cos(phi)*tan(LA)+f)/(cos(phi)-f*tan(LA));\n",
+"mprintf('\n Torque = %f in-lb.',Tup);\n",
+"//Power\n",
+"n=175*4/3;\n",
+"P=Tup*n/63000;\n",
+"mprintf('\n Power = %f hp per lead screw.',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.4: Torque_and_Ball_Screws.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-18.4 Page No.405\n');\n",
+"//Torque\n",
+"L=0.5;\n",
+"F=5800/2;\n",
+"T=0.177*F*L;\n",
+"mprintf('\n Torque = %f in-lb.',T);\n",
+"//Power\n",
+"n=175*2/3;\n",
+"P=T*n/63000;\n",
+"mprintf('\n Power = %f hp.',P);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/19-Plain_Surface_Bearings.ipynb b/Machine_Design_by_T_H_Wentzell/19-Plain_Surface_Bearings.ipynb
new file mode 100644
index 0000000..cbfc478
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/19-Plain_Surface_Bearings.ipynb
@@ -0,0 +1,97 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 19: Plain Surface Bearings"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.1: Shaft_Considerations.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-19.1 Page No.417\n');\n",
+"//Length\n",
+"F=20;\n",
+"n=500;\n",
+"PV=3000;\n",
+"L1=%pi*F*n/(12*PV);\n",
+"//Use 7/8-inch or longer bearing\n",
+"L=7/8;\n",
+"mprintf('\n Length of bearing = %f in.',L);\n",
+"//Maximum pressure\n",
+"A=(3/4)*(7/8);\n",
+"P=F/A;\n",
+"mprintf('\n Maximum pressure = %f lb/in^2.',P);\n",
+"//Maximum velocity\n",
+"D=3/4;\n",
+"V=%pi*D*n/12;\n",
+"mprintf('\n Maximum velocity = %f ft/min.',V);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.2: Wear.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-19.2 Page No.421\n');\n",
+"//Life in hours of operation\n",
+"t=0.01;\n",
+"K=12*10^-10;\n",
+"P=30.5;\n",
+"V=98;\n",
+"T=t/(K*P*V);\n",
+"mprintf('\n Life = %f hours.',T);\n",
+"//Note-There is an error in the answer given in textbook"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/2-Force_Work_and_Power.ipynb b/Machine_Design_by_T_H_Wentzell/2-Force_Work_and_Power.ipynb
new file mode 100644
index 0000000..423bb0c
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/2-Force_Work_and_Power.ipynb
@@ -0,0 +1,122 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Force Work and Power"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Torque.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-2.1 Page 26 ') //Example 2.1\n",
+"T=1080*12; //[in*lb] Torque in axle\n",
+"d=30; //[in] Diameter of tire\n",
+"F=T/(d/2); //[lb] Force exerted on the road surface\n",
+"mprintf('\n\n The tire exerts %f lb force on the road surface',F);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Work_and_Power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-2.2 Page 28 ') //Example 2.2\n",
+"G=3.6; //Diffential ratio\n",
+"N=3500/G; //[rpm] Axle rotational speed\n",
+"d=30; //[in] Diameter of tire\n",
+"dist=N/(60)*(%pi*d) //[in] Distance traveled in 1 sec\n",
+"dist=dist/12; //[ft] Distance traveled in 1 sec\n",
+"t=1; //[sec] Time period\n",
+"F=864; //[lb] Force exerted by tire on road surface\n",
+"W=F*dist; //[ft*lb] Workdone in 1 sec\n",
+"P=F*dist/t; //[ft*lb/sec] Power\n",
+"hp=P/550; //[hp] Power in horse power 1hp=550 ft*lb/sec\n",
+"mprintf('\n\n Power to do work %f hp',hp);\n",
+"//Comparing it to motor output:\n",
+"Tm=300*12; //[in*lb] Engine torque\n",
+"Nm=3500; //[rpm] Engine speed\n",
+"Pm=Tm*Nm/63000; \n",
+"mprintf('\n Motor output %f hp',Pm);\n",
+"mprintf('\n The power output equaled the power at tire/road surface.');\n",
+"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Force_Pressure_Relationship.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-2.3 Page 29 ') //Example 2.3\n",
+"T=300*12; //[in*lb] Engine torque \n",
+"d=8; //[in] Crankshaft effective diameter\n",
+"F=T/(d/2); //[lb] Force exerted by piston\n",
+"A=%pi*(2^2)/4; //[in^2] Area of cross section of piston\n",
+"P=F/A; //[lb/in^2] Pressure in cylinder\n",
+"mprintf('\n\n Pressure inside cylinder %f lb/in^2',P);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/20-Ball_and_Roller_Bearings.ipynb b/Machine_Design_by_T_H_Wentzell/20-Ball_and_Roller_Bearings.ipynb
new file mode 100644
index 0000000..e391314
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/20-Ball_and_Roller_Bearings.ipynb
@@ -0,0 +1,180 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 20: Ball and Roller Bearings"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.1: Life_Expectancy_of_Ball_Bearing.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-20.1 Page No.431\n');\n",
+"//L10 design life\n",
+"Cd=5050;\n",
+"Pd=2400;\n",
+"k=3;\n",
+"Ld1=(Cd/Pd)^k*10^6;\n",
+"Ld=Ld1/(1750*60);\n",
+"mprintf('\n L10 design life = %f hr.',Ld);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.2: Selection_of_Bearing_to_Meet_Given_Criteria.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-20.2 Page No.432\n');\n",
+"//Dynamic load capacity\n",
+"T=200;\n",
+"n=1750;\n",
+"L=T*n*60/10^6;\n",
+"Pd=2400;\n",
+"Ld=21;\n",
+"Lc=1;\n",
+"k=1/3;\n",
+"Cd=Pd*(Ld/Lc)^k\n",
+"mprintf('\n Dynamic load capacity required = %f lb.',Cd);\n",
+"mprintf('\n Bearing 6211 meets this criterion.');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.3: Selection_of_Bearing_to_Meet_Given_Criteria.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-20.3 Page No.434\n');\n",
+"R=1200;\n",
+"Ft=500;\n",
+"n=1500;\n",
+"L10=5000;\n",
+"//Assume thrust factor=1.6\n",
+"Y=1.6;\n",
+"Pd=0.56*R+Y*Ft;\n",
+"Ld=n*L10*60/10^6;\n",
+"Lc=1;\n",
+"k=3;\n",
+"Cd=Pd*(Ld/Lc)^(1/k);\n",
+"//For bearing number 6215\n",
+"Cd1=11400;\n",
+"Cs1=9700;\n",
+"//Verify the assumption for Y\n",
+"Ft_Cs1=Ft/Cs1;\n",
+"Y=(0.056-Ft_Cs1)*(1.99-1.71)/(0.056-0.028)+1.71;\n",
+"Pd=0.56*R+Y*Ft;\n",
+"Cd=Pd*(Ld/Lc)^(1/k);\n",
+"if Cd>Cd1 then\n",
+" mprintf('\n Since Cd of bearing < Cd required, So bearing number 6215 is not acceptable.'); \n",
+"end\n",
+"//For bearing number 6216\n",
+"Cd2=12600;\n",
+"Cs2=10500;\n",
+"Ft_Cs2=Ft/Cs2;\n",
+"Y=(0.056-Ft_Cs2)*(1.99-1.71)/(0.056-0.028)+1.71;\n",
+"Pd=0.56*R+Y*Ft;\n",
+"Cd=Pd*(Ld/Lc)^(1/k);\n",
+"if Cd<Cd2 then\n",
+" mprintf('\n Since Cd of bearing > Cd required, So bearing number 6215 meets the design criteria.');\n",
+"end"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.4: Life_of_6200_Series_Bearing.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-20.4 Page No.436\n');\n",
+"//Thrust factor\n",
+"Ft=300;\n",
+"Cs=2320;\n",
+"Ft_Cs=Ft/Cs;\n",
+"Y=(0.17-Ft_Cs)*(1.45-1.31)/(0.17-0.11)+1.31;\n",
+"mprintf('\n Thrust factor = %f ',Y);\n",
+"V=1.2;\n",
+"X=0.56;\n",
+"R=1000;\n",
+"P=V*X*R+Y*Ft;\n",
+"Cd=3350;\n",
+"Pd=1095;\n",
+"k=3;\n",
+"Ld=(Cd/Pd)^k*10^6;\n",
+"mprintf('\n Life = %f revolutions.',Ld);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/3-Stress_and_Deformation.ipynb b/Machine_Design_by_T_H_Wentzell/3-Stress_and_Deformation.ipynb
new file mode 100644
index 0000000..26df9e6
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/3-Stress_and_Deformation.ipynb
@@ -0,0 +1,272 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Stress and Deformation"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: Stress_and_Deflection_under_Compressive_Axial_Load.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.1 Page No-41 \n');\n",
+"F=20000; //[lb] Load applied to steel bar\n",
+"L=6; //[in] Length of steel bar\n",
+"d=1; //[in] Diameter of steel bar\n",
+"A=%pi*(d^2)/4; //[in^2] Area of cross section of steel bar\n",
+"E=30*10^6; //[lb/in^2] Modulus of elasticity for AISI 1020 hot-rolled steel\n",
+"Sy=30000; //[lb/in^2] Yield limit\n",
+"S=F/A; //[lb/in^2] Stress in bar\n",
+"mprintf('\na. Stress in bar=%f lb/in^2.',S);\n",
+"delta=F*L/(A*E); //[in] Change in length of bar\n",
+"mprintf('\nb. bar shorten by %f in.',delta);\n",
+"if Sy>S then\n",
+" mprintf('\nc. The stress of %f psi is less than Sy of %f psi, so it will\n return to its original size because the yield limit was not exceeded.',S,Sy);\n",
+"else \n",
+" mprintf('The bar will not return to its original length')\n",
+"end\n",
+"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: Stress_and_Deflection_due_to_Bending.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.2 Page No.43\n');\n",
+"b=2; //[in] Width of beam\n",
+"h=2; //[in] Height of beam\n",
+"I=(b*h^3)/12; //[in^4] Moment of inertia\n",
+"F=3000; //[lb] Load applied to beam\n",
+"L=36; //[in] Length of beam\n",
+"c=1; //[in] Distance of outer most fiber from neutral axis\n",
+"E=30*10^6; //[lb/in^2] Modulus of elasticity\n",
+"Sy=30000; //[lb/in^2] Yield strength\n",
+"Su=55000; //[lb/in^2] Ultimate strength\n",
+"SF=2; //[] Safety factor based on ultimate stress\n",
+"M=F*L/4; //[lb*in] Bending moment\n",
+"S=(M/I)*c; //[lb/in^2] Bending stress\n",
+"//Note-In the book I=1.33 in^4 is used instead of I=1.3333333 in^2\n",
+"mprintf('\na. The maximum stress in beam is %f lb/in^2',S);\n",
+"delta=-F*L^3/(48*E*I); //[in] Maximum deflection in this beam\n",
+"mprintf('\nb. The maximum deflection in this beam is %f in.',delta);\n",
+"if Sy>S then\n",
+" mprintf('\nc. Yes, the stress of %f lb/in^2 is less than the yield of Sy=%f lb/in^2.',S,Sy);\n",
+"else\n",
+" mprintf('\nc. No, the stress of %f lb/in^2 is greater than the yield of Sy=%f lb/in^2',S,Sy);\n",
+"end\n",
+"Sall=Su/SF; //[lb/in^2] Allowable stress\n",
+"if Sall>S then\n",
+" mprintf('\nd. It is acceptable because allowable stress is greater than the acttual stress of %f lb/in^2.',S);\n",
+"else\n",
+" mprintf('\nd. Design is not acceptable because allowable stress is less than the actual stress of %f lb/in^2.',S)\n",
+"end\n",
+"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: Shear_Stress.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.3 Page No.45\n');\n",
+"Su=80*10^3; //[lb/in^2] Ultimate strength\n",
+"d=0.5; //[in] Diameter of pin\n",
+"As=%pi*d^2/4; //[in^2] Area of cross section of pin\n",
+"F=20*10^3; //[lb] Load acting\n",
+"Ss=F/(2*As); //[lb/in^2] Shear stress\n",
+"if 0.5*Su>=Ss & 0.6*Su>=Ss then\n",
+" mprintf('Pin would not fail');\n",
+"else\n",
+" mprintf('\n Actual stress is too high and the pin would fail.');\n",
+"end"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: Torsional_Shear_Stress.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.4 Page No.46\n');\n",
+"hp=10; //[hp] Power transmitted\n",
+"rpm=1750; //[rpm] Turning speed\n",
+"d=0.5; //[in] Diameter of shaft\n",
+"L=12; //[in] Length of shaft\n",
+"G=11.5*10^6 //[lb/in^2] shear modulus of elasticity\n",
+"Su=62000; //[lb/in^2] \n",
+"T=63000*hp/rpm; //[in*lb] Torque transmitted\n",
+"Z=%pi*d^3/16; //[in^3] Polar section modulus\n",
+"Ss=T/Z; //[lb/in^2] Torsional shear stress\n",
+"//Note- In the book Z=0.025 in^3 is used instead of Z=0.0245437 in^3\n",
+"mprintf('\na. Stress in the shaft is %f lb/in^2.',Ss)\n",
+"J=%pi*d^4/32; //[in^4] Polar moment of inertia\n",
+"theta=T*L/(J*G); //[radians] \n",
+"//Note- In the book J=0.0061 in^4 is used instead of J=0.0061359 in^4\n",
+"mprintf('\nb. The angular deflection of shaft would be %f radians',theta);\n",
+"SF=3; //[] Safety factor based on ultimate strength\n",
+"Zd=T/(0.5*Su/SF); //[in^3] Polar section modulus required for SF=3\n",
+"Dd=(16*Zd/%pi)^(1/3); //[in] Diameter of shaft required Z=%pi*d^3/16\n",
+"mprintf('\nc. Diameter of shaft required is %f in.',Dd);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: Critical_Load_in_Pinned_End_Column.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.5 Page No.53\n');\n",
+"L=30; //[in] Length of link\n",
+"d=5/8; //[in] Diameter of link\n",
+"I=%pi*d^4/64; //[in^4] Moment of inertia\n",
+"A=%pi*d^2/4; //[in^2] Area of cross section\n",
+"E=30*10^6; //[lb/in^2] Modulus of elasticity\n",
+"r=sqrt(I/A); //[in] Radius of gyration\n",
+"mprintf('\n The radius of gyration %f in.',r);\n",
+"K=1; //[] End support condition factor\n",
+"Le=K*L; //[in] Effective length\n",
+"mprintf('\n Effective length is %f in',Le);\n",
+"SR=Le/r; //[] Slenderness ratio\n",
+"mprintf('\n Slenderness ratio is %f.',SR)\n",
+"Sy=42000; //[lb/in^2] Yield strength\n",
+"Cc=sqrt(2*%pi^2*E/Sy); //[] Column constant\n",
+"mprintf('The column constant is %f.',Cc);\n",
+"if SR>Cc then\n",
+" mprintf('\n Slenderness ratio is greater than column constant, so use the euler formula')\n",
+"end\n",
+"I=%pi*d^4/64; //[in^4] Moment of inertia\n",
+"mprintf('\n The moment of inertia is %f in^4',I);\n",
+"Pc=%pi^2*E*I/Le^2; //[lb] Critical force\n",
+"//Note- In the book I=0.0075 in^4 is used instead of I=0.0074901 in^4\n",
+"mprintf('\n The critical force is %f lb.',Pc);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: Critical_Load_in_Fixed_End_Column.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.6 Page No.55\n');\n",
+"L=60; //[in] Length of column\n",
+"Sy=36000; //[lb/in^2] Yield strength\n",
+"SF=2; //[]Safty factor\n",
+"E=30*10^6; //[lb/in^2] Modulus of elasticity\n",
+"A=2.26; //[in^2] Area of cross section (Appendix 5.4)\n",
+"I=0.764; //[in^4] Moment of inertia (Appendix 5.4)\n",
+"r=sqrt(I/A); //[in] Radius of gyration\n",
+"K=0.65; //[] End support condition factor from Figure 3.8\n",
+"Le=K*L; //[in] Effective length\n",
+"mprintf('\n The effective length is %f in.',Le);\n",
+"SR=Le/r; //[] Slenderness ratio\n",
+"mprintf('\n The slenderness ratio is %f.',SR);\n",
+"Cc=sqrt(2*%pi^2*E/Sy); //[] Column constant\n",
+"mprintf('\n The column constant is %f.',Cc);\n",
+"if Cc>SR then\n",
+" mprintf('\n The column constant is greater than slenderness ratio, so use the Johnson formula.');\n",
+"end\n",
+"F=(A*Sy/SF)*(1-Sy*SR^2/(4*%pi^2*E));\n",
+"mprintf('\n The acceptable load for a safty factor of 2 is %f lb.',F);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/4-Combined_Stress_and_Failure_Theories.ipynb b/Machine_Design_by_T_H_Wentzell/4-Combined_Stress_and_Failure_Theories.ipynb
new file mode 100644
index 0000000..515f57e
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/4-Combined_Stress_and_Failure_Theories.ipynb
@@ -0,0 +1,188 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Combined Stress and Failure Theories"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: Design_of_Short_Column_with_Eccentric_Load.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-4.1 Page 66 ')\n",
+" \n",
+"D=2; //[in] Dia. of short column\n",
+"F=10000; //[lb] Load applied\n",
+"L=15; //[in] Length of column\n",
+"e=2; //[in] Offset of load\n",
+"\n",
+"A=(%pi*D^2)/4; //[in^2] Area of cross section of column\n",
+"SA=F/A; //[lb/in^2] Axial Stress\n",
+"\n",
+"Z=(%pi*D^3)/32; //[in^4] Section modulus for bending\n",
+"M=F*e; //[lb*in] Bending moment\n",
+"SB=M/Z; //[lb/in^2] Bemding stress\n",
+"\n",
+"S=-SA-SB; //S=(+-)SA+(+-)SB Max. stress\n",
+"\n",
+"//The bending stress and axial stress are added on inner side of column \n",
+"\n",
+"mprintf('\n\n Maximum stress in column is %f lb/in^2.\n',S)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: Coplanar_Shear.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-4.2 Page 67 ')\n",
+"\n",
+"F1=800; //[lb] Vertical force\n",
+"F2=600; //[lb] Horizontal force\n",
+"D=0.5; //[in] Pin diameter\n",
+"A=(%pi*D^2)/4; //[in^2] Area of cross section of pin\n",
+"\n",
+"F=sqrt(F1^2+F2^2); //[lb] Resultant force on pin\n",
+"S=F/A; //[lb/in^2] Shear stress in pin\n",
+"\n",
+"//If forces were not perpendicular, they would be added vectorially.\n",
+"mprintf('\n\n Shear stress in pin is %f lb/in^2.',S);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: Combined_Torsion_and_Shear.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN\n Timothy H. Wentzell, P.E.\n Example 4.3 Page no 68');\n",
+"\n",
+"P=50; //[hp] Power transmitted\n",
+"N=300; //[rpm] Speed\n",
+"D=10; //[in] Effective pitch diameter of sprocket\n",
+"d=1; //[in] Diameter of shaft from figure 4.3\n",
+"Z=(%pi*d^3)/16; //[in^3] Section modulus of shaft\n",
+"A=(%pi*d^2)/4; //[in^2] Area of cross section\n",
+"\n",
+"T=(63000/N)*P; //[lb*in] Torque required to transmit power\n",
+"F=T/(D/2); //[lb] Driving force in chain\n",
+"\n",
+"Ss=F/A; //[lb/in^2] Shear stress in shaft\n",
+"\n",
+"St=T/Z; //[lb/in^2] Torsional stress in shaft\n",
+"\n",
+"S=Ss+St; //[lb/in^2] Resultant stress\n",
+"\n",
+"//Note-There is mistake in addition of Ss and St.\n",
+"\n",
+"//This value would be compared to shear stress allowable for shaft material\n",
+"\n",
+"mprintf('\n\n The combined stress in 1 inch diameter shaft is %f lb/in^2.',S);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: Combined_Normal_and_Shear_Stress.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN\n Timothy H. Wentzell, P.E.\n Example 4.4 Page no 71')\n",
+"P=20; //[hp] Power transmitted by chain drive\n",
+"n=500; //[rpm] speed\n",
+"d=8; //[in] Pitch diameter of sprocket\n",
+"fos=2;\n",
+"D=1.25; //[in] Diameter of shaft\n",
+"L=12; //[in] Distance between two supporting bearings\n",
+"Z1=%pi*D^3/16; //[in^3] Section modulus for torsion\n",
+"Z2=%pi*D^3/32; //[in^3] Section modulus for bending\n",
+"T=63000*P/n; //[in*lb] Torque on shaft\n",
+"F=T/(d/2); //[lb] Force in chain\n",
+"M=F*L/4; //[in*lb] Bending moment in shaft\n",
+"Ss=T/Z1; //[lb/in^2] Torsional shear stress\n",
+"Sb=M/Z2; //[lb/in^2] Bending normal stress\n",
+"//Note- In the book Sb=9860 lb/in^2 is used instead of Sb=9856.7075 lb/in^2\n",
+"S=(Sb/2)+sqrt(Ss^2+(Sb/2)^2); //[lb/in^2] Combined max. stress\n",
+"Sy=30000; //[lb/in^2]From APPENDIX 4 Page no-470 for AISI 1020 and Hot-rolled steel\n",
+"FOS=(Sy/2)/S; //[]Actual factor of safty\n",
+"if S < Sy/2 then //Strength is greater than combined stress so design is safe\n",
+" mprintf('\n\n Design is acceptable and Combined stress is %f lb/in^2',S);\n",
+"else \n",
+" mprintf('\n\n Design is not acceptable');\n",
+"end"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb b/Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb
new file mode 100644
index 0000000..a8093c5
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/5-Repeated_Loading.ipynb
@@ -0,0 +1,258 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Repeated Loading"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Design_of_a_Shaft_using_the_Soderberg_Method.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.1 Page No.93\n');\n",
+"SF=2; //[] Safety factor\n",
+"F=500; //[lb] Load\n",
+"L=40; //[in] Length of shaft\n",
+"Su=95000; //[lb/in^2] Ultimate strength (Appendix 4)\n",
+"Sy=60000; //[lb/in^2] Yield strength (Appendix 4)\n",
+"Mmax=F*L/4; //[lb*in] Maximum bending moment\n",
+"Mmin=-F*L/4; //[lb/in^2] Minimum bending moment\n",
+"Csurface=1; //[] As surface is polished\n",
+"Csize=0.85; //[] Assuming 0.5<D<2\n",
+"Ctype=1; //[] Bending stress\n",
+"Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2] Endurance limit\n",
+"if Mmax==abs(Mmin) then\n",
+" Sm=0; //[lb/in^2] Mean stress\n",
+"end\n",
+"Sa=Sn/SF; //[lb/in^2] As (1/SF)=(Sm/Sy)+(Sa/Sn) from soderberg equation\n",
+"Sa_Z=(Mmax-Mmin)/2; //[lb*in^2] Product of altenating stress and section modulus\n",
+"Z=Sa_Z/Sa; //[in^4] Section modulus\n",
+"D=(32*Z/%pi)^(1/3); //[in] Diameter of shaft\n",
+"D1=1.375; //[in] Next higher available is 1.375 in. so use D1\n",
+"mprintf('\n The required diameter of rotating shaft is %f in.', D1);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: Design_of_a_Cantilever_Beam_using_the_Soderberg_Method.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.2 Page No.95\n');\n",
+"Su=90000; //[lb/in^2] Ultimate strength (Appendix 8)\n",
+"Sy=37000; //[lb/in^2] Yield strength (Appendix 8)\n",
+"Sni=34000; //[lb/in^2] Endurance limit (Appendix 8)\n",
+"SF=1.6; //[] Safety factor\n",
+"F=1000; //[lb] Load\n",
+"L=12; //[in] Length of cantilever beam\n",
+"Mmax=F*L; //[lb*in] Maximum bending moment\n",
+"Mmin=0; //[lb*in] Minimum bending moment\n",
+"Csize=0.85 //[] Assuming 0.5<D<2 in\n",
+"Ctype=1; //[] Bending stress\n",
+"Csurface=1; //[] As surface is polished\n",
+"Malt=(Mmax-Mmin)/2; //[lb*in] Alternating bending moment\n",
+"Mmean=(Mmax+Mmin)/2; //[lb*in] Mean bending moment\n",
+"Sn=Csize*Csurface*Ctype*Sni; //[lb/in^2] Modified endurance limit\n",
+"Z=((Mmean/Sy)+(Malt/Sn))*SF; //[in^3] Section modulus\n",
+"D=(32*(Z)/%pi)^(1/3); //[in] Diameter of bar\n",
+"mprintf('\n The required diameter of bar using the soderberg method is %f in.',D);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: Design_of_a_Cantilever_Beam_using_the_Modified_Goodman_Method.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.3 Page No.97\n');\n",
+"Su=90000; //[lb/in^2] Ultimate strength (Appendix 8)\n",
+"Sy=37000; //[lb/in^2] Yield strength (Appendix 8)\n",
+"Sni=34000; //[lb/in^2] Endurance limit (Appendix 8)\n",
+"SF=1.6; //[] Safety factor\n",
+"F=1000; //[lb] Load\n",
+"L=12; //[in] Length of cantilever beam\n",
+"Mmax=F*L; //[lb*in] Maximum bending moment\n",
+"Mmin=0; //[lb*in] Minimum bending moment\n",
+"Csize=0.85 //[] Assuming 0.5<D<2 in\n",
+"Ctype=1; //[] Bending stress\n",
+"Csurface=1; //[] As surface is polished\n",
+"Malt=(Mmax-Mmin)/2; //[lb*in] Alternating bending moment\n",
+"Mmean=(Mmax+Mmin)/2; //[lb*in] Mean bending moment\n",
+"Sn=Csize*Csurface*Ctype*Sni; //[lb/in^2] Modified endurance limit\n",
+"Z=((Mmean/Su)+(Malt/Sn))*SF; //[in^3] Section modulus\n",
+"D=(32*(Z)/%pi)^(1/3); //[in] Diameter of bar\n",
+"mprintf('\n The required diameter of bar using the soderberg method is %f in.',D);\n",
+"//Note that the modified Goodman results in a less conservative size as would be expected from figure 5.10"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: Design_of_Water_Pump_Connecting_Rod.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.4 Page No.98\n');\n",
+"Su=95000; //[lb/in^2] Ultimate strength\n",
+"Sy=60000; //[lb/in^2] Yield strength\n",
+"SF=1.5; //[] Safety factor\n",
+"Fmax=1000; //[lb] Maximum load\n",
+"Fmin=-6000; //[lb] Minimum load\n",
+"Fmean=(Fmax+Fmin)/2; //[lb] Mean load\n",
+"Fmean=abs(Fmean); //[lb] Considering absolute value\n",
+"Falt=(Fmax-Fmin)/2; //[lb] Alternating load\n",
+"Csize=1 //[] Assuming b<0.5 in\n",
+"Ctype=0.8 //[] Axial stress\n",
+"Csurface=0.86 //[] Machined surface Figure 5.7b\n",
+"Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2] Modified endurance limit\n",
+"A=((Fmean/Sy)+(Falt/Sn))*SF; //[in^2] Area of cross section of rod\n",
+"b=sqrt(A); //[in] Side of square cross section\n",
+"mprintf('\n The required square size in the center section is %f in.',b);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: Factor_of_Safety_for_Design_with_Stress_Concentration_Factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.5 Page No.100\n');\n",
+"Su=80000; //[lb/in^2] Ultimate strength\n",
+"Sy=71000; //[lb/in^2] Yield strength\n",
+"D=0.6; //[in] Diameter of shaft\n",
+"d=0.5; //[in] Diameter of shaft at notch\n",
+"r=0.05; //[in] Radius of notch\n",
+"Z=%pi*d^3/16; //[in^3] Polar section modulus\n",
+"Tmax=200; //[lb*in] Maximum load\n",
+"Tmin=0; //[lb*in] Minimum load\n",
+"Smax=Tmax/Z; //[lb/in^2] Maximum stress\n",
+"Smin=Tmin/Z; //[lb/in^2] Minimum stress\n",
+"Smean=(Smax+Smin)/2; //[lb/in^2] Mean stress\n",
+"Salt=(Smax-Smin)/2; //[lb/in^2] Alternating stress\n",
+"Csize=0.85; //[] Assume 0.5<D<2 in\n",
+"Csurface=0.88; //[] Machined surface Figure 5.7b\n",
+"Ctype=0.6; //[] Torsional stress\n",
+"Sn=Csize*Csurface*Ctype*(0.5*Su); //[lb/in^2] Modified endurance limit\n",
+"Kt=1.32; //[] (D/d)=1.2, (r/d)=0.1 from Appendix 6c\n",
+"N=inv(Smean/(0.5*Sy)+Kt*Salt/Sn); //[] Safety factor\n",
+"mprintf('\n The factor of safety for this design is %f',N);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: Factor_of_Safety_for_Design_when_Desired_Life_is_known.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-5.6 Page No.102\n');\n",
+"//From Example Problem 5.5\n",
+"Sy=71000; //[lb/in^2] Yield strength\n",
+"Smax=8148.7331 ; //[lb/in^2] Maximum stress\n",
+"Smin=0; //[lb/in^2] Minimum stress\n",
+"Smean=(Smax+Smin)/2; //[lb/in^2] Mean stress\n",
+"Salt=(Smax-Smin)/2; //[lb/in^2] Alternating stress\n",
+"Sn=18000; //[lb/in^2] Modified endurance strength\n",
+"Kt=1.32 //[] Stress concentration factor\n",
+"Nd=100000; //[cycles] Desired life\n",
+"Snn=Sn*(10^6/Nd)^0.09; //[lb/in^2]\n",
+"N=inv(Smean/(0.5*Sy)+Kt*Salt/Snn); //[] Factor of safety\n",
+"mprintf('\n The new factor of safety for this condition is %f.',N);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/6-Fasteners_and_Fastening_Methods.ipynb b/Machine_Design_by_T_H_Wentzell/6-Fasteners_and_Fastening_Methods.ipynb
new file mode 100644
index 0000000..1f4d039
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/6-Fasteners_and_Fastening_Methods.ipynb
@@ -0,0 +1,154 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Fasteners and Fastening Methods"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: Torquing_Method.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-6.1 Page No.120\n');\n",
+"As=0.334; //[in^2] Tensile stress area (Table 6.1)\n",
+"Sp=85000; //[lb/in^2] Proof strength (Table 6.3)\n",
+"D=3/4; //[in] Nominal diameter of thread\n",
+"Fi=0.85*As*Sp; //[lb] Desired intial preload\n",
+"C=0.2; //[] Torque coefficient\n",
+"T=C*D*Fi; //[in*lb] Torque\n",
+"mprintf('\n The required torque is %f lb*in.',T);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: Turn_of_Nut_Method.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-6.2 Page No.121\n');\n",
+"L=5; //[in] Length of engagement\n",
+"E=30*10^6; //[lb/in^2] Modulus of elasticity\n",
+"As=0.334; //[in^2] Tensile stress area (Table 6.1)\n",
+"Sp=85000; //[lb/in^2] Proof strength (Table 6.3)\n",
+"Fi=0.85*As*Sp; //[lb] Desired intial preload\n",
+"Delta=Fi*L/(As*E) //[in] Elongation\n",
+"pitch=0.1; //[in] Pitch for 3/4 UNC\n",
+"TA=Delta*360/pitch; //[Degree] Torque angle\n",
+"mprintf('\n The angle of rotation needed is %f degree.',TA);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: Elastic_Analysis_of_Bolted_Connections.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-6.3 Page No.122\n');\n",
+"Alpha=6.5*10^-6; //[in/(in*F)] Thermal expansion coefficient (Appendix 8)\n",
+"L=5; //[in] Length of engagement\n",
+"Delta=0.01204; //[Degree] Elongation\n",
+"DT=Delta/(Alpha*L); //[F] The temperature we would need to heat this bolt above the sevice temperature\n",
+"mprintf('\n The temperature we would need to heat this bolt above the sevice temperature is %f F.',DT);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: Elastic_Analysis_of_Bolted_Connections.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-6.4 Page No.124\n');\n",
+"Dp=20; //[in] Pressure vessel head diameter\n",
+"Ds=1.25; //[in] Stud diameter\n",
+"Ls=6; //[in] Stud length\n",
+"Af=50; //[in^2] Clamped area of flanges\n",
+"E=30*10^6; //[lb/in^2] Modulus of elasticity\n",
+"C=0.15; //[] Torque coefficient\n",
+"Si=120000; //[lb/in^2] Proof strength (Table 6.3)\n",
+"A=1.073; //[in^2] Tensile stress area (Table 6.1)\n",
+"Fi=0.9*Si*A; //[lb] Desired intial load\n",
+"T=C*Ds*Fi; //[lb*in] Torque\n",
+"mprintf('\n1. The required torque is %f lb*in.',T);\n",
+"Pp=500; //[lb/in^2] Pressure inside the pressure vessel\n",
+"Ap=%pi*Dp^2/4; //[in^2] Pressure vessel head cross section area\n",
+"Kb=A*E/Ls; //[lb/in] Stiffness per stud\n",
+"Kf=Af*E/Ls; //[lb/in] Stiffness per flange\n",
+"Fe=Pp*Ap; //[lb] Force on pressure vessel head\n",
+"Ft=10*Fi+(10*Kb/(10*Kb+Kf))*Fe; //[lb] Total load on the bolt\n",
+"mprintf('\n2. The total load on the bolt is %f lb.',Ft);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/7-Impact_and_Energy_Analysis.ipynb b/Machine_Design_by_T_H_Wentzell/7-Impact_and_Energy_Analysis.ipynb
new file mode 100644
index 0000000..96ecf81
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/7-Impact_and_Energy_Analysis.ipynb
@@ -0,0 +1,176 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Impact and Energy Analysis"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: Impact_Energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-7.1 Page No.137\n');\n",
+"D=2; //[in] Diameter of bar\n",
+"W=500; //[lb] Weight\n",
+"h=1; //[in] Height from which the weight falls\n",
+"A=%pi*D^2/4; //[in^2] Area of cross section of bar\n",
+"L=10; //[in] Length of bar\n",
+"E=30*10^6; //[lb/in^2] Modulus of elasticity\n",
+"S=(W/A)+(W/A)*(1+(2*h*E*A/(L*W)))^(0.5); //[lb/in^2] Stress in the bar\n",
+"mprintf('\n Stress in the bar is %f lb/in^2.',S);\n",
+"Delta=S*L/E; //[in] Deflection\n",
+"mprintf('\n Deflecton in the bar is %f in.',Delta);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: Velocity_and_Impact.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-7.2 Page No.139\n');\n",
+"W=2000; //[lb] Weight of automobile\n",
+"L=36; //[in] Length of stop\n",
+"D=2; //[in] Diameter of steel bar\n",
+"V=5*5280*12/3600; //[in/s] Velocity of automobile\n",
+"A=%pi*D^2/4; //[in^2] Area of cross section of bar\n",
+"E=30*10^6; //[lb/in^2] Modulus of elasticity\n",
+"k=A*E/L; //[lb/in] Stiffness of the bar\n",
+"g=386; //[in/s^2] Acceleration due to gravity\n",
+"Delta=sqrt(2/k*W*(V^2/(2*g)+0)); //[in] Deflection\n",
+"mprintf('\n The deflection in the bar is %f in.',Delta);\n",
+"S=Delta*E/L; //[in] Stress in the bar\n",
+"//Note-In the book Delta=0.124 is used instead of Delta=0.123800\n",
+"mprintf('\n The stress in the bar is %f lb/in^2.',S);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: Impact_on_Beam.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-7.3 Page No.141\n');\n",
+"W=3000; //[lb] Weight of automobile\n",
+"L=40*12; //[in] Length of the beam\n",
+"I=64.2; //[in^4] Moment of inertia of the beam\n",
+"Sy=48000; //[lb/in^2] Yield strength of the beam\n",
+"c=8/2; //[in] Distance from the outermost fiber to neutral axis\n",
+"E=30*10^6; //[lb/in^2] Modulus of elasticity\n",
+"g=32.2; //[ft/s^2] Acceleration due to gravity\n",
+"M=I*Sy/c; //[lb*in] Moment at which beam will yield\n",
+"F=4*M/L; //[lb] Force at which beam will yield\n",
+"Delta=F*L^3/(48*E*I); //[in] Deflection\n",
+"KE=F*Delta/2; //[lb*in] Kinetic energy\n",
+"V=sqrt(2*g*KE/W); //[in/s] Velocity\n",
+"V=V/5280*3600; //[miles/hr] Velocity\n",
+"mprintf('\n At %f miles/hr velocity the beam will yield.',V);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: Designing_for_Impact.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-7.4 Page No.143\n');\n",
+"D=3/4; //[in] Diameter of the bolt\n",
+"At=0.334; //[in^2] Area of thread\n",
+"As=%pi*D^2/4; //[in^2] Area of shank\n",
+"//Note-In the book As=0.442 in^2 is used instead of As=0.4417865 in.\n",
+"E=30*10^6; //[lb/in^2] Modulus of elasticity\n",
+"Lt=2; //[in] Length of the thread\n",
+"Ls=6; //[in] Length of the shank\n",
+"h=0.03; //[in] Height from which the weight falls\n",
+"W=500; //[lb] Falling load\n",
+"Kt=At*E/Lt; //[lb/in] Stiffness of threaded portion\n",
+"Ks=As*E/Ls; //[lb/in] Stiffness of shank\n",
+"K=Kt*Ks/(Kt+Ks); //[lb/in] Overall stiffness\n",
+"Delta=(W/K)+(W/K)*sqrt(1+2*h*K/W); //[in] Deflection\n",
+"A=[Ls/E, Lt/E; 0.442, -0.334];\n",
+"b=[Delta; 0];\n",
+"S=A\b;\n",
+"S=max(S); //[lb/in^2] Maximum stress in the bolt\n",
+"//Note-In the book Delta=0.0048 in is used instead of Delta=0.0047619 in.\n",
+"mprintf('\n The maximum stress in this bolt is %f lb/in^2.',S);\n",
+"Ln=8; //[in] Length when shank has same area as threads\n",
+"Kn=At*E/Ln; //[lb/in] Stiffness\n",
+"Deltan=(W/Kn)+(W/Kn)*sqrt(1+2*h*Kn/W); //[in] Deflection\n",
+"S=Deltan*E/Ln; //[ln/in^2] Stress\n",
+"mprintf('\n If shank has the same area as threads then stress is %f lb/in^2 and deflection is %f in.',S,Deltan);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb b/Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb
new file mode 100644
index 0000000..ddd65f2
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb
@@ -0,0 +1,205 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Spring Design"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: Design_of_Helical_Compression_Spring.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.1 Page No.160\n');\n",
+"Dm=0.625; //[in] Mean diameter of spring\n",
+"F=35; //[lb] Load\n",
+"K=1.25; //[] Wahl factor for Dm/Dw=6.25 (figure 8.8)\n",
+"Q=190000; //[lb/in^2] Expected ultimate strength \n",
+"LF=0.263; //[] Loading factor\n",
+"Dw=(K*8*F*Dm/(LF*%pi*Q))^(1/2.846); //[in] Wire diameter\n",
+"mprintf('\n The wire diameter of spring is %f in.',Dw);\n",
+"//Use U.S Steel 12-gage wire: Dw=0.105 in."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: Determination_of_number_of_coils.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.2 Page No.163\n');\n",
+"Dw=0.105; //[in] Wire diameter\n",
+"Dm=0.620; //[in] Mean diameter of spring\n",
+"F=35; //[lb] Load\n",
+"G=11.85*10^6; //[lb/in^2] Shear modulus of elasticity\n",
+"Delta=0.5; //[in] Deflection\n",
+"Na=Delta*G*Dw^4/(8*F*Dm^3); //[] Number of active coils\n",
+"Nat=Na+2; //[] Total number of coils\n",
+"Lf=2; //[in] Free length of spring\n",
+"P=(Lf-2*Dw)/Nat; //[in] Pitch (Table 8.1)\n",
+"mprintf('\n Pitch is %f in.',P);\n",
+"k=G*Dw^4/(8*Dm^3*Na); //[lb/in] Spring rate\n",
+"mprintf('\n Spring rate is %f lb/in.',k);\n",
+"mprintf('\n The total number of coils necessary to meet design criteria are %f.',Nat);\n",
+"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)\n",
+"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: Stability_of_Spring.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.3 Page No.165\n');\n",
+"Lf=2; //[in] Free length of spring\n",
+"Dm=0.620; //[in] Mean diameter of spring\n",
+"R=Lf/Dm; //[] Free lengtth to mean diameter ratio\n",
+"mprintf('\n The ratio of the free length of spring to mean diameter of spring is %f.',R);\n",
+"mprintf(' From Figure 8.9 for squared and ground ends, this is a stable spring.');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: Deflection_of_Spring.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.4 Page No.165\n');\n",
+"F=35; //[lb] Load\n",
+"k=73.3; //[lb/in] Spring rate\n",
+"x=F/k; //[in] Deflection \n",
+"mprintf('\n The deflection in the spring would be %f in.',x);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: Flat_Springs.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.5 Page No.166\n');\n",
+"b=12; //[in] Width of plate\n",
+"h=1; //[in] Thickness of plate\n",
+"L=72; //[in] Length of plate\n",
+"I=b*h^3/12; //[in^4] Moment of inertia\n",
+"Delta=4; //[in] Deflection\n",
+"E=10*10^6; //[lb/in^2] Modulus of elasticity\n",
+"F=3*Delta*E*I/L^3; //[lb] Force\n",
+"mprintf('\n The force at this point is %f lb.',F);\n",
+"k=F/Delta; //[lb/in] Stiffness\n",
+"mprintf('\n stiffness is %f lb/in.',k);\n",
+"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)\n",
+"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6: Energy_from_Deflection.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.6 Page No.167\n');\n",
+"F=322; //[lb] Force\n",
+"Delta=4; //[in] Deflection\n",
+"U=F*Delta/2; //[in*lb] Energy\n",
+"mprintf('\n The energy from the 4-inch deflection was %f lb*in.',U);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}