diff options
Diffstat (limited to 'Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb')
-rw-r--r-- | Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb | 205 |
1 files changed, 205 insertions, 0 deletions
diff --git a/Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb b/Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb new file mode 100644 index 0000000..ddd65f2 --- /dev/null +++ b/Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb @@ -0,0 +1,205 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Spring Design" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: Design_of_Helical_Compression_Spring.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.1 Page No.160\n');\n", +"Dm=0.625; //[in] Mean diameter of spring\n", +"F=35; //[lb] Load\n", +"K=1.25; //[] Wahl factor for Dm/Dw=6.25 (figure 8.8)\n", +"Q=190000; //[lb/in^2] Expected ultimate strength \n", +"LF=0.263; //[] Loading factor\n", +"Dw=(K*8*F*Dm/(LF*%pi*Q))^(1/2.846); //[in] Wire diameter\n", +"mprintf('\n The wire diameter of spring is %f in.',Dw);\n", +"//Use U.S Steel 12-gage wire: Dw=0.105 in." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: Determination_of_number_of_coils.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.2 Page No.163\n');\n", +"Dw=0.105; //[in] Wire diameter\n", +"Dm=0.620; //[in] Mean diameter of spring\n", +"F=35; //[lb] Load\n", +"G=11.85*10^6; //[lb/in^2] Shear modulus of elasticity\n", +"Delta=0.5; //[in] Deflection\n", +"Na=Delta*G*Dw^4/(8*F*Dm^3); //[] Number of active coils\n", +"Nat=Na+2; //[] Total number of coils\n", +"Lf=2; //[in] Free length of spring\n", +"P=(Lf-2*Dw)/Nat; //[in] Pitch (Table 8.1)\n", +"mprintf('\n Pitch is %f in.',P);\n", +"k=G*Dw^4/(8*Dm^3*Na); //[lb/in] Spring rate\n", +"mprintf('\n Spring rate is %f lb/in.',k);\n", +"mprintf('\n The total number of coils necessary to meet design criteria are %f.',Nat);\n", +"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)\n", +"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: Stability_of_Spring.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.3 Page No.165\n');\n", +"Lf=2; //[in] Free length of spring\n", +"Dm=0.620; //[in] Mean diameter of spring\n", +"R=Lf/Dm; //[] Free lengtth to mean diameter ratio\n", +"mprintf('\n The ratio of the free length of spring to mean diameter of spring is %f.',R);\n", +"mprintf(' From Figure 8.9 for squared and ground ends, this is a stable spring.');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: Deflection_of_Spring.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.4 Page No.165\n');\n", +"F=35; //[lb] Load\n", +"k=73.3; //[lb/in] Spring rate\n", +"x=F/k; //[in] Deflection \n", +"mprintf('\n The deflection in the spring would be %f in.',x);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: Flat_Springs.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.5 Page No.166\n');\n", +"b=12; //[in] Width of plate\n", +"h=1; //[in] Thickness of plate\n", +"L=72; //[in] Length of plate\n", +"I=b*h^3/12; //[in^4] Moment of inertia\n", +"Delta=4; //[in] Deflection\n", +"E=10*10^6; //[lb/in^2] Modulus of elasticity\n", +"F=3*Delta*E*I/L^3; //[lb] Force\n", +"mprintf('\n The force at this point is %f lb.',F);\n", +"k=F/Delta; //[lb/in] Stiffness\n", +"mprintf('\n stiffness is %f lb/in.',k);\n", +"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)\n", +"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.6: Energy_from_Deflection.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.6 Page No.167\n');\n", +"F=322; //[lb] Force\n", +"Delta=4; //[in] Deflection\n", +"U=F*Delta/2; //[in*lb] Energy\n", +"mprintf('\n The energy from the 4-inch deflection was %f lb*in.',U);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |