summaryrefslogtreecommitdiff
path: root/Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb')
-rw-r--r--Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb205
1 files changed, 205 insertions, 0 deletions
diff --git a/Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb b/Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb
new file mode 100644
index 0000000..ddd65f2
--- /dev/null
+++ b/Machine_Design_by_T_H_Wentzell/8-Spring_Design.ipynb
@@ -0,0 +1,205 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Spring Design"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: Design_of_Helical_Compression_Spring.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.1 Page No.160\n');\n",
+"Dm=0.625; //[in] Mean diameter of spring\n",
+"F=35; //[lb] Load\n",
+"K=1.25; //[] Wahl factor for Dm/Dw=6.25 (figure 8.8)\n",
+"Q=190000; //[lb/in^2] Expected ultimate strength \n",
+"LF=0.263; //[] Loading factor\n",
+"Dw=(K*8*F*Dm/(LF*%pi*Q))^(1/2.846); //[in] Wire diameter\n",
+"mprintf('\n The wire diameter of spring is %f in.',Dw);\n",
+"//Use U.S Steel 12-gage wire: Dw=0.105 in."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: Determination_of_number_of_coils.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.2 Page No.163\n');\n",
+"Dw=0.105; //[in] Wire diameter\n",
+"Dm=0.620; //[in] Mean diameter of spring\n",
+"F=35; //[lb] Load\n",
+"G=11.85*10^6; //[lb/in^2] Shear modulus of elasticity\n",
+"Delta=0.5; //[in] Deflection\n",
+"Na=Delta*G*Dw^4/(8*F*Dm^3); //[] Number of active coils\n",
+"Nat=Na+2; //[] Total number of coils\n",
+"Lf=2; //[in] Free length of spring\n",
+"P=(Lf-2*Dw)/Nat; //[in] Pitch (Table 8.1)\n",
+"mprintf('\n Pitch is %f in.',P);\n",
+"k=G*Dw^4/(8*Dm^3*Na); //[lb/in] Spring rate\n",
+"mprintf('\n Spring rate is %f lb/in.',k);\n",
+"mprintf('\n The total number of coils necessary to meet design criteria are %f.',Nat);\n",
+"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)\n",
+"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: Stability_of_Spring.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.3 Page No.165\n');\n",
+"Lf=2; //[in] Free length of spring\n",
+"Dm=0.620; //[in] Mean diameter of spring\n",
+"R=Lf/Dm; //[] Free lengtth to mean diameter ratio\n",
+"mprintf('\n The ratio of the free length of spring to mean diameter of spring is %f.',R);\n",
+"mprintf(' From Figure 8.9 for squared and ground ends, this is a stable spring.');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: Deflection_of_Spring.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.4 Page No.165\n');\n",
+"F=35; //[lb] Load\n",
+"k=73.3; //[lb/in] Spring rate\n",
+"x=F/k; //[in] Deflection \n",
+"mprintf('\n The deflection in the spring would be %f in.',x);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: Flat_Springs.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.5 Page No.166\n');\n",
+"b=12; //[in] Width of plate\n",
+"h=1; //[in] Thickness of plate\n",
+"L=72; //[in] Length of plate\n",
+"I=b*h^3/12; //[in^4] Moment of inertia\n",
+"Delta=4; //[in] Deflection\n",
+"E=10*10^6; //[lb/in^2] Modulus of elasticity\n",
+"F=3*Delta*E*I/L^3; //[lb] Force\n",
+"mprintf('\n The force at this point is %f lb.',F);\n",
+"k=F/Delta; //[lb/in] Stiffness\n",
+"mprintf('\n stiffness is %f lb/in.',k);\n",
+"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)\n",
+"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6: Energy_from_Deflection.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"clear;\n",
+"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.6 Page No.167\n');\n",
+"F=322; //[lb] Force\n",
+"Delta=4; //[in] Deflection\n",
+"U=F*Delta/2; //[in*lb] Energy\n",
+"mprintf('\n The energy from the 4-inch deflection was %f lb*in.',U);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}