1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 8: Spring Design"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.1: Design_of_Helical_Compression_Spring.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear;\n",
"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.1 Page No.160\n');\n",
"Dm=0.625; //[in] Mean diameter of spring\n",
"F=35; //[lb] Load\n",
"K=1.25; //[] Wahl factor for Dm/Dw=6.25 (figure 8.8)\n",
"Q=190000; //[lb/in^2] Expected ultimate strength \n",
"LF=0.263; //[] Loading factor\n",
"Dw=(K*8*F*Dm/(LF*%pi*Q))^(1/2.846); //[in] Wire diameter\n",
"mprintf('\n The wire diameter of spring is %f in.',Dw);\n",
"//Use U.S Steel 12-gage wire: Dw=0.105 in."
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.2: Determination_of_number_of_coils.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear;\n",
"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.2 Page No.163\n');\n",
"Dw=0.105; //[in] Wire diameter\n",
"Dm=0.620; //[in] Mean diameter of spring\n",
"F=35; //[lb] Load\n",
"G=11.85*10^6; //[lb/in^2] Shear modulus of elasticity\n",
"Delta=0.5; //[in] Deflection\n",
"Na=Delta*G*Dw^4/(8*F*Dm^3); //[] Number of active coils\n",
"Nat=Na+2; //[] Total number of coils\n",
"Lf=2; //[in] Free length of spring\n",
"P=(Lf-2*Dw)/Nat; //[in] Pitch (Table 8.1)\n",
"mprintf('\n Pitch is %f in.',P);\n",
"k=G*Dw^4/(8*Dm^3*Na); //[lb/in] Spring rate\n",
"mprintf('\n Spring rate is %f lb/in.',k);\n",
"mprintf('\n The total number of coils necessary to meet design criteria are %f.',Nat);\n",
"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)\n",
"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.3: Stability_of_Spring.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear;\n",
"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.3 Page No.165\n');\n",
"Lf=2; //[in] Free length of spring\n",
"Dm=0.620; //[in] Mean diameter of spring\n",
"R=Lf/Dm; //[] Free lengtth to mean diameter ratio\n",
"mprintf('\n The ratio of the free length of spring to mean diameter of spring is %f.',R);\n",
"mprintf(' From Figure 8.9 for squared and ground ends, this is a stable spring.');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.4: Deflection_of_Spring.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear;\n",
"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.4 Page No.165\n');\n",
"F=35; //[lb] Load\n",
"k=73.3; //[lb/in] Spring rate\n",
"x=F/k; //[in] Deflection \n",
"mprintf('\n The deflection in the spring would be %f in.',x);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.5: Flat_Springs.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear;\n",
"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.5 Page No.166\n');\n",
"b=12; //[in] Width of plate\n",
"h=1; //[in] Thickness of plate\n",
"L=72; //[in] Length of plate\n",
"I=b*h^3/12; //[in^4] Moment of inertia\n",
"Delta=4; //[in] Deflection\n",
"E=10*10^6; //[lb/in^2] Modulus of elasticity\n",
"F=3*Delta*E*I/L^3; //[lb] Force\n",
"mprintf('\n The force at this point is %f lb.',F);\n",
"k=F/Delta; //[lb/in] Stiffness\n",
"mprintf('\n stiffness is %f lb/in.',k);\n",
"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)\n",
"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.6: Energy_from_Deflection.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear;\n",
"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-8.6 Page No.167\n');\n",
"F=322; //[lb] Force\n",
"Delta=4; //[in] Deflection\n",
"U=F*Delta/2; //[in*lb] Energy\n",
"mprintf('\n The energy from the 4-inch deflection was %f lb*in.',U);"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|