summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_G_Aruldhas
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_G_Aruldhas')
-rw-r--r--Engineering_Physics_by_G_Aruldhas/1-OSCILLATION_AND_WAVES.ipynb321
-rw-r--r--Engineering_Physics_by_G_Aruldhas/10-STATISTICAL_MECHANICS.ipynb155
-rw-r--r--Engineering_Physics_by_G_Aruldhas/11-LASERS.ipynb216
-rw-r--r--Engineering_Physics_by_G_Aruldhas/12-HOLOGRAPHY_AND_FIBRE_OPTICS.ipynb159
-rw-r--r--Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb234
-rw-r--r--Engineering_Physics_by_G_Aruldhas/14-MAGNETIC_PROPERTIES_OF_MATERIALS.ipynb245
-rw-r--r--Engineering_Physics_by_G_Aruldhas/15-THERMAL_PROPERTIES.ipynb209
-rw-r--r--Engineering_Physics_by_G_Aruldhas/17-ULTRASONICS.ipynb60
-rw-r--r--Engineering_Physics_by_G_Aruldhas/18-ACOUSTICS_OF_BUILDINGS.ipynb202
-rw-r--r--Engineering_Physics_by_G_Aruldhas/2-ELECTROMAGNETIC_THEORY.ipynb152
-rw-r--r--Engineering_Physics_by_G_Aruldhas/3-INTERFERENCE.ipynb315
-rw-r--r--Engineering_Physics_by_G_Aruldhas/4-DIFFRACTION.ipynb316
-rw-r--r--Engineering_Physics_by_G_Aruldhas/5-POLARIZATION.ipynb205
-rw-r--r--Engineering_Physics_by_G_Aruldhas/6-CRYSTALLOGRAPHY.ipynb480
-rw-r--r--Engineering_Physics_by_G_Aruldhas/7-SUPERCONDUCTIVITY.ipynb169
-rw-r--r--Engineering_Physics_by_G_Aruldhas/8-SPECIAL_THEORY_OF_RELATIVITY.ipynb440
-rw-r--r--Engineering_Physics_by_G_Aruldhas/9-QUANTUM_MECHANICS.ipynb205
17 files changed, 4083 insertions, 0 deletions
diff --git a/Engineering_Physics_by_G_Aruldhas/1-OSCILLATION_AND_WAVES.ipynb b/Engineering_Physics_by_G_Aruldhas/1-OSCILLATION_AND_WAVES.ipynb
new file mode 100644
index 0000000..45f3d9b
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/1-OSCILLATION_AND_WAVES.ipynb
@@ -0,0 +1,321 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: OSCILLATION AND WAVES"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: Time_period_of_SHM.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.1 : Page-23 (2010)\n",
+"A = 4/2; // Amplitude of SHM, cm\n",
+"x = 0; // Mean position of oscillating particle, cm\n",
+"v = 12; // Velocity of the particle at the mean position, cm/s\n",
+"// As v = omega*sqrt(A^2 - x^2), solving for omega\n",
+"omega = v/sqrt(A^2 - x^2);\n",
+"printf('\nThe time period of SHM = %5.2f s', (2*%pi)/omega);\n",
+"\n",
+"// Result \n",
+"// The time period of SHM = 1.05 s "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: Accelertion_and_maximum_velocity_in_SHM.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.2 : Page-23 (2010)\n",
+"T = 0.1; // Time period of oscillation in SHM, s\n",
+"x = 0.2; // Position of the particle from its mean position, cm\n",
+"A = 4; // Amplitude of the particle executing SHM, cm\n",
+"// As T = 2*%pi/omega, solving for omega\n",
+"omega = 2*%pi/T; // Angular speed of particle executing SHM, per sec\n",
+"a = omega^2*x; // Accelertion of particle executing SHM, cm per sec square\n",
+"v_max = omega*A; // Maximum velocity of the particle in SHM, cm per sec\n",
+"printf('\nThe accelertion of particle executing SHM = %5.1f cm per sec square', a);\n",
+"printf('\nThe maximum velocity of the particle in SHM = %5.1f cm per sec', v_max);\n",
+"\n",
+"// Result \n",
+"// The accelertion of particle executing SHM = 789.6 cm per sec square \n",
+"// The maximum velocity of the particle in SHM = 251.3 cm per sec "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: Damped_Vibrating_System.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.3 : Page-24 (2010)\n",
+"A1 = 40; // First amplitude of oscillation, cm\n",
+"An_plus_1 = 4; // Amplitude after 100 oscillations, cm\n",
+"n = 100; // Number of oscillations\n",
+"T = 2.5; // Time period of oscillations, s\n",
+"t = T/4; // Time taken to reach the first amplitude from the mean position, s\n",
+"// Now A1 = x0*exp(-lambda*t) and An_plus_1 = x0*exp(-lambda*(t+nT))\n",
+"// A1/An_plus_1 = exp(n*lambda*T), solving for lambda\n",
+"lambda = log(A1/An_plus_1)/(n*T); // Damping constant. per sec\n",
+"printf('\nDamping constant = %3.2e per sec', lambda);\n",
+"\n",
+"// Result \n",
+"// Damping constant = 9.21e-003 per sec "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: Amplitude_and_Time_Period_in_SHM.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.4 : Page-24 (2010)\n",
+"v1 = 16; // Velocity of particle executing SHM at position 3 cm\n",
+"v2 = 12; // Velocity of particle executing SHM at position 4 cm\n",
+"x1 = 3; // First position of the particle, cm\n",
+"x2 = 4; // Second position of the particle, cm\n",
+"// As v = omega*sqrt(A^2 - x^2) so\n",
+"// (v1/v2)^2 = (A^2 - x1^2)/(A^2 - x2^2), solving for A\n",
+"A = poly(0, 'A'); // Declare variable A\n",
+"A = roots((A^2 - x1^2)*v2^2-(A^2 - x2^2)*v1^2);\n",
+"printf('\nThe amplitude of SHM = %1d cm', A(1));\n",
+"// v = omega*sqrt(A^2 - x^2), solving for omega\n",
+"omega = v1/sqrt(A(1)^2 - x1^2); // Angular speed of the particle, rad per sec\n",
+"T = 2*%pi/omega; // Time period of oscillation, sec\n",
+"printf('\nThe time period of oscillation = %5.3f sec', T);\n",
+"\n",
+"// Result \n",
+"// The amplitude of SHM = 5 cm\n",
+"// The time period of oscillation = 1.571 sec "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: Oscillation_of_a_spring_mass_system.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.5 : Page-25 (2010)\n",
+"m = 0.3; // Mass attached to the string, kg\n",
+"g = 9.8; // Acceleration due to gravity, metre per sec square\n",
+"x = 0.15; // Stretchness produced in the spring, m\n",
+"F = m*g; // Restoring force acting on the mass, N\n",
+"k = F/x; // Spring constant, newton per metre\n",
+"A = 0.1; // Amplitude of the string, m\n",
+"omega = sqrt(k/m); // Angular frequency of oscillation, rad per sec\n",
+"v0 = omega*A; // Maximum velocity during the oscillations, m/s\n",
+"printf('\nThe spring constant = %4.1f newton per metre', k);\n",
+"printf('\nThe amplitude of oscillation = %2.1f m', A);\n",
+"printf('\nThe maximum velocity during oscillations = %3.2f m/s', v0);\n",
+"\n",
+"// Result \n",
+"// The spring constant = 19.6 newton per metre\n",
+"// The amplitude of oscillation = 0.1 m\n",
+"// The maximum velocity during oscillations = 0.81 m/s "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: Frequency_of_visible_region.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.6 : Page-25 (2010)\n",
+"lambda1 = 400e-09; // Lower limit of wavelength of visible region, m\n",
+"lambda2 = 700e-09; // Upper limit of wavelength of visible region, m\n",
+"c = 3e+08; // Speed of light in vacuum, m/s\n",
+"f1 = c/lambda1; // Upper limit of frequency of visible region, m\n",
+"f2 = c/lambda2; // Lower limit of frequency of visible region, m\n",
+"printf('\nThe frequency equivalent of %3g nm to %3g nm is %3.1e Hz to %3.1e Hz', lambda1/1e-09, lambda2/1e-09, f1, f2);\n",
+"\n",
+"// Result \n",
+"// The frequency equivalent of 400 nm to 700 nm is 7.5e+014 Hz to 4.3e+014 Hz "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: Characteristics_of_sound_wave.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.7 : Page-26 (2010)\n",
+"// Comparing the standard equation\n",
+"// u(x,t) = A*sin(2*%pi(x/lambda-t/T)) \n",
+"// with the given equation, we get\n",
+"A = 1.5e-03; // Amplitude of the sound wave, m\n",
+"lambda = 8; // Wavelength of the sound wave, m\n",
+"T = 1/40; // Time period of the sound wave, s\n",
+"nu = 1/T; // Frequency of the sound wave, Hz\n",
+"v = nu*lambda; // Velocity of the sound wave, m/s\n",
+"printf('\nThe amplitude of the sound wave = %3.1e m', A);\n",
+"printf('\nThe wavelength of the sound wave = %1d m', lambda);\n",
+"printf('\nThe time period of the sound wave = %3.2f s', T);\n",
+"printf('\nThe frequency of the sound wave = %2d Hz', nu);\n",
+"printf('\nThe velocity of the sound wave = %3d m/s', v);\n",
+"\n",
+"\n",
+"// Result \n",
+"// The amplitude of the sound wave = 1.5e-003 m\n",
+"// The wavelength of the sound wave = 8 m\n",
+"// The time period of the sound wave = 0.03 s\n",
+"// The frequency of the sound wave = 40 Hz\n",
+"// The velocity of the sound wave = 320 m/s"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: Equation_of_a_wave_moving_along_X_axis.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.8 : Page-26 (2010)\n",
+"A = 2; // Amplitude of the wave, cm\n",
+"T = 0.5; // Time period of the wave, sec\n",
+"v = 200; // Wave velocity, cm/s\n",
+"f = 1/0.5; // Frequency of the wave, Hz\n",
+"lambda = v/f; // Wavelength of the wave, cm\n",
+"printf('\nThe Equation of the wave moving along X-axis :');\n",
+"printf('u = %1d*sin*2*pi*(x/%3d-t/%2.1f)', A, lambda, T);\n",
+"\n",
+"\n",
+"// Result \n",
+"// The Equation of the wave moving along X-axis :u = 2*sin*2*pi*(x/100-t/0.5) "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: Wave_in_the_wire.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex1.9 : Page-27 (2010)\n",
+"T = 1000; // Tension in the wire, N\n",
+"m = 15/300; // Mass per unit length of the wire, kg per metre\n",
+"lambda = 0.30; // Wavelength of wave along wire, m\n",
+"v = sqrt(T/m); // Velocity of wave through wire, m/s\n",
+"nu = v/lambda; // Frequency of wave through string, Hz\n",
+"printf('\nThe velocity and frequency of the wave through wire are %5.1f m/s and %5.1f Hz respectively', v, nu);\n",
+"\n",
+"\n",
+"\n",
+"// Result \n",
+"// The velocity and frequency of the wave through wire are 141.4 m/s and 471.4 Hz respectively "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G_Aruldhas/10-STATISTICAL_MECHANICS.ipynb b/Engineering_Physics_by_G_Aruldhas/10-STATISTICAL_MECHANICS.ipynb
new file mode 100644
index 0000000..2c4cace
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/10-STATISTICAL_MECHANICS.ipynb
@@ -0,0 +1,155 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: STATISTICAL MECHANICS"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1: Ratio_of_occupancy_of_two_states.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex10.1: Page-222 (2010)\n",
+"k = 1.38e-023; // Boltzmann constant, J/K\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"g1 = 2; // The degeneracy of ground state\n",
+"g2 = 8; // The degeneracy of excited state\n",
+"delta_E = 10.2; // Energy of excited state above the ground state, eV\n",
+"T = 6000; // Temperature of the state, K\n",
+"D_ratio = g2/g1; // Ratio of degeneracy of states\n",
+"N_ratio = D_ratio*exp(-delta_E/(k*T/e)); // Ratio of occupancy of the excited to the ground state\n",
+"printf('\nThe ratio of occupancy of the excited to the ground state at %d K = %4.2e', T, N_ratio);\n",
+"\n",
+"// Result\n",
+"// The ratio of occupancy of the excited to the ground state at 6000 K = 1.10e-008 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4: Number_density_and_fermi_energy_of_silver.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex10.4: Page-223 (2010)\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"N_A = 6.023e+023; // Avogadro's number\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"me = 9.1e-031; // Mass of electron, kg\n",
+"rho = 10.5; // Density of silver, g per cm\n",
+"m = 108; // Molecular mass of silver, g/mol\n",
+"N_D = rho*N_A/(m*1e-006); // Number density of conduction electrons, per metre cube\n",
+"E_F = h^2/(8*me)*(3/%pi*N_D)^(2/3);\n",
+"printf('\nThe number density of conduction electrons = %4.2e per metre cube', N_D);\n",
+"printf('\nThe Fermi energy of silver = %4.2f eV', E_F/e);\n",
+"\n",
+"// Result\n",
+"// The number density of conduction electrons = 5.86e+028 per metre cube\n",
+"// The Fermi energy of silver = 5.51 eV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5: Electronic_contribution_to_the_molar_heat_capacity_of_silver.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex10.5: Page-224 (2010)\n",
+"N_A = 6.023e+023; // Avogadro's number\n",
+"k = 1.38e-023; // Boltzmann constant, J/K\n",
+"T = 293; // Temperature of sodium, K\n",
+"E_F = 3.24; // Fermi energy of sodium, eV\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"C_v = %pi^2*N_A*k^2*T/(2*E_F*e); // Molar specific heat of sodium, J/mole/K\n",
+"printf('\nThe molar specific heat of sodium = %4.2f J/mole/K', C_v);\n",
+"\n",
+"// Result\n",
+"// The molar specific heat of sodium = 0.32 J/mole/K"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6: Fermi_energy_and_mean_energy_of_aluminium.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex10.6: Page-224 (2010)\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"m = 9.1e-031; // Mass of the electron, kg\n",
+"N_D = 18.1e+028; // Number density of conduction electrons in Al, per metre cube\n",
+"E_F = h^2/(8*m)*(3/%pi*N_D)^(2/3); // Fermi energy of aluminium, J\n",
+"Em_0 = 3/5*E_F; // Mean energy of the electron at 0K, J\n",
+"printf('\nThe Fermi energy of aluminium = %5.2f eV', E_F/e);\n",
+"printf('\nThe mean energy of the electron at 0K = %4.2f eV', Em_0/e);\n",
+"\n",
+"// Result\n",
+"// The Fermi energy of aluminium = 11.70 eV\n",
+"// The mean energy of the electron at 0K = 7.02 eV "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G_Aruldhas/11-LASERS.ipynb b/Engineering_Physics_by_G_Aruldhas/11-LASERS.ipynb
new file mode 100644
index 0000000..10e88b8
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/11-LASERS.ipynb
@@ -0,0 +1,216 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: LASERS"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1: Ratio_of_spontaneous_and_stimulated_emission.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex11.1: Page-249 (2010)\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"c = 3e+08; // Speed of light in free space, m/s\n",
+"k = 1.38e-023; // Boltzmann constant, J/K\n",
+"T = 300; // Temperature at absolute scale, K\n",
+"lambda = 5500e-010; // Wavelength of visible light, m\n",
+"rate_ratio = exp(h*c/(lambda*k*T))-1; // Ratio of spontaneous emission to stimulated emission\n",
+"printf('\nThe ratio of spontaneous emission to stimulated emission for visible region = %1.0e', rate_ratio);\n",
+"lambda = 1e-02; // Wavelength of microwave, m\n",
+"rate_ratio = exp(h*c/(lambda*k*T))-1; // Ratio of spontaneous emission to stimulated emission\n",
+"printf('\nThe ratio of spontaneous emission to stimulated emission for microwave region = %6.4f', rate_ratio);\n",
+"\n",
+"// Result\n",
+"// The ratio of spontaneous emission to stimulated emission for visible region = 8e+037\n",
+"// The ratio of spontaneous emission to stimulated emission for microwave region = 0.0048"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2: Energy_of_excited_state_of_laser_system.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex11.2: Page-250 (2010)\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"c = 3e+08; // Speed of light in free space, m/s\n",
+"lambda = 690e-009; // Wavelength of laser light, m\n",
+"E_lower = 30.5; // Energy of lower state, eV\n",
+"E = h*c/(lambda*e); // Energy of the laser light, eV\n",
+"E_ex = E_lower + E; // Energy of excited state of laser system, eV\n",
+"printf('\nThe energy of excited state of laser system = %4.1f eV', E_ex);\n",
+"\n",
+"// Result\n",
+"// The energy of excited state of laser system = 32.3 eV"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3: Condition_of_equivalence_of_stimulated_and_spontaneous_emission.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex11.3: Page-250 (2010)\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"k = 1.38e-023; // Boltzmann constant, J/K\n",
+"// Stimulated Emission = Spontaneous Emission <=> exp(h*f/(k*T))-1 = 1 i.e.\n",
+"// f/T = log(2)*k/h = A\n",
+"A = log(2)*k/h; // Frequency per unit temperature, Hz/K\n",
+"printf('\nThe stimulated emission equals spontaneous emission iff f/T = %4.2e Hz/K', A);\n",
+"\n",
+"// Result\n",
+"// The stimulated emission equals spontaneous emission iff f/T = 1.44e+010 Hz/K "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.4: Area_and_intensity_of_image_formed_by_laser.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex11.4: Page-250 (2010)\n",
+"lambda = 500e-009; // Wavelength of laser light, m\n",
+"f = 15e-02; // Focal length of the lens, m\n",
+"d = 2e-02; // Diameter of the aperture of source, m\n",
+"a = d/2; // Radius of the aperture of source, m\n",
+"P = 5e-003; // Power of the laser, W\n",
+"A = %pi*lambda^2*f^2/a^2; // Area of the spot at the focal plane, metre square\n",
+"I = P/A; // Intensity at the focus, W per metre square \n",
+"printf('\nThe area of the spot at the focal plane = %4.2e metre square', A);\n",
+"printf('\nThe intensity at the focus = %4.2e watt per metre square', I);\n",
+"\n",
+"// Result\n",
+"// The area of the spot at the focal plane = 1.77e-010 metre square\n",
+"// The intensity at the focus = 2.83e+007 watt per metre square "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.5: Rate_of_energy_released_in_a_pulsed_laser.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex11.5: Page-251 (2010)\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"c = 3e+08; // Speed of light in free space, m/s\n",
+"lambda = 1064e-009; // Wavelength of laser light, m\n",
+"P = 0.8; // Average power output per laser pulse, W\n",
+"dt = 25e-003; // Pulse width of laser, s\n",
+"E = P*dt; // Energy released per pulse, J\n",
+"N = E/(h*c/lambda); // Number of photons in a pulse\n",
+"printf('\nThe energy released per pulse = %2.0e J', E);\n",
+"printf('\nThe number of photons in a pulse = %4.2e', N);\n",
+"\n",
+"// Result\n",
+"// The energy released per pulse = 2e-002 J\n",
+"// The number of photons in a pulse = 1.07e+017 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.6: Angular_and_linear_spread_of_laser_beam.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex11.6:Page-251 (2010)\n",
+"lambda = 693e-009; // Wavelength of laser beam, m\n",
+"D = 3e-003; // Diameter of laser beam, m\n",
+"d_theta = 1.22*lambda/D; // Angular spread of laser beam, rad\n",
+"d = 300e+003; // Height of a satellite above the surface of earth, m\n",
+"a = d_theta*d; // Diameter of the beam on the satellite, m\n",
+"printf('\nThe height of a satellite above the surface of earth = %4.2e rad', d_theta);\n",
+"printf('\nThe diameter of the beam on the satellite = %4.1f m', a);\n",
+"\n",
+"// Result\n",
+"// The height of a satellite above the surface of earth = 2.82e-004 rad\n",
+"// The diameter of the beam on the satellite = 84.5 m "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G_Aruldhas/12-HOLOGRAPHY_AND_FIBRE_OPTICS.ipynb b/Engineering_Physics_by_G_Aruldhas/12-HOLOGRAPHY_AND_FIBRE_OPTICS.ipynb
new file mode 100644
index 0000000..4cb3db3
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/12-HOLOGRAPHY_AND_FIBRE_OPTICS.ipynb
@@ -0,0 +1,159 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: HOLOGRAPHY AND FIBRE OPTICS"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.1: Parameters_of_step_index_fibre.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex12.1: Parameters of step index fibre : Page-271 (2010)\n",
+"n1 = 1.43; // Refractive index of fibre core\n",
+"n2 = 1.4; // Refractive index of fibre cladding\n",
+"// As sin (alpha_c) = n2/n1, solving for alpha_c\n",
+"alpha_c = asind(n2/n1); // Critical angle for optical fibre, degrees\n",
+"// AS cos(theta_c) = n2/n1, solving for theta_c\n",
+"theta_c = acosd(n2/n1); // Critical propagation angle for optical fibre, degrees\n",
+"NA = sqrt(n1^2 - n2^2); // Numerical aperture for optical fibre\n",
+"printf('\nThe critical angle for optical fibre = %5.2f degrees', alpha_c);\n",
+"printf('\nThe critical propagation angle for optical fibre = %5.2f degrees', theta_c);\n",
+"printf('\nNumerical aperture for optical fibre = %4.2f', NA);\n",
+"\n",
+"// Result\n",
+"// The critical angle for optical fibre = 78.24 degrees\n",
+"// The critical propagation angle for optical fibre = 11.76 degrees\n",
+"// Numerical aperture for optical fibre = 0.29 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2: Parameters_of_optical_fibre.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex12.2: Parameters of optical fibre : Page-271 (2010)\n",
+"n1 = 1.45; // Refractive index of fibre core\n",
+"n2 = 1.4; // Refractive index of fibre cladding\n",
+"NA = sqrt(n1^2 - n2^2); // Numerical aperture for optical fibre\n",
+"// As sin(theta_a) = sqrt(n1^2 - n2^2), solving for theta_a\n",
+"theta_a = asind(sqrt(n1^2 - n2^2)); // Half of acceptance angle of optical fibre, degrees\n",
+"theta_accp = 2*theta_a; // Acceptance angle of optical fibre\n",
+"Delta = (n1 - n2)/n1; // Relative refractive index difference\n",
+"printf('\nNumerical aperture for optical fibre = %5.3f', NA);\n",
+"printf('\nThe acceptance angle of optical fibre = %4.1f degrees', theta_accp);\n",
+"printf('\nRelative refractive index difference = %5.3f', Delta);\n",
+"\n",
+"// Result\n",
+"// Numerical aperture for optical fibre = 0.377\n",
+"// The acceptance angle of optical fibre = 44.4 degrees\n",
+"// Relative refractive index difference = 0.034 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3: Numerical_aperture_and_acceptance_angle_of_step_index_fibre.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex12.3: Numerical aperture and acceptance angle of step index fibre : Page-271 (2010)\n",
+"n1 = 1.55; // Refractive index of fibre core\n",
+"n2 = 1.53; // Refractive index of fibre cladding\n",
+"n0 = 1.3; // Refractive index of medium\n",
+"NA = sqrt(n1^2 - n2^2); // Numerical aperture for optical fibre\n",
+"// n0*sin(theta_a) = sqrt(n1^2 - n2^2) = NA, solving for theta_a\n",
+"theta_a = asind(sqrt(n1^2 - n2^2)/n0); // Half of acceptance angle of optical fibre, degrees\n",
+"theta_accp = 2*theta_a; // Acceptance angle of optical fibre\n",
+"printf('\nNumerical aperture for step index fibre = %5.3f', NA);\n",
+"printf('\nThe acceptance angle of step index fibre = %2d degrees', theta_accp);\n",
+"\n",
+"// Result\n",
+"// Numerical aperture for step index fibre = 0.248\n",
+"// The acceptance angle of step index fibre = 22 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.5: Output_power_in_fibre_optic_communication.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex12.5: Output power in fibre optic communication : Page-272 (2010)\n",
+"alpha = 2; // Power loss through optical fibre, dB/km\n",
+"P_in = 500; // Poer input of optical fibre, micro-watt\n",
+"z = 10; // Length of the optical fibre, km\n",
+"// As alpha = 10/z*log10(P_in/P_out), solving for P_out\n",
+"P_out = P_in/10^(alpha*z/10); // Output power in fibre optic communication, W\n",
+"printf('\nThe output power in fibre optic communication = %1d micro-watt', P_out);\n",
+"\n",
+"// Result\n",
+"// The output power in fibre optic communication = 5 micro-watt "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb b/Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb
new file mode 100644
index 0000000..504a0a3
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb
@@ -0,0 +1,234 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 13: DIELECTRIC PROPERTIES OF MATERIALS"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1: Electronic_Polarizability_of_atom.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex13.1: Electronic Polarizability of atom : Page-287 (2010)\n",
+"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n",
+"R = 0.52e-010; // Radius of hydrogen atom, angstrom\n",
+"n = 9.7e+026; // Number density of hydrogen, per metre cube\n",
+"alpha_e = 4*%pi*epsilon_0*R^3; // Electronic polarizability of hydrogen atom, farad-metre square\n",
+"printf('\nThe electronic polarizability of hydrogen atom = %4.2e farad-metre square', alpha_e);\n",
+"\n",
+"// Result\n",
+"// The electronic polarizability of hydrogen atom = 1.56e-041 farad-metre square"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.2: Parallel_plate_capacitor.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex13.2: Parallel plate capacitor: Page-287 (2010)\n",
+"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n",
+"A = 100e-004; // Area of a plate of parallel plate capacitor, metre square\n",
+"d = 1e-002; // Distance between the plates of the capacitor, m\n",
+"V = 100; // Potential applied to the plates of the capacitor, volt\n",
+"C = epsilon_0*A/d; // Capacitance of parallel plate capacitor, farad\n",
+"Q = C/V; // Charge on the plates of the capacitor, coulomb\n",
+"printf('\nThe capacitance of parallel plate capacitor = %5.3e F', C);\n",
+"printf('\nThe charge on the plates of the capacitor = %5.3e C', Q);\n",
+"\n",
+"// Result\n",
+"// The capacitance of parallel plate capacitor = 8.854e-012 F\n",
+"// The charge on the plates of the capacitor = 8.854e-014 C"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.3: Dielectric_displacement_of_medium.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex13.3: Dielectric displacement of medium: Page-288 (2010)\n",
+"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n",
+"epsilon_r = 5.0; // Dielectric constant of the material between the plates of capacitor\n",
+"V = 15; // Potential difference applied between the plates of the capacitor, volt\n",
+"d = 1.5e-003; // Separation between the plates of the capacitor, m\n",
+"// Electric displacement, D = epsilon_0*epsilon_r*E, as E = V/d, so \n",
+"D = epsilon_0*epsilon_r*V/d; // Dielectric displacement, coulomb per metre square\n",
+"printf('\nThe dielectric displacement = %5.3e coulomb per metre square', D);\n",
+"\n",
+"// Result\n",
+"// The dielectric displacement = 4.427e-007 coulomb per metre square "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.4: Relative_dielectric_constant.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex13.4: Relative dielectric constant : Page-288 (2010)\n",
+"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n",
+"N = 3.0e+028; // Number density of solid elemental dielectric, atoms per metre cube\n",
+"alpha_e = 1e-040; // Electronic polarizability, farad metre square\n",
+"epsilon_r = 1 + N*alpha_e/epsilon_0; // Relative dielectric constant of the material\n",
+"printf('\nThe Relative dielectric constant of the material = %5.3f', epsilon_r);\n",
+"\n",
+"// Result\n",
+"// The Relative dielectric constant of the material = 1.339 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.5: Atomic_polarizability_of_sulphur.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex13.5: Atomic polarizability of sulphur : Page-288 (2010)\n",
+"N_A = 6.023e+023; // Avogadro's number, per mole\n",
+"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n",
+"epsilon_r = 3.75; // Relative dielectric constant\n",
+"d = 2050; // Density of sulphur, kg per metre cube\n",
+"y = 1/3; // Internal field constant\n",
+"M = 32; // Atomic weight of sulphur, g/mol\n",
+"N = N_A*1e+03*d/M; // Number density of atoms of sulphur, per metre cube\n",
+"// Lorentz relation for local fields give\n",
+"// E_local = E + P/(3*epsilon_0) which gives\n",
+"// (epsilon_r - 1)/(epsilon_r + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n",
+"alpha_e = (epsilon_r - 1)/(epsilon_r + 2)*3*epsilon_0/N; // Electronic polarizability of sulphur, farad metre square\n",
+"printf('\nThe electronic polarizability of sulphur = %5.3e farad metre square', alpha_e);\n",
+"\n",
+"// Result\n",
+"// The electronic polarizability of sulphur = 3.292e-040 farad metre square"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.6: Electronic_polarizability_from_refractive_index.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex13.6: Electronic polarizability from refractive index : Page-289 (2010)\n",
+"N = 3e+028; // Number density of atoms of dielectric material, per metre cube\n",
+"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n",
+"n = 1.6; // Refractive index of dielectric material\n",
+"// As (n^2 - 1)/(n^2 + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n",
+"alpha_e = (n^2 - 1)/(n^2 + 2)*3*epsilon_0/N; // Electronic polarizability of dielectric material, farad metre square\n",
+"printf('\nThe electronic polarizability of dielectric material = %4.2e farad metre square', alpha_e);\n",
+"\n",
+"// Result\n",
+"// The electronic polarizability of dielectric material = 3.03e-040 farad metre square "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.7: Ratio_of_electronic_polarizability_to_ionic_polarizability.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex13.7: Ratio of electronic polarizability to ionic polarizability: Page-289 (2010)\n",
+"epsilon_r = 4.9; // Absolute relative dielectric constant of material, farad per metre\n",
+"n = 1.6; // Refractive index of dielectric material\n",
+"// As (n^2 - 1)/(n^2 + 2)*(alpha_e + alpha_i)/alpha_e = N*(alpha_e + alpha_i)/(3*epsilon_0) = (epsilon_r - 1)/(epsilon_r + 2), solving for alpha_i/alpha_e\n",
+"alpha_ratio = ((epsilon_r - 1)/(epsilon_r + 2)*(n^2 + 2)/(n^2 - 1) - 1)^(-1); // Ratio of electronic polarizability to ionic polarizability\n",
+"printf('\nThe ratio of electronic polarizability to ionic polarizability = %4.2f', alpha_ratio);\n",
+"\n",
+"// Result\n",
+"// The ratio of electronic polarizability to ionic polarizability = 1.53 "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G_Aruldhas/14-MAGNETIC_PROPERTIES_OF_MATERIALS.ipynb b/Engineering_Physics_by_G_Aruldhas/14-MAGNETIC_PROPERTIES_OF_MATERIALS.ipynb
new file mode 100644
index 0000000..17d4fb6
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/14-MAGNETIC_PROPERTIES_OF_MATERIALS.ipynb
@@ -0,0 +1,245 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 14: MAGNETIC PROPERTIES OF MATERIALS"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.1: Spontaneous_magnetisation_of_the_substance.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex14.1: Spontaneous magnetisation of the substance: Page-306 (2010)\n",
+"N = 6.023e+023; // Avogadro's number. per mole\n",
+"A = 56; // Atomic weight of the substance, g/mole\n",
+"d = 7.9; // Density of the substance, gram per cm cube\n",
+"m_B = 9.27e-024; // Bohr's Magneton, joule per tesla\n",
+"m = 2.2*m_B; // Magnetic moment of substance, joule per tesla\n",
+"n = d*N/A*1e+006; // Number of atoms per unit volume of the substance, per metre cube\n",
+"M = n*m; // Spontaneous magnetisation of the substance, ampere per metre\n",
+"printf('\nThe spontaneous magnetisation of the substance = %4.2e ampere per metre', M);\n",
+"\n",
+"// Result\n",
+"// The spontaneous magnetisation of the substance = 1.73e+006 ampere per metre "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.2: Relative_permeability_of_ferromagnetic_material.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex14.2: Relative permeability of ferromagnetic material : Page-307 (2010)\n",
+"H = 200; // Field strength to which the ferromagnetic material is subjected, ampere per metre\n",
+"M = 3100; // Magnetisation of the ferromagnetic material, ampere per metre\n",
+"chi = M/H; // Magnetic susceptibility\n",
+"mu_r = 1 + chi; // Relative permeability of ferromagnetic material\n",
+"printf('\nThe relative permeability of ferromagnetic material = %4.1f', mu_r);\n",
+"\n",
+"// Result\n",
+"// The relative permeability of ferromagnetic material = 16.5 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.3: Relative_permeability_from_magnetisation.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex14.3: Relative permeability from magnetisation : Page-307 (2010)\n",
+"H = 300; // Field strength to which the ferromagnetic material is subjected, ampere per metre\n",
+"M = 4400; // Magnetisation of the ferromagnetic material, ampere per metre\n",
+"chi = M/H; // Magnetic susceptibility\n",
+"mu_r = 1 + chi; // Relative permeability of ferromagnetic material\n",
+"printf('\nThe relative permeability of ferromagnetic material = %5.2f', mu_r);\n",
+"\n",
+"// Result\n",
+"// The relative permeability of ferromagnetic material = 15.67 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.4: Magnetic_flux_density_and_magnetisation_of_diamagnetic_material.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex14.4: Magnetic flux density and magnetisation of diamagnetic material : Page-307 (2010)\n",
+"mu_0 = 4*%pi*1e-07; // Magnetic permeability of free space, tesla metre per ampere\n",
+"H = 10000; // Field strength to which the diamagnetic material is subjected, ampere per metre\n",
+"chi = -0.4e-005; // Magnetic susceptibility\n",
+"M = chi*H; // Magnetisation of the diamagnetic material, ampere per metre\n",
+"B = mu_0*(H + M); // Magnetic flux density of diamagnetic material, T\n",
+"printf('\nThe magnetisation of diamagnetic material = %4.2f ampere per metre', M);\n",
+"printf('\nThe magnetic flux density of diamagnetic material = %6.4f T', B);\n",
+"\n",
+"// Result\n",
+"// The magnetisation of diamagnetic material = -0.04 ampere per metre\n",
+"// The Magnetic flux density of diamagnetic material = 0.0126 T "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.5: EX14_5.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex14.5: Magnetisation-Magnetic flux density-relative permeability of diamagnetic material : Page-307 (2010)\n",
+"mu_0 = 4*%pi*1e-07; // Magnetic permeability of free space, tesla metre per ampere\n",
+"H = 1.2e+005; // Field strength to which the diamagnetic material is subjected, ampere per metre\n",
+"chi = -4.2e-006; // Magnetic susceptibility\n",
+"M = chi*H; // Magnetisation of the diamagnetic material, ampere per metre\n",
+"B = mu_0*(H + M); // Magnetic flux density of diamagnetic material, T\n",
+"mu_r = M/H + 1; // The relative permeability of diamagnetic material\n",
+"printf('\nThe magnetisation of diamagnetic material = %5.3f ampere per metre', M);\n",
+"printf('\nThe magnetic flux density of diamagnetic material = %5.3f T', B);\n",
+"printf('\nThe relative permeability of diamagnetic material = %f T', mu_r);\n",
+"// Result\n",
+"// The magnetisation of diamagnetic material = -0.504 ampere per metre\n",
+"// The magnetic flux density of diamagnetic material = 0.151 T \n",
+"// The relative permeability of diamagnetic material = 0.999996 T "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.6: Mean_radius_of_body_centered_cubic_structure.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex14.6: Mean radius of body centered cubic structure: Page-308 (2010)\n",
+"chi = 5.6e-006; // Magnetic susceptibility of diamagnetic material\n",
+"m = 9.1e-031; // Mass of an electron, kg\n",
+"mu_0 = 4*%pi*1e-07; // Magnetic permeability of free space, tesla metre per ampere\n",
+"Z = 1; /// Atomic number\n",
+"e = 1.6e-019; // Electronic charge, C\n",
+"a = 2.53e-010; // Lattice parameter of bcc structure, m\n",
+"N = 2/a^3; // The number of electrons per unit volume, per metre cube\n",
+"r = sqrt(chi*6*m/(mu_0*Z*e^2*N)); // Mean radius of body centered cubic structure as per Langevin relation for Diamagnetic susceptibility, m\n",
+"printf('\nThe mean radius of body centered cubic structure = %5.3e angstrom', r/1e-010);\n",
+"\n",
+"// Result\n",
+"// The mean radius of body centered cubic structure = 8.773e-001 angstrom"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.7: Susceptibility_and_magnetisation_of_paramagnetic_salt.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex14.7: Susceptibility and magnetisation of paramagnetic salt: Page-308 (2010)\n",
+"mu_0 = 4*%pi*1e-07; // Magnetic permeability of free space, tesla metre per ampere\n",
+"N_A = 6.02e+026; // Avogadro's number, per kmol\n",
+"rho = 4370; // Density of paramegnetic salt, kg per metre cube\n",
+"M = 168.5; // Molecular weight of paramagnetic salt, g/mol\n",
+"T = 27+273; // Temperature of paramagnetic salt, K\n",
+"H = 2e+005; // Field strength to which the paramagnetic salt is subjected, ampere per metre\n",
+"mu_B = 9.27e-024; // Bohr's magneton, ampere metre square\n",
+"p = 2; // Number of Bohr magnetons per molecule\n",
+"k = 1.38e-023; // Boltzmann constant, J/K\n",
+"N = rho*N_A/M; // Total density of atoms in the paramagnetic salt, per metr cube\n",
+"chi = mu_0*N*p^2*mu_B^2/(3*k*T); // Magnetic susceptibility of paramagnetic salt\n",
+"M = chi*H; // Magnetisation of paramagnetic salt, ampere per metre\n",
+"printf('\nThe magnetic susceptibility of paramagnetic salt = %4.2e per metre', chi);\n",
+"printf('\nThe magnetisation of paramagnetic salt = %4.2e ampere per metre', M);\n",
+"\n",
+"// Result\n",
+"// The magnetic susceptibility of paramagnetic salt = 5.43e-004 per metre\n",
+"// The magnetisation of paramagnetic salt = 1.09e+002 ampere per metre"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G_Aruldhas/15-THERMAL_PROPERTIES.ipynb b/Engineering_Physics_by_G_Aruldhas/15-THERMAL_PROPERTIES.ipynb
new file mode 100644
index 0000000..7cd49fb
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/15-THERMAL_PROPERTIES.ipynb
@@ -0,0 +1,209 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 15: THERMAL PROPERTIES"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.1: Debye_temperature_of_aluminium.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex15.1: Page-323 (2010)\n",
+"k = 1.38e-023; // Boltzmann constant, J/K\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"f_D = 64e+011; // Debye frequency for Al, Hz\n",
+"theta_D = h*f_D/k; // Debye temperature, K\n",
+"printf('\nThe Debye temperature of aluminium = %5.1f K', theta_D);\n",
+"\n",
+"// Result\n",
+"// The Debye temperature of aluminium = 307.3 K "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.2: Lattice_specific_heat_of_carbo.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex15.2: Page-323 (2010)\n",
+"N = 6.02e+026; // Avogadro's number, per kmol\n",
+"k = 1.38e-023; // Boltzmann constant, J/K\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"f_D = 40.5e+012; // Debye frequency for Al, Hz\n",
+"T = 30; // Temperature of carbon, Ks\n",
+"theta_D = h*f_D/k; // Debye temperature, K\n",
+"C_l = 12/5*%pi^4*N*k*(T/theta_D)^3; // Lattice specific heat of carbon, J/k-mol/K\n",
+"printf('\nThe lattice specific heat of carbon = %4.2f J/k-mol/K', C_l);\n",
+"\n",
+"// Result\n",
+"// The lattice specific heat of carbon = 7.13 J/k-mol/K "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.3: Einstein_frequency_for_Cu.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex15.3: Page-323 (2010)\n",
+"k = 1.38e-023; // Boltzmann constant, J/K\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"theta_E = 1990; // Einstein temperature of Cu, K\n",
+"f_E = k*theta_E/h; // Einstein frequency for Cu, K\n",
+"printf('\nThe Einstein frequency for Cu = %4.2e Hz', f_E);\n",
+"printf('\nThe frequency falls in the near infrared region');\n",
+"\n",
+"// Result\n",
+"// The Einstein frequency for Cu = 4.14e+013 Hz\n",
+"// The frequency falls in the near infrared region "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.4: Electronic_and_lattice_heat_capacities_for_Cu.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex15.4: Page-323 (2010)\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"N = 6.02e+023; // Avogadro's number, per mol\n",
+"T = 0.05; // Temperature of Cu, K\n",
+"E_F = 7; // Fermi energy of Cu, eV\n",
+"k = 1.38e-023; // Boltzmann constant, J/K\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"theta_D = 348; // Debye temperature of Cu, K\n",
+"C_e = %pi^2*N*k^2*T/(2*E_F*e); // Electronic heat capacity of Cu, J/mol/K\n",
+"C_V = 12/5*%pi^4*N*k*(T/theta_D)^3; // Lattice heat capacity of Cu, J/mol/K\n",
+"printf('\nThe electronic heat capacity of Cu = %4.2e J/mol/K', C_e);\n",
+"printf('\nThe lattice heat capacity of Cu = %4.2e J/mol/K', C_V);\n",
+"\n",
+"// Result\n",
+"// The electronic heat capacity of Cu = 2.53e-005 J/mol/K\n",
+"// The lattice heat capacity of Cu = 5.76e-009 J/mol/K "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.5: Einstein_lattice_specific_heat.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex15.5: Page-324 (2010)\n",
+"T = 1; // For simplicity assume temperature to be unity, K\n",
+"R = 1; // For simplicity assume molar gas constant to be unity, J/mol/K\n",
+"theta_E = T; // Einstein temperature, K\n",
+"C_V = 3*R*(theta_E/T)^2*exp(theta_E/T)/(exp(theta_E/T)-1)^2; // Einstein lattice specific heat, J/mol/K\n",
+"printf('\nThe Einstein lattice specific heat, C_v = %4.2f X 3R', C_V/3);\n",
+"\n",
+"// Result\n",
+"// The Einstein lattice specific heat, C_v = 0.92 X 3R"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.6: Molar_electronic_heat_capacity_of_zinc.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex15.6: Page-324 (2010)\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"v = 2; // Valency of Zn atom\n",
+"N = v*6.02e+023; // Avogadro's number, per mol\n",
+"T = 300; // Temperature of Zn, K\n",
+"E_F = 9.38; // Fermi energy of Zn, eV\n",
+"k = 1.38e-023; // Boltzmann constant, J/K\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"C_e = %pi^2*N*k^2*T/(2*E_F*e); // Electronic heat capacity of Zn, J/mol/K\n",
+"printf('\nThe molar electronic heat capacity of zinc = %5.3f J/mol/K', C_e);\n",
+"\n",
+"// Result\n",
+"// The molar electronic heat capacity of zinc = 0.226 J/mol/K "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G_Aruldhas/17-ULTRASONICS.ipynb b/Engineering_Physics_by_G_Aruldhas/17-ULTRASONICS.ipynb
new file mode 100644
index 0000000..f6e1945
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/17-ULTRASONICS.ipynb
@@ -0,0 +1,60 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 17: ULTRASONICS"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.1: Thickness_of_vibrating_quartz_at_resonance.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex17.1: Thickness of vibrating quartz at resonance : Page-352 (2010)\n",
+"f = 3e+006; // Fundamental vibrational frequency of quartz crystal, MHz\n",
+"Y = 7.9e+010; // Young's modulus of quartz, newton per metre\n",
+"rho = 2650; // Density of quartz, kg per metre cube\n",
+"// We have for resonant frequency\n",
+"// f = 1/(2*l)*sqrt(Y/rho), solving for l\n",
+"l = 1/(2*f)*sqrt(Y/rho); // Thickness of vibrating quartz at resonance, m\n",
+"printf('\nThe thickness of vibrating quartz at resonance = %3.1f mm', l/1e-003);\n",
+"\n",
+"// Result\n",
+"// The thickness of vibrating quartz at resonance = 0.9 mm"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G_Aruldhas/18-ACOUSTICS_OF_BUILDINGS.ipynb b/Engineering_Physics_by_G_Aruldhas/18-ACOUSTICS_OF_BUILDINGS.ipynb
new file mode 100644
index 0000000..3f1bf2b
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/18-ACOUSTICS_OF_BUILDINGS.ipynb
@@ -0,0 +1,202 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 18: ACOUSTICS OF BUILDINGS"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.1: Output_power_of_the_sound_source.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex18.1: Output power of the sound source : Page-361 (2010)\n",
+"r = 200; // Distance of the point of reduction from the source, m\n",
+"I_0 = 1e-012; // Final intensity of sound, watt per metre square\n",
+"I_f = 60; // Intensity gain of sound at the point of reduction, dB\n",
+"// As A_I = 10*log10(I/I_0), solving for I\n",
+"I = I_0*10^(I_f/10); // Initial Intensity of sound, watt per metre square\n",
+"P = 4*%pi*r^2*I; // Output power of the sound source, watt\n",
+"printf('\nThe output power of the sound source = %3.1f W', P);\n",
+"\n",
+"// Result\n",
+"// The output power of the sound source = 0.5 W "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.2: Change_in_sound_level_for_doubling_intensity.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex18.2: Change in sound level for doubling intensity: Page-361 (2010)\n",
+"I1 = 1; // For simplicity assume first intensity level to be unity, W per metre square\n",
+"I2 = 2*I1; // Intensity level after doubling, watt per metre square\n",
+"dA_I = 10*log10(I2/I1); // Difference in gain level, dB\n",
+"printf('\nThe sound intensity level is increased by = %1d dB', dA_I);\n",
+"\n",
+"// Result\n",
+"// The sound intensity level is increased by = 3 dB "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.3: Total_absorption_of_sound_in_the_hall.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex18.3: Total absorption of sound in the hall: Page-361 (2010)\n",
+"V = 8000; // Volume of the hall, metre cube\n",
+"T = 1.5; // Reverbration time of the hall, s\n",
+"alpha_s = 0.167*V/T; // Sabine Formula giving total absorption of sound in the hall, OWU\n",
+"printf('\nThe total absorption of sound in the hall = %5.1f OWU', alpha_s);\n",
+"\n",
+"// Result\n",
+"// The total absorption in the hall = 890.7 OWU "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.4: Average_absorption_coefficient_of_the_surfaces_of_the_hall.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex18.4: Average absorption coefficient of the surfaces of the hall: Page-362 (2010)\n",
+"V = 25*20*8; // Volume of the hall, metre cube\n",
+"S = 2*(25*20+25*8+20*8); // Total surface area of the hall, metre square\n",
+"T = 4; // Reverbration time of the hall, s\n",
+"alpha = 0.167*V/(T*S); // Sabine Formule giving total absorption in the hall, OWU\n",
+"printf('\nThe total absorption in the hall = %5.3f OWU per metre square', alpha);\n",
+"\n",
+"// Result\n",
+"// The total absorption in the hall = 0.097 OWU per metre square"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.5: Reverbration_time_for_the_hall.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex18.5: Reverbration time for the hall : Page-362 (2010)\n",
+"V = 475; // Volume of the hall, metre cube\n",
+"s = [200, 100, 100]; // Area of wall, floor and ceiling of the hall resp., metre square\n",
+"T = 4; // Reverbration time of the hall, s\n",
+"alpha = [0.025, 0.02, 0.55]; // Absorption coefficients of the wall, ceiling and floor resp., OWU per metre square\n",
+"alpha_s = 0;\n",
+"for i=1:1:3\n",
+" alpha_s = alpha_s + alpha(i)*s(i);\n",
+"end\n",
+"T = 0.167*V/alpha_s; // Sabine Formula for reverbration time, s\n",
+"printf('\nThe reverbration time for the hall = %4.2f s', T);\n",
+"\n",
+"// Result\n",
+"// The reverbration time for the hall = 1.28 s "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.6: Gain_of_resultant_sound_intensity.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex18.6: Gain of resultant sound intensity: Page-362 (2010)\n",
+"I0 = 1; // For simplicity assume initial sound intensity to be unity, watt per metre square\n",
+"A_I1 = 80; // First intensity gain of sound, dB\n",
+"A_I2 = 70; // Second intensity gain of sound, dB\n",
+"// As A_I = 10*log10(I/I_0), solving for I1 and I2\n",
+"I1 = 10^(A_I1/10)*I0; // First intensity of sound, watt per metre square\n",
+"I2 = 10^(A_I2/10)*I0; // Second intensity of sound, watt per metre square\n",
+"I = I1 + I2; // Resultant intensity level of sound, watt per metre square\n",
+"A_I = 10*log10(I/I0); // Intensity gain of resultant sound, dB\n",
+"printf('\nThe intensity gain of resultant sound = %6.3f dB', A_I);\n",
+"\n",
+"// Result\n",
+"// The intensity gain of resultant sound = 80.414 dB "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G_Aruldhas/2-ELECTROMAGNETIC_THEORY.ipynb b/Engineering_Physics_by_G_Aruldhas/2-ELECTROMAGNETIC_THEORY.ipynb
new file mode 100644
index 0000000..7c02330
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/2-ELECTROMAGNETIC_THEORY.ipynb
@@ -0,0 +1,152 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: ELECTROMAGNETIC THEORY"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Peak_value_of_displacement_current.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.1 : Page-46 (2010)\n",
+"function V = f(t)\n",
+" V = 0.2*sin(120*%pi*t);\n",
+"endfunction\n",
+"t = 0; // Time when peak value of current occurs\n",
+"C = 10e-012; // Capacitance of the capacitor, farad\n",
+"I = C*derivative(f,t);\n",
+"printf('\nThe peak value of displacement current = %6.4e A', I);\n",
+"\n",
+"// Result \n",
+"// The peak value of displacement current = 7.5398e-010 A"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Displacement_current_density_in_a_good_conductor.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.2 : Page-46 (2010)\n",
+"function E = fn(t)\n",
+" E = sin(120*%pi*t);\n",
+"endfunction\n",
+"epsilon_r = 1; // Relative electrical permittivity of free space\n",
+"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n",
+"t = 0; // Time when peak value of current occurs\n",
+"J2 = epsilon_0*epsilon_r*derivative(fn,t);\n",
+"printf('\nThe peak value of displacement current = %4.2e ampere per metre square', J2);\n",
+"\n",
+"// Result \n",
+"// The peak value of displacement current = 3.34e-009 ampere per metre square"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: Poynting_vector.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.4 : Page-47 (2010)\n",
+"p = 60; // Power rating of bulb, watt\n",
+"d = 0.5; // Distance from the blb, m\n",
+"P = p/(4*%pi*d^2); // Value of Poynting vector, watt per metre square\n",
+"printf('\nThe value of Poynting vector = %4.1f watt per metre square', P);\n",
+"\n",
+"// Result \n",
+"// The value of Poynting vector = 19.1 watt per metre square "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: Plane_electromagnetic_wave_in_a_medium.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex2.5 : Page-47 (2010)\n",
+"E_peak = 6; // Peak value of electric field intensity, V/m\n",
+"c = 3e+08; // Speed of electromagnetic wave in free space, m/s\n",
+"mu_0 = 4*%pi*1e-07; // Absolute permeability of free space, tesla metre per ampere\n",
+"epsilon_0 = 8.854e-012; // Absolute permittivity of free space, farad/m\n",
+"mu_r = 1; // Relative permeability of medium\n",
+"epsilon_r = 3; // Relative permittivity of the medium\n",
+"v = c/sqrt(mu_r*epsilon_r); // Wave velocity, m/s\n",
+"eta = sqrt((mu_0/epsilon_0)*(mu_r/epsilon_r)); // Intrinsic impedance of the medium, ohm\n",
+"H_P = E_peak*sqrt((epsilon_0*epsilon_r)/(mu_0*mu_r)); // Peak value of the magnetic intensity, ampere per metre\n",
+"printf('\nThe wave velocity = %5.3e m/s', v);\n",
+"printf('\nThe intrinsic impedance of the medium = %6.2f ohm', eta);\n",
+"printf('\nThe peak value of the magnetic intensity = %4.2e A/m', H_P);\n",
+"\n",
+"// Result \n",
+"// The wave velocity = 1.732e+008 m/s\n",
+"// The intrinsic impedance of the medium = 217.51 ohm\n",
+"// The peak value of the magnetic intensity = 2.76e-002 A/m "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G_Aruldhas/3-INTERFERENCE.ipynb b/Engineering_Physics_by_G_Aruldhas/3-INTERFERENCE.ipynb
new file mode 100644
index 0000000..a462adf
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/3-INTERFERENCE.ipynb
@@ -0,0 +1,315 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: INTERFERENCE"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10: Shift_in_movable_mirror_of_Michelson_Interferometer.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.10 : Page-73 (2010)\n",
+"lambda1 = 5896e-008; // Wavelength of D1 line of sodium, m\n",
+"lambda2 = 5890e-008; // Wavelength of D2 line of sodium, m\n",
+"lambda = (lambda1+lambda2)/2;\n",
+"// As lambda1 - lambda2 = lambda^2/(2*x), solving for x\n",
+"x = lambda^2/(2*(lambda1 - lambda2)); // Shift in movable mirror of Michelson Interferometer, cm\n",
+"printf('\nThe shift in movable mirror = %5.3f mm', x/1e-001);\n",
+"\n",
+"// Result \n",
+"// The shift in movable mirror = 0.289 mm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: Wavelength_of_Light_using_Young_Double_Slit_experiment.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.1 : Page-71 (2010)\n",
+"beta = 0.51e-02; // Fringe width, cm\n",
+"d = 2.2e-02; // Distance between the slits, cm\n",
+"D = 2e+02; // Distance between the slits and the screen, cm\n",
+"// As beta = D*lambda/d, solving for lambda\n",
+"lambda = beta*d/D; // Wavelength of light, m\n",
+"printf('\nThe wavelength of light = %4d angstrom', lambda/1e-010);\n",
+"\n",
+"// Result \n",
+"// The wavelength of light = 5610 angstrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: Fringe_shift_due_to_change_in_wavelength.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.2 : Page-71 (2010)\n",
+"lambda1 = 4250e-010; // First wavelength emitted by source of light, m\n",
+"lambda2 = 5050e-010; // Second wavelength emitted by source of light, m\n",
+"D = 1.5; // Distance between the source and the screen, m\n",
+"d = 0.025e-03; // Distance between the slits, m\n",
+"n = 3; // Number of fringe from the centre\n",
+"x3 = n*lambda1*D/d; // Position of third bright fringe due to lambda1, m\n",
+"x3_prime = n*lambda2*D/d; // Position of third bright fringe due to lambda2, m\n",
+"printf('\nThe separation between the third bright fringe due to the two wavelengths = %4.2f cm', (x3_prime - x3)/1e-02);\n",
+"\n",
+"// Result \n",
+"// The separation between the third bright fringe due to the two wavelengths = 1.44 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: Refractive_index_from_double_slit_experiment.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.3 : Page-71 (2010)\n",
+"lambda = 5.5e-05; // Wavelength emitted by source of light, cm\n",
+"n = 4; // Number of fringes shifted\n",
+"t = 3.9e-04; // Thickness of the thin glass sheet, cm\n",
+"mu = n*lambda/t+1; // Refractive index of the sheet of glass\n",
+"printf('\nThe refractive index of the sheet of glass = %6.4f', mu);\n",
+"\n",
+"// Result \n",
+"// The refractive index of the sheet of glass = 1.5641 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: Interference_by_thin_soap_film.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.4 : Page-72 (2010)\n",
+"lambda = 5893e-010; // Wavelength of monochromatic lihgt used, m\n",
+"n = 1; // Number of fringe for the least thickness of the film\n",
+"r = 0; // Value of refraction angle for normal incidence, degrees\n",
+"mu = 1.42; // refractive index of the soap film\n",
+"// As for constructive interference, \n",
+"// 2*mu*t*cos(r) = (2*n-1)*lambda/2, solving for t\n",
+"t = (2*n-1)*lambda/(4*mu*cos(r)); // Thickness of the film that appears bright, m\n",
+"printf('\nThe thickness of the film that appears bright = %6.1f angstrom', t/1e-010);\n",
+"// As for destructive interference, \n",
+"// 2*mu*t*cos(r) = n*lambda, solving for t\n",
+"t = n*lambda/(2*mu*cos(r)); // Thickness of the film that appears bright, m\n",
+"printf('\nThe thickness of the film that appears dark = %4d angstrom', t/1e-010);\n",
+"\n",
+"// Result \n",
+"// The thickness of the film that appears bright = 1037.5 angstrom\n",
+"// The thickness of the film that appears dark = 2075 angstrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: Interference_due_to_thin_air_wedge.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.5 : Page-72 (2010)\n",
+"lambda = 5893e-008; // Wavelength of monochromatic lihgt used, m\n",
+"n = 10; // Number of fringe that are found in the distnace of 1 cm\n",
+"d = 1; // Distance of 10 fringes, cm\n",
+"beta = d/n; // Fringe width, cm\n",
+"theta = lambda/(2*beta); // Angle of the wedge, rad\n",
+"printf('\nThe angle of the wedge = %5.3e rad', theta);\n",
+"\n",
+"// Result \n",
+"// The angle of the wedge = 2.946e-004 rad "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: Separation_between_consecutive_bright_fringes_formed_by_an_air_wedge.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.6 : Page-72 (2010)\n",
+"lambda = 5900e-008; // Wavelength of monochromatic lihgt used, m\n",
+"t = 0.010e-01; // Spacer thickness, cm\n",
+"l = 10; // Wedge length, cm\n",
+"theta = t/l; // Angle of the wedge, rad\n",
+"beta = lambda/(2*theta); // Fringe width, cm\n",
+"printf('\nThe separation between consecutive bright fringes = %5.3e cm', beta);\n",
+"\n",
+"// Result \n",
+"// The separation between consecutive bright fringes = 2.950e-001 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7: Newton_Rings_by_reflected_light.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.7 : Page-72 (2010)\n",
+"D4 = 0.4; // Diameter of 4th dark ring, cm\n",
+"D12 = 0.7; // Diameter of 12th dark ring, cm\n",
+"// We have dn_puls_k^2-Dn^2 = 4*k*R*lambda, so\n",
+"// D12^2-D4^2 = 32*R*lambda and D20^2-D12^2 = 32*R*lambda for k = 8, solving for D20\n",
+"D20 = sqrt(2*D12^2-D4^2); // Diameter of 20th dark ring, cm\n",
+"printf('\nThe diameter of 20th dark ring = %6.4f cm', D20);\n",
+"\n",
+"// Result \n",
+"// The diameter of 20th dark ring = 0.9055 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8: Refractive_index_from_Newton_Rings_arrangement.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.8 : Page-73 (2010)\n",
+"Dn = 0.30; // Diameter of nth dark ring with air film, cm\n",
+"dn = 0.25; // Diameter of nth dark ring with liquid film, cm\n",
+"mu = (Dn/dn)^2; // Refractive index of the liquid\n",
+"printf('\nThe refractive index of the liquid = %4.2f', mu);\n",
+"\n",
+"// Result \n",
+"// The refractive index of the liquid = 1.44 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9: Wavelength_of_light_using_Michelson_Interferometer.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex3.9 : Page-73 (2010)\n",
+"x = 0.002945; // Distance through which movable mirror is shifted, cm\n",
+"N = 100; // Number of fringes shifted\n",
+"lambda = 2*x/N; // Wavelength of light, m\n",
+"printf('\nThe wavelength of light = %4d angstrom', lambda/1e-008);\n",
+"\n",
+"// Result \n",
+"// The wavelength of light = 5890 angstrom"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G_Aruldhas/4-DIFFRACTION.ipynb b/Engineering_Physics_by_G_Aruldhas/4-DIFFRACTION.ipynb
new file mode 100644
index 0000000..9d7726c
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/4-DIFFRACTION.ipynb
@@ -0,0 +1,316 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: DIFFRACTION"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: Diffraction_at_a_single_slit.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.1 : Page-91 (2010)\n",
+"D = 50; // Distance between source and the screen, cm\n",
+"lambda = 6563e-008; // Wavelength of light of parallel rays, m\n",
+"d = 0.385e-01; // Width of the slit, cm\n",
+"n = 1; // Order of diffraction for first minimum\n",
+"// As sin(theta1) = n*lambda/d = x1/D, solving for x1\n",
+"x1 = n*lambda*D/d; // Distance from the centre of the principal maximum to the first minimum, cm\n",
+"printf('\nThe Distance from the centre of the principal maximum to the first minimum = %4.2f mm', x1/1e-001);\n",
+"n = 5; // Order of diffraction for fifth minimum\n",
+"x2 = n*lambda*D/d; // Distance from the centre of the principal maximum to the fifth minimum, cm\n",
+"printf('\nThe Distance from the centre of the principal maximum to the fifth minimum = %4.2f mm', x2/1e-001);\n",
+"\n",
+"// Result \n",
+"// The Distance from the centre of the principal maximum to the first minimum = 0.85 mm\n",
+"// The Distance from the centre of the principal maximum to the fifth minimum = 4.26 mm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: Diffraction_at_a_circular_aperture.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.2 : Page-91 (2010)\n",
+"D = 0.04; // Diameter of circular aperture, cm\n",
+"f = 20; // Focal length of convex lens, cm\n",
+"lambda = 6000e-008; // Wavelength of light used, m\n",
+"// We have sin(theta) = 1.22*lambda/D = theta, for small theta, such that\n",
+"// For first dark ring\n",
+"theta = 1.22*lambda/D; // The half angular width at central maximum, rad\n",
+"r1 = theta*f; // The half width of central maximum for first dark ring, cm\n",
+"// We have sin(theta) = 5.136*lambda/(%pi*D) = theta, for small theta, such that\n",
+"// For second dark ring\n",
+"theta = 5.136*lambda/(%pi*D); // The half angular width at central maximum, rad\n",
+"r2 = theta*f; // The half width of central maximum for second dark ring, cm\n",
+"printf('\nThe radius of first dark ring = %4.2e cm', r1);\n",
+"printf('\nThe radius of second dark ring = %4.1e cm', r2);\n",
+"\n",
+"// Result \n",
+"// The radius of first dark ring = 3.66e-002 cm\n",
+"// The radius of second dark ring = 4.90e-002 cm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: Second_order_maximum_for_diffraction_grating.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.3 : Page-91 (2010)\n",
+"n = 2; // Order of diffraction\n",
+"lambda = 650e-009; // Wavelength of light used, m\n",
+"d = 1.2e-05; // Distance between two consecutive slits of grating, m\n",
+"// We have sin(theta) = n*N*lambda = n*lambda/d, solving for theta\n",
+"theta = asind(n*lambda/d); // Angle at which the 650 nm light produces a second order maximum, degrees\n",
+"printf('\nThe angle at which the 650 nm light produces a second order maximum = %4.2f degrees', theta);\n",
+"\n",
+"// Result \n",
+"// The angle at which the 650 nm light produces a second order maximum = 6.22 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: The_highest_spectral_order_with_diffraction_grating.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.4 : Page-92 (2010)\n",
+"lambda = 650e-009; // Wavelength of light used, m\n",
+"N = 6000e+02; // Number of lines per m on grating, per m\n",
+"theta = 90; // Angle at which the highest spectral order is obtained, degrees\n",
+"// We have sin(theta) = n*N*lambda, solving for n\n",
+"n = sind(theta)/(N*lambda); // The highest order of spectra with diffraction grating\n",
+"printf('\nThe highest order of spectra obtained with diffraction grating = %1d', n);\n",
+"\n",
+"// Result \n",
+"// The highest order of spectra obtained with diffraction grating = 2"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5: Overlapping_spectra_with_diffraction_grating.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.5 : Page-92 (2010)\n",
+"N = 4000e+02; // Number of lines per m on grating, per m\n",
+"// For Blue Line\n",
+"lambda = 450e-009; // Wavelength of blue light, m\n",
+"n = 3; // Order of diffraction spectrum\n",
+"// We have sin(theta) = n*N*lambda, solving for sin(theta)\n",
+"sin_theta_3 = n*N*lambda; // Sine of angle at third order diffraction \n",
+"// For Red Line\n",
+"lambda = 700e-009; // Wavelength of blue light, m\n",
+"n = 2; // Order of diffraction spectrum\n",
+"// We have sin(theta) = n*N*lambda, solving for sin(theta)\n",
+"sin_theta_2 = n*N*lambda; // Sine of angle at second order diffraction\n",
+"// Check for overlapping\n",
+"if abs(sin_theta_3 - sin_theta_2) < 0.05 then\n",
+" printf('\nThe two orders overlap.');\n",
+"else\n",
+" printf('\nThe two orders do not overlap.');\n",
+"end\n",
+"\n",
+"// Result \n",
+"// The two orders overlap. "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: Width_of_first_order_spectrum.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.6 : Page-93 (2010)\n",
+"n = 1; // Order of diffraction spectrum\n",
+"N = 6000e+02; // Number of lines per m on diffraction grating, per m\n",
+"D = 2; // Distance of screen from the source, m\n",
+"lambda1 = 400e-009; // Wavelength of blue light, m\n",
+"// We have sin(theta1) = n*N*lambda, solving for theta1\n",
+"theta1 = asind(n*N*lambda1); // Angle at first order diffraction for Blue light, degrees\n",
+"lambda2 = 750e-009; // Wavelength of blue light, m\n",
+"// We have sin(theta2) = n*N*lambda, solving for theta2\n",
+"theta2 = asind(n*N*lambda2); // Angle at first order diffraction for Red light, degrees\n",
+"x1 = D*tand(theta1); // Half width position at central maximum for blue color, m\n",
+"x2 = D*tand(theta2); // Half width position at central maximum for red color, m\n",
+"\n",
+"printf('\nThe width of first order spectrum on the screen = %4.1f cm', (x2 - x1)/1e-02);\n",
+"\n",
+"// Result \n",
+"// The width of first order spectrum on the screen = 51.3 cm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7: Resolution_of_wavelengths_for_grating.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.7 : Page-93 (2010)\n",
+"w = 5; // Width of the grating, cm\n",
+"N = 320; // Number of lines per cm on grating, per cm\n",
+"N0 = w*N; // Total number of lines on the grating\n",
+"lambda = 640; // Wavelength of light, nm\n",
+"n = 2; // Order of diffraction\n",
+"d_lambda = lambda/(n*N0); // Separation between wavelengths which the gratign can just resolve, nm\n",
+"printf('\nThe separation between wavelengths which the grating can just resolve = %3.1f nm', d_lambda);\n",
+"\n",
+"// Result \n",
+"// The separation between wavelengths which the grating can just resolve = 0.2 nm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.8: Angular_separation_to_satisfy_Rayleigh_criterion.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.8 : Page-93 (2010)\n",
+"lambda = 550e-09; // Wavelength of light, m\n",
+"D = 3.2e-02; // Diameter of circular lens, m\n",
+"f = 24e-02; // Focal length of the lens, m \n",
+"theta_min = 1.22*lambda/D; // Minimum angle of resolution provided by the lens, rad\n",
+"// As delta_x/f = theta_min, solving for delta_x\n",
+"delta_x = theta_min*f; // Separation of the centres of the images in the focal plane of lens, m\n",
+"printf('\nThe separation of the centres of the images in the focal plane of lens = %1d micro-metre', delta_x/1e-06);\n",
+"\n",
+"// Result \n",
+"// The separation of the centres of the images in the focal plane of lens = 5 micro-metre"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.9: Linear_separation_between_two_points.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex4.9 : Page-94 (2010)\n",
+"lambda = 550e-09; // Wavelength of light, m\n",
+"D = 20e-02; // Diameter of objective of telescope, m\n",
+"d = 6e+003; // Distance of two points from the objective of telescope, m\n",
+"theta = 1.22*lambda/D; // Angular separation between two points, rad\n",
+"x = theta*d; // Linear separation between two points, m\n",
+"printf('\nThe linear separation between two points = %5.2f mm', x/1e-03);\n",
+"\n",
+"// Result \n",
+"// The linear separation between two points = 20.13 mm"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G_Aruldhas/5-POLARIZATION.ipynb b/Engineering_Physics_by_G_Aruldhas/5-POLARIZATION.ipynb
new file mode 100644
index 0000000..b3c2751
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/5-POLARIZATION.ipynb
@@ -0,0 +1,205 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: POLARIZATION"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Polarization_by_reflection.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex5.1 : Polarization by reflection: Page-113 (2010)\n",
+"mu_g = 1.72; // Refractive index of glass\n",
+"mu_w = 4/3; // Refractive index of water\n",
+"// For polarization to occur on flint glass, tan(i) = mu_g/mu_w\n",
+"// Solving for i\n",
+"i = atand(mu_g/mu_w);\n",
+"printf('\nThe angle of incidence for complete polarization to occur on flint glass = %4.1f degrees', i);\n",
+"// For polarization to occur on water, tan(i) = mu_w/mu_g\n",
+"// Solving for i\n",
+"i = atand(mu_w/mu_g);\n",
+"printf('\nThe angle of incidence for complete polarization to occur on water = %5.2f degrees', i);\n",
+"\n",
+"// Result \n",
+"// The angle of incidence for complete polarization to occur on flint glass = 52.2 degrees\n",
+"// The angle of incidence for complete polarization to occur on water = 37.78 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: Percentage_transmission_of_polarized_light.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex5.2 : Percentage transmission of polarized light: Page-113 (2010)\n",
+"I0 = 1; // For simplicity, we assume the intensity of light falling on the second Nicol prism to be unity, watt per metre square\n",
+"theta = 30; // Angle through which the crossed Nicol is rotated, degrees\n",
+"I = I0*cosd(90-theta)^2; // Intensity of the emerging light from second Nicol, watt per metre square\n",
+"T = I/(2*I0)*100; // Percentage transmission of incident light\n",
+"printf('\nThe percentage transmission of incident light after emerging through the Nicol prism = %4.1f percent', T);\n",
+"\n",
+"// Result \n",
+"// The percentage transmission of incident light after emerging through the Nicol prism = 12.5 percent "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: Thickness_of_Quarter_Wave_Plate.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex5.3 : Thickness of Quarter Wave Plate : Page-113 (2010)\n",
+"lambda = 6000e-008; // Wavelength of incident light, cm\n",
+"mu_e = 1.55; // Refractive index of extraordinary ray\n",
+"mu_o = 1.54; // Refractive index of ordinary ray\n",
+"t = lambda/(4*(mu_e - mu_o)); // Thickness of Quarter Wave plate of positive crystal, cm\n",
+"printf('\nThe thickness of Quarter Wave plate = %6.4f cm', t);\n",
+"\n",
+"// Result \n",
+"// The thickness of Quarter Wave plate = 0.0015 cm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: Behaviour_of_half_wave_plate_for_increased_wavelength.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex5.4 : Behaviour of half wave plate for increased wavelength : Page-114 (2010)\n",
+"lambda = 1; // For simplicity, wavelength of incident light is assumed to be , cm\n",
+"mu_e = 1.55; // Refractive index of extraordinary ray\n",
+"mu_o = 1.54; // Refractive index of ordinary ray\n",
+"t = lambda/(2*(mu_e - mu_o)); // Thickness of Half Wave plate for given lambda, cm\n",
+"t_prime = 2*lambda/(2*(mu_e - mu_o)); // Thickness of Half Wave plate for twice lambda, cm\n",
+"printf('\nThe thickness of half wave plate is %2.1f times that of the quarter wave plate.', t/t_prime);\n",
+"printf('\nThe half wave plate behaves as a quarter wave plate for twice the wavelength of incident light.');\n",
+"\n",
+"// Result \n",
+"// The thickness of half wave plate is 0.5 times that of the quarter wave plate.\n",
+"// The half wave plate behaves as a quarter wave plate for twice the wavelength of incident light."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: Phase_retardation_for_quartz.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex5.5 : Phase retardation for quartz : Page-114 (2010)\n",
+"lambda = 500e-09; // Wavelength of incident light, m\n",
+"mu_e = 1.5508; // Refractive index of extraordinary ray\n",
+"mu_o = 1.5418; // Refractive index of ordinary ray\n",
+"t = 0.032e-03; // Thickness of quartz plate, m\n",
+"dx = (mu_e - mu_o)*t; // Path difference between E-ray and O-ray, m\n",
+"dphi = (2*%pi)/lambda*dx; // Phase retardation for quartz for given wavelength, rad\n",
+"printf('\nThe phase retardation for quartz for given wavelength = %5.3f pi rad', dphi/%pi);\n",
+"\n",
+"// Result \n",
+"// The phase retardation for quartz for given wavelength = 1.152 pi rad"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: Brewster_angle_at_the_boundary_between_two_materials.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex5.6 : Brewster angle at the boundary between two materials : Page-114 (2010)\n",
+"C = 52; // Critical angle for total internal reflection at a boundary between two materials, degrees\n",
+"// From Brewster's law, tand(i_B) = 1_mu_2\n",
+"// Also sind(C) = 1_mu_2, so that\n",
+"// tand(i_B) = sind(C), solving for i_B\n",
+"i_B = atand(sind(C)); // Brewster angle at the boundary, degrees\n",
+"printf('\nThe Brewster angle at the boundary between two materials = %2d degrees', i_B);\n",
+"\n",
+"// Result \n",
+"// The Brewster angle at the boundary between two materials = 38 degrees "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G_Aruldhas/6-CRYSTALLOGRAPHY.ipynb b/Engineering_Physics_by_G_Aruldhas/6-CRYSTALLOGRAPHY.ipynb
new file mode 100644
index 0000000..b34e636
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/6-CRYSTALLOGRAPHY.ipynb
@@ -0,0 +1,480 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: CRYSTALLOGRAPHY"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10: X_ray_Diffraction_by_crystal_planes.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex6.10 : Lattice parameter for (110) planes of cubic crystal: Page-137 (2010)\n",
+"h = 1; k = 1; l = 0; // Miller Indices for planes in a cubic crystal\n",
+"n = 1; // First Order of diffraction \n",
+"theta = 25; // Glancing angle at which Bragg's reflection occurs, degrees\n",
+"lambda = 0.7e-010; // Wavelength of X-rays, m\n",
+"// From Bragg's Law, n*lambda = 2*d*sind(theta), solving for d\n",
+"d = n*lambda/(2*sind(theta)); // Interplanar spacing of cubic crystal, m\n",
+"a = d*(h^2+k^2+l^2)^(1/2); // The lattice parameter for cubic crystal, m\n",
+"printf('\nThe lattice parameter for cubic crystal = %4.2f angstrom', a/1e-010);\n",
+"\n",
+"// Result\n",
+"// The lattice parameter for cubic crystal = 1.17 angstrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.11: Maximum_order_of_diffractio.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex6.11 : Maximum order of diffraction: Page-138 (2010)\n",
+"d = 0.31e-009; // Interplanar spacing, m\n",
+"n = 1; // First Order of diffraction \n",
+"theta = 9.25; // Glancing angle at which Bragg's reflection occurs, degrees\n",
+"// From Bragg's Law, n*lambda = 2*d*sind(theta), solving for lambda\n",
+"lambda = 2*d*sind(theta)/n; // Wavelength of X-rays, m (Bragg's Law)\n",
+"theta_max = 90; // Maximum possible angle at which reflection can occur, degrees\n",
+"n = 2*d*sind(theta_max)/lambda; // Maximum possible order of diffraction\n",
+"printf('\nThe Maximum possible order of diffraction = %1d',n);\n",
+"\n",
+"// Result\n",
+"// The Maximum possible order of diffraction = 6 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.12: Bragg_reflection_angle_for_the_second_order_diffraction.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex6.12 : Bragg reflection angle for the second order diffraction: Page-138 (2010)\n",
+"// For (110) planes\n",
+"h = 1, k = 1, l = 0; // Miller indices for (110) planes\n",
+"d_110 = 0.195e-009; // Interplanar spacing between (110) planes, m\n",
+"// As d_110 = a/(h^2 + k^2 + l^2)^(1/2), solving for a\n",
+"a = d_110*(h^2 + k^2 + l^2)^(1/2); // Lattice parameter for bcc crystal, m\n",
+"// For (210) planes\n",
+"h = 2, k = 1, l = 0; // Miller indices for (110) planes\n",
+"d_210 = a/(h^2 + k^2 + l^2)^(1/2); // Interplanar spacing between (210) planes, m\n",
+"n = 2; // Seconds Order of diffraction \n",
+"lambda = 0.072e-009; // Wavelength of X-rays, m\n",
+"// From Bragg's Law, n*lambda = 2*d_210*sind(theta), solving for theta\n",
+"theta = asind(n*lambda/(2*d_210)); // Bragg reflection angle for the second order diffraction, degrees\n",
+"printf('\nBragg reflection angle for the second order diffraction = %5.2f degrees', theta);\n",
+"\n",
+"// Result\n",
+"// Bragg reflection angle for the second order diffraction = 35.72 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.13: Distance_between_nearest_neighbours_of_NaCl.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex6.13 : Distance between nearest neighbours of NaCl: Page-138 (2010)\n",
+"M = 23+35.5; // Molecular weight of NaCl, kg per k-mole\n",
+"d = 2.18e+03; // Density of rock salt, kg per metre cube\n",
+"n = 4; // No. of atoms per unit cell for an fcc lattice of NaCl crystal\n",
+"N = 6.023D+26; // Avogadro's No., atoms/k-mol\n",
+"// Volume of the unit cell is given by\n",
+"// a^3 = M*n/(N*d)\n",
+"// Solving for a\n",
+"a = (n*M/(d*N))^(1/3); // Lattice constant of unit cell of NaCl\n",
+"printf('\nThe distance between nearest neighbours of NaCl structure = %5.3e', a/2);\n",
+"\n",
+"// Result \n",
+"// The distance between nearest neighbours of NaCl structure = 2.814e-010 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.14: Effect_of_structural_change_on_volume.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex6.14 : Effect of structural change on volume : Page-139 (2010)\n",
+"// For bcc structure\n",
+"r = 1.258e-010; // Atomic radius of bcc structure of iron, m\n",
+"a = 4*r/sqrt(3); // Lattice parameter of bcc structure of iron, m\n",
+"V = a^3; // Volume of bcc unit cell, metre cube\n",
+"N = 2; // Number of atoms per unit cell in bcc structure\n",
+"V_atom_bcc = V/N; // Volume occupied by one atom, metre cube\n",
+"// For fcc structure\n",
+"r = 1.292e-010; // Atomic radius of fcc structure of iron, m\n",
+"a = 2*sqrt(2)*r; // Lattice parameter of fcc structure of iron, m\n",
+"V = a^3; // Volume of fcc unit cell, metre cube\n",
+"N = 4; // Number of atoms per unit cell in fcc structure\n",
+"V_atom_fcc = V/N; // Volume occupied by one atom, metre cube\n",
+"delta_V = (V_atom_bcc-V_atom_fcc)/V_atom_bcc*100; // Percentage change in volume due to structural change of iron\n",
+"printf('\nThe percentage change in volume of iron = %4.2f percent', delta_V);\n",
+"\n",
+"// Result \n",
+"// The percentage change in volume of iron = 0.49 percent "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: Lattice_parameter_of_NaCl_crystal.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex6.1 : Lattice parameter of NaCl crystal : Page-134 (2010)\n",
+"M = 23+35.5; // Molecular weight of NaCl, kg per k-mole\n",
+"d = 2.18e+03; // Density of rock salt, kg per metre cube\n",
+"n = 4; // No. of atoms per unit cell for an fcc lattice of NaCl crystal\n",
+"N = 6.023D+26; // Avogadro's No., atoms/k-mol\n",
+"// Volume of the unit cell is given by\n",
+"// a^3 = M*n/(N*d)\n",
+"// Solving for a\n",
+"a = (n*M/(d*N))^(1/3); // Lattice constant of unit cell of NaCl\n",
+"printf('\nLattice parameter for the NaCl crystal = %4.2f angstrom', a/1e-010);\n",
+"\n",
+"// Result \n",
+"// Lattice parameter for the NaCl crystal = 5.63 angstrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: Miller_indices_of_the_crystal_plane.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex6.2 : Miller indices of the crystal plane : Page-134 (2010)\n",
+"m = 3; n = 2; p = 1; // Coefficients of intercepts along three axes\n",
+"m_inv = 1/m; // Reciprocate the first coefficient\n",
+"n_inv = 1/n; // Reciprocate the second coefficient\n",
+"p_inv = 1/p; // Reciprocate the third coefficient\n",
+"mul_fact = double(lcm(int32([m,n,p]))); // Find l.c.m. of m,n and p\n",
+"m1 = m_inv*mul_fact; // Clear the first fraction\n",
+"m2 = n_inv*mul_fact; // Clear the second fraction\n",
+"m3 = p_inv*mul_fact; // Clear the third fraction\n",
+"printf('\nThe required miller indices are : (%d %d %d) ', m1,m2,m3);\n",
+"\n",
+"// Result \n",
+"// The required miller indices are : (2 3 6) "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: Indices_of_lattice_plane.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex6.3 : Indices of lattice plane : Page-135 (2010)\n",
+"m = 2; // Coefficient of intercept along x-axis\n",
+"n = %inf; // Coefficient of intercept along y-axis\n",
+"p = 3/2; // Coefficient of intercept along z-axis\n",
+"m_inv = 1/m; // Reciprocate m\n",
+"n_inv = 1/n; // Reciprocate n\n",
+"p_inv = 1/p; // Reciprocate p\n",
+"mul_fact = 6; // multiplicative factor, L.C.M. of 2 and 3 i.e. 6\n",
+"m1 = m_inv*mul_fact; // Clear the first fraction\n",
+"m2 = n_inv*mul_fact; // Clear the second fraction\n",
+"m3 = p_inv*mul_fact; // Clear the third fraction\n",
+"printf('\nThe required miller indices are : %d, %d, %d ', m1,m2,m3);\n",
+"\n",
+"// Result\n",
+"// The required miller indices are : 3, 0, 4 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5: Interplanar_spacing_in_cubic_crystal.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex6.5 : Interplanar spacing in cubic crystal: Page-136 (2010)\n",
+"\n",
+"// For (110) planes\n",
+"h = 1; k = 1; l = 0; // Miller Indices for planes in a cubic crystal\n",
+"a = 0.43e-009; // Interatomic spacing, m\n",
+"d = a/(h^2+k^2+l^2)^(1/2); // The interplanar spacing for cubic crystals, m\n",
+"printf('\nThe interplanar spacing between consecutive (110) planes = %4.2f angstrom', d/1e-010);\n",
+"\n",
+"// For (212) planes\n",
+"h = 2; k = 1; l = 2; // Miller Indices for planes in a cubic crystal\n",
+"a = 4.21D-10; // Interatomic spacing, m\n",
+"d = a/(h^2+k^2+l^2)^(1/2); // The interplanar spacing for cubic crystals, m\n",
+"printf('\nThe interplanar spacing between consecutive (212) planes = %4.3f angstrom', d/1e-010);\n",
+"\n",
+"// Result\n",
+"// The interplanar spacing between consecutive (110) planes = 3.04 angstrom\n",
+"// The interplanar spacing between consecutive (212) planes = 1.403 angstrom \n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: Interplanar_spacing_in_cubic_crystal.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex6.6 : Interplanar spacing in cubic crystal: Page-136 (2010)\n",
+"h = 2; k = 3; l = 1; // Miller Indices for planes in a cubic crystal\n",
+"r = 0.175e-009; // Atomic radius of fcc lattice, m\n",
+"a = 2*sqrt(2)*r; // Interatomic spacing of fcc lattice, m\n",
+"d = a/(h^2+k^2+l^2)^(1/2); // The interplanar spacing for cubic crystals, m\n",
+"printf('\nThe interplanar spacing between consecutive (231) planes = %4.2f ansgtrom', d/1e-010);\n",
+"\n",
+"// Result\n",
+"// The interplanar spacing between consecutive (231) planes = 1.32 ansgtrom \n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.7: ngle_of_reflection_by_using_wavelength_of_X_ray.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex6.7 : Angle of reflection by using wavelength of X-ray: Page-136 (2010)\n",
+"lambda = 1.440e-010; // Wavelength of X-rays, m\n",
+"d = 2.8e-010; // Interplanar spacing of rocksalt crystal, m\n",
+"// 2*d*sin(theta) = n*lambda **Bragg's law, n is the order of diffraction\n",
+"// Solving for theta, we have\n",
+"\n",
+"// For Ist Order diffraction\n",
+"n = 1;\n",
+"theta = asind(n*lambda/(2*d)); // Angle of diffraction, degrees\n",
+"printf('\nThe angle of reflection for first order diffraction = %4.1f degrees', theta);\n",
+"\n",
+"// For IInd Order diffraction\n",
+"n = 2;\n",
+"theta = asind(n*lambda/(2*d)); // Angle of diffraction, degrees\n",
+"printf('\nThe angle of reflection for first order diffraction = %4.1f degrees', theta);\n",
+"\n",
+"// Result\n",
+"// The angle of reflection for first order diffraction = 14.9 degrees\n",
+"// The angle of reflection for first order diffraction = 30.9 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.8: Actual_volume_occupied_by_the_spheres_in_fcc_structure.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex6.8 : Actual volume occupied by the spheres in fcc structure Page-136 (2010)\n",
+"N = 8*1/8 + 6*1/2; // total number of spheres in a unit cell\n",
+"a = 1; // For convenience, assume interatomic spacing to be unity, m\n",
+"r = a/(2*sqrt(2)); // The atomic radius, m\n",
+"V_atom = N*4/3*%pi*r^3; // Volume of atoms, metre cube\n",
+"V_uc = a^3; // Volume of unit cell, metre cube\n",
+"printf('\nThe percentage of actual volume occupied by the spheres in fcc structure = %4.2f percent', V_atom/V_uc*100);\n",
+"\n",
+"// Result\n",
+"// The percentage of actual volume occupied by the spheres in fcc structure = 74.05 percent "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.9: X_ray_Diffraction_by_crystal_planes.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex6.9 : X-ray Diffraction by crystal planes: Page-137 (2010)\n",
+"// For (221) planes\n",
+"h = 2; k = 2; l = 1; // Miller Indices for planes in a cubic crystal\n",
+"a = 2.68e-010; // Interatomic spacing, m\n",
+"n = 1; // First Order of diffraction \n",
+"theta = 8.5; // Glancing angle at which Bragg's reflection occurs, degrees\n",
+"d = a/(h^2+k^2+l^2)^(1/2); // The interplanar spacing for cubic crystal, m\n",
+"lambda = 2*d*sind(theta); // Bragg's Law for wavelength of X-rays, m\n",
+"n = 2; // Second order of diffraction\n",
+"theta = asind(n*lambda/(2*d)); // Angle at which second order Bragg reflection occurs, degrees\n",
+"printf('\nThe interplanar spacing between consecutive (221) planes = %5.3e', d);\n",
+"printf('\nThe wavelength of X-rays = %5.3f angstrom', lambda/1e-010);\n",
+"printf('\nThe angle at which second order Bragg reflection occurs = %4.1f degrees', theta);\n",
+"\n",
+"// Result\n",
+"// The interplanar spacing between consecutive (221) planes = 8.933e-011\n",
+"// The wavelength of X-rays = 0.264 angstrom\n",
+"// The angle at which second order Bragg reflection occurs = 17.2 degrees "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: Variation_of_critical_magnetic_field_with_temperature.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.1 : Variation of critical magnetic field with temperature : Page-152 (2010)\n",
+"T_c = 3.722; // Critical temperature of superconducting transition, kelvin\n",
+"B_c0 = 0.0306; // Critical magnetic field to destroy superconductivity, tesla\n",
+"T = 2; // Temperature at which critical magnetic field is to be found out, kelvin\n",
+"B_cT = B_c0*(1-(T/T_c)^2);\n",
+"printf('\nThe critical magnetic field at %d K = %6.4f T', T, B_cT);\n",
+"\n",
+"// Result \n",
+"// The critical magnetic field at 2 K = 0.0218 T s"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G_Aruldhas/7-SUPERCONDUCTIVITY.ipynb b/Engineering_Physics_by_G_Aruldhas/7-SUPERCONDUCTIVITY.ipynb
new file mode 100644
index 0000000..23c2a84
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/7-SUPERCONDUCTIVITY.ipynb
@@ -0,0 +1,169 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: SUPERCONDUCTIVITY"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: Frequency_of_Josephson_current.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.2 : Frequency of Josephson current : Page-152 (2010)\n",
+"V = 1e-06; // DC voltage applied across the Josephson junction, volt\n",
+"e = 1.6e-019; // Charge on an electron, C\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"f = 2*e*V/h; // Frequency of Josephson current, Hz\n",
+"printf('\nThe frequency of Josephson current = %5.1f MHz', f/1e+06);\n",
+"\n",
+"// Result \n",
+"// The frequency of Josephson current = 482.9 MHz "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: Superconducting_energy_gap_at_0K.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.3 : Superconducting energy gap at 0K : Page-152 (2010)\n",
+"T_c = 0.517; // Critical temperature for cadmium, K\n",
+"k = 1.38e-023; // Boltzmann constant, J/K\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"E_g = 3.5*k*T_c/e; // Superconducting energy gap at absolute zero, eV\n",
+"printf('\nThe superconducting energy gap for Cd at absolute zero = %4.2e eV',E_g);\n",
+"\n",
+"// Result \n",
+"// The superconducting energy gap for Cd at absolute zero = 1.56e-004 eV"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: Wavelength_of_photon_to_break_up_a_Cooper_pair.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.4 : Wavelength of photon to break up a Cooper-pair: Page-152 (2010)\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"c = 3e+08; // Speed of light in free space, m/s\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"E_g = 1.5e-004; // Superconducting energy gap for a material, eV\n",
+"// As E_g = h*f = h*c/lambda, solving for lambda\n",
+"lambda = h*c/(E_g*e); // Wavelength of photon to break up a Cooper-pair, m\n",
+"printf('\nThe wavelength of photon to break up a Cooper-pair = %4.2e m', lambda);\n",
+"\n",
+"// Result \n",
+"// The wavelength of photon to break up a Cooper-pair = 8.28e-003 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5: Variation_of_London_penetration_depth_with_temperature.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.5: Variation of London penetration depth with temperature: Page-153 (2010)\n",
+"lambda_0 = 37e-009; // Penetration depth of lead at 0 kelvin, m\n",
+"T_c = 7.193; // Critical temperature of superconducting transition for lead, kelvin\n",
+"T = 5.2; // Temperature at which penetration depth for lead becomes lambda_T, kelvin \n",
+"lambda_T = lambda_0*(1-(T/T_c)^4)^(-1/2); // Penetration depth of lead at 5.2 kelvin, m\n",
+"printf('\nThe penetration depth of lead at %3.1f K = %4.1f nm',T, lambda_T/1e-009);\n",
+"\n",
+"// Result\n",
+"// The penetration depth of lead at 5.2 K = 43.4 nm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: Isotope_Effect_in_mercury.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex7.6: Isotope Effect in mercury: Page-153 (2010)\n",
+"M1 = 199; // Mass of an isotope of mercury, amu\n",
+"T_C1 = 4.185; // Transition temperature of the isoptope of Hg, K\n",
+"T_C2 = 4.153; // Transition temperature of another isoptope of Hg, K\n",
+"alpha = 0.5; // Isotope coefficient\n",
+"M2 = M1*(T_C1/T_C2)^(1/alpha); // Mass of another isotope of mercury, amu\n",
+"printf('\nThe mass of another isotope of mercury at %5.3f K = %6.2f amu',T_C2, M2);\n",
+"\n",
+"// Result\n",
+"// The mass of another isotope of mercury at 4.153 K = 202.08 amu "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G_Aruldhas/8-SPECIAL_THEORY_OF_RELATIVITY.ipynb b/Engineering_Physics_by_G_Aruldhas/8-SPECIAL_THEORY_OF_RELATIVITY.ipynb
new file mode 100644
index 0000000..07c28ec
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/8-SPECIAL_THEORY_OF_RELATIVITY.ipynb
@@ -0,0 +1,440 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: SPECIAL THEORY OF RELATIVITY"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.10: Rate_of_decreasing_mass_of_sun.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.10: Page-175 (2010)\n",
+"c = 3e+008; // Speed of light in vacuum, m/s\n",
+"dE = 4e+026; // Energy radiated per second my the sun, J/s\n",
+"dm = dE/c^2; // Rate of decrease of mass of sun, kg/s\n",
+"printf('\nThe rate of decrease of mass of sun = %4.2e kg/s', dm);\n",
+"\n",
+"// Result\n",
+"// The rate of decrease of mass of sun = 4.44e+009 kg/s"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.11: Relativistic_mass_energy_relation.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.11: Page-175 (2010)\n",
+"c = 1; // For simplicity assume speed of light to be unity, m/s\n",
+"m0 = 9.1e-031; // Mass of the electron, kg\n",
+"E0 = 0.512; // Rest energy of electron, MeV\n",
+"T = 10; // Kinetic energy of electron, MeV\n",
+"E = T + E0; // Total energy of electron, MeV\n",
+"// From Relativistic mass-energy relation\n",
+"// E^2 = c^2*p^2 + m0^2*c^4, solving for p\n",
+"p = sqrt(E^2-m0^2*c^4)/c; // Momentum of the electron, MeV\n",
+"// As E = E0/sqrt(1-(u/c)^2), solving for u\n",
+"u = sqrt(1-(E0/E)^2)*c; // Velocity of the electron, m/s\n",
+"printf('\nThe momentum of the electron = %4.1f/c MeV', p);\n",
+"printf('\nThe velocity of the electron = %6.4fc', u);\n",
+"\n",
+"// Result\n",
+"// The momentum of the electron = 10.5/c MeV\n",
+"// The velocity of the electron = 0.9988c "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.13: Mass_from_relativistic_energy.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.13: Page-176 (2010)\n",
+"c = 3e+008; // Speed of light in vacuum, m/s\n",
+"E = 4.5e+017; // Total energy of object, J\n",
+"px = 3.8e+008; // X-component of momentum, kg-m/s\n",
+"py = 3e+008; // Y-component of momentum, kg-m/s\n",
+"pz = 3e+008; // Z-component of momentum, kg-m/s\n",
+"p = sqrt(px^2+py^2+px^2); // Total momentum of the object, kg-m/s\n",
+"// From Relativistic mass-energy relation\n",
+"// E^2 = c^2*p^2 + m0^2*c^4, solving for m0\n",
+"m0 = sqrt(E^2/c^4 - p^2/c^2); // Rest mass of the body, kg\n",
+"printf('\nThe rest mass of the body = %4.2f kg', m0);\n",
+"\n",
+"// Result\n",
+"// The rest mass of the body = 4.56 kg "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.14: Relativistic_momentum_of_high_speed_probe.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.14: Page-176 (2010)\n",
+"c = 3e+008; // Speed of light in vacuum, m/s\n",
+"m = 50000; // Mass of high speed probe, kg\n",
+"u = 0.8*c; // Speed of the probe, m/s\n",
+"p = m*u/sqrt(1-(u/c)^2); // Momentum of the probe, kg-m/s\n",
+"printf('\nThe momentum of the high speed probe = %1g kg-m/s', p);\n",
+"\n",
+"// Result\n",
+"// The momentum of the high speed probe = 2e+013 kg-m/s "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.15: Moving_electron_subjected_to_the_electric_field.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.15: Page-177 (2010)\n",
+"e = 1.6e-019; // Electronic charge, C = Energy equivalent of 1 eV, J/eV\n",
+"m0 = 9.11e-031; // Rest mass of electron, kg\n",
+"c = 3e+008; // Speed of light in vacuum, m/s\n",
+"u1 = 0.98*c; // Inital speed of electron, m/s\n",
+"u2 = 0.99*c; // Final speed of electron, m/s\n",
+"m1 = m0/sqrt(1-(u1/c)^2); // Initial relativistic mass of electron, kg\n",
+"m2 = m0/sqrt(1-(u2/c)^2); // Final relativistic mass of electron, kg\n",
+"dm = m2 - m1; // Change in relativistic mass of the electron, kg\n",
+"W = dm*c^2; // Work done on the electron to change its velocity, J\n",
+"// As W = eV, V = accelerating potential, solving for V\n",
+"V = W/e; // Accelerating potential, volt\n",
+"printf('\nThe change in relativistic mass of the electron = %4.1e kg', dm);\n",
+"printf('\nThe work done on the electron to change its velocity = %4.2f MeV', W/(e*1e+006));\n",
+"printf('\nThe accelerating potential = %4.2e volt', V);\n",
+"\n",
+"// Result\n",
+"// The change in relativistic mass of the electron = 1.9e-030 kg\n",
+"// The work done on the electron to change its velocity = 1.06 MeV\n",
+"// The accelerating potential = 1.06e+006 volt"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: Relativistic_length_contraction.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.1: Page-171 (2010)\n",
+"L_0 = 1; // For simplicity, we assume classical length to be unity, m\n",
+"c = 1; // For simplicity assume speed of light to be unity, m/s\n",
+"L = (1-1/100)*L_0; // Relativistic length, m\n",
+"// Relativistic length contraction gives\n",
+"// L = L_0*sqrt(1-v^2/c^2), solving for v\n",
+"v = sqrt(1-(L/L_0)^2)*c; // Speed at which relativistic length is 1 percent of the classical length, m/s\n",
+"printf('\nThe speed at which relativistic length is 1 percent of the classical length = %5.3fc', v);\n",
+"\n",
+"// Result\n",
+"// The speed at which relativistic length is 1 percent of the classical length = 0.141c "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: Time_Dilatio.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.2: Page-171 (2010)\n",
+"c = 1; // For simplicity assume speed of light to be unity, m/s\n",
+"v = 0.9*c; // Speed at which beam of particles travel, m/s\n",
+"delta_t = 5e-006; // Mean lifetime of particles as observed in the Lab. frame, s\n",
+"delta_tau = delta_t*sqrt(1-(v/c)^2); // Proper lifetime of particle as per Time Dilation rule, s\n",
+"printf('\nThe proper lifetime of particle = %4.2e s', delta_tau);\n",
+"\n",
+"// Result\n",
+"// The proper lifetime of particle = 2.18e-006 s\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: Relativistic_velocity_additio.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.4: Page-172 (2010)\n",
+"c = 1; // For simplicity assume speed of light to be unity, m/s\n",
+"v = 0.6*c; // Speed with which the rocket leaves the earth, m/s\n",
+"u_prime = 0.9*c; // Relative speed of second rocket w.r.t. the first rocket, m/s\n",
+"u = (u_prime+v)/(1+(u_prime*v)/c^2); // Speed of second rocket for same direction of firing as per Velocity Addition Rule, m/s\n",
+"printf('\nThe speed of second rocket for same direction of firing = %5.3fc', u);\n",
+"u = (-u_prime+v)/(1-(u_prime*v)/c^2); // Speed of second rocket for opposite direction of firing as per Velocity Addition Rule, m/s\n",
+"printf('\nThe speed of second rocket for opposite direction of firing = %5.3fc', u);\n",
+"\n",
+"// Result\n",
+"// The speed of second rocket for same direction of firing = 0.974c\n",
+"// The speed of second rocket for opposite direction of firing = -0.652c"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: Relativistic_effects_as_observed_for_spaceship.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.5: Page-172 (2010)\n",
+"c = 1; // For simplicity assume speed of light to be unity, m/s\n",
+"L0 = 1; // For simplicity assume length in spaceship's frame to be unity, m\n",
+"L = 1/2*L0; // Length as observed on earth, m\n",
+"// Relativistic length contraction gives\n",
+"// L = L_0*sqrt(1-v^2/c^2), solving for v\n",
+"v = sqrt(1-(L/L0)^2)*c; // Speed at which length of spaceship is observed as half from the earth frame, m/s\n",
+"tau = 1; // Unit time in the spaceship's frame, s\n",
+"t = tau/sqrt(1-(v/c)^2); // Time dilation of the spaceship's unit time, s\n",
+"printf('\nThe speed at which length of spaceship is observed as half from the earth frame = %5.3fc', v);\n",
+"printf('\nThe time dilation of the spaceship unit time = %1g*tau', t);\n",
+"\n",
+"// Result\n",
+"// The speed at which length of spaceship is observed as half from the earth frame = 0.866c\n",
+"// The time dilation of the spaceship unit time = 2*tau"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6: Time_difference_and_distance_between_the_events.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.6: Page-172 (2010)\n",
+"c = 3e+008; // Speed of light in vacuum, m/s\n",
+"v = 0.6*c; // Velocity with which S2 frame moves relative to S1 frame, m/s\n",
+"L_factor = 1/sqrt(1-(v/c)^2); // Lorentz factor\n",
+"t1 = 2e-007; // Time for which first event occurs, s\n",
+"t2 = 3e-007; // Time for which second event occurs, s\n",
+"x1 = 10; // Position at which first event occurs, m\n",
+"x2 = 40; // Position at which second event occurs, m\n",
+"delta_t = L_factor*(t2 - t1)+L_factor*v/c^2*(x1 - x2); // Time difference between the events, s\n",
+"delta_x = L_factor*(x2 - x1)-L_factor*v*(t2 - t1); // Distance between the events, m\n",
+"printf('\nThe time difference between the events = %3.1e s', delta_t);\n",
+"printf('\nThe distance between the events = %2d m', delta_x);\n",
+"\n",
+"// Result\n",
+"// The time difference between the events = 5.0e-008 s\n",
+"// The distance between the events = 15 m"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7: Speed_of_unstable_particle_in_the_Laboratory_frame.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.7: Page-173 (2010)\n",
+"c = 3e+008; // Speed of light in vacuum, m/s\n",
+"tau = 2.6e-008; // Mean lifetime the particle in its own frame, s\n",
+"d = 20; // Distance which the unstable particle travels before decaying, m\n",
+"// As t = d/v and also t = tau/sqrt(1-(v/c)^2), so that\n",
+"// d/v = tau/sqrt(1-(v/c)^2), solving for v\n",
+"v = sqrt(d^2/(tau^2+(d/c)^2)); // Speed of the unstable particle in Lab. frame, m/s\n",
+"printf('\nThe speed of the unstable particle in Lab. frame = %3.1e m/s', v)\n",
+"\n",
+"// Result\n",
+"// The speed of the unstable particle in Lab. frame = 2.8e+008 m/s"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.8: Relativistic_effects_applied_to_mu_meso.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.8: Page-174 (2010)\n",
+"c = 1; // For simplicity assume speed of light to be unity, m/s\n",
+"me = 1; // For simplicity assume mass of electron to be unity, kg\n",
+"tau = 2.3e-006; // Average lifetime of mu-meson in rest frame, s\n",
+"t = 6.9e-006; // Average lifetime of mu-meson in laboratory frame, s\n",
+"// Fromm Time Dilation Rule, tau = t*sqrt(1-(v/c)^2), solving for v\n",
+"v = sqrt(1-(tau/t)^2)*c; // Speed of mu-meson in the laboratory frame, m/s\n",
+"c\n",
+"m0 = 207*me; // Rest mass of mu-meson, kg\n",
+"m = m0/sqrt(1-(v/c)^2); // Relativistic variation of mass with velocity, kg\n",
+"me = 9.1e-031; // Mass of an electron, kg\n",
+"c = 3e+008; // Speed of light in vacuum, m/s\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"T = (m*me*c^2 - m0*me*c^2)/e; // Kinetic energy of mu-meson, J \n",
+"printf('\nThe speed of mu-meson in the laboratory frame = %6.4fc', v);\n",
+"printf('\nThe effective mass of mu-meson = %3d me', m);\n",
+"printf('\nThe kinetic energy of mu-meson = %5.1f MeV', T/1e+006);\n",
+"\n",
+"// Result\n",
+"// The speed of mu-meson in the laboratory frame = 0.9428c\n",
+"// The effective mass of mu-meson = 620 me\n",
+"// The kinetic energy of mu-meson = 211.9 MeV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.9: Speed_of_moving_mass.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.9: Page-174 (2010)\n",
+"c = 1; // For simplicity assume speed of light to be unity, m/s\n",
+"m0 = 1; // For simplicity assume rest mass to be unity, kg\n",
+"m = (20/100+1)*m0; // Mass in motion, kg\n",
+"// As m = m0/sqrt(1-(u/c)^2), solving for u\n",
+"u = sqrt(1-(m0/m)^2)*c; // Speed of moving mass, m/s \n",
+"printf('\nThe speed of moving body, u = %5.3fc', u);\n",
+"\n",
+"// Result\n",
+"// The speed of moving body, u = 0.553c "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G_Aruldhas/9-QUANTUM_MECHANICS.ipynb b/Engineering_Physics_by_G_Aruldhas/9-QUANTUM_MECHANICS.ipynb
new file mode 100644
index 0000000..a1a32c2
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/9-QUANTUM_MECHANICS.ipynb
@@ -0,0 +1,205 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: QUANTUM MECHANICS"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.14: Probability_of_electron_moving_in_1D_box.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.14: Probability of electron moving in 1D box : Page-207 (2010)\n",
+"a = 2e-010; // Width of 1D box, m\n",
+"x1 = 0; // Position of first extreme of the box, m\n",
+"x2 = 1e-010; // Position of second extreme of the box, m\n",
+"P = integrate('2/a*(sin(2*%pi*x/a))^2', 'x', x1, x2); // The probability of finding the electron between x = 0 and x = 1e-010\n",
+"printf('\nThe probability of finding the electron between x = 0 and x = 1e-010 = %3.1f', P);\n",
+"\n",
+"// Result\n",
+"// The probability of finding the electron between x = 0 and x = 1e-010 = 0.5 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: De_broglie_wavelength_of_an_electron_from_accelerating_potential.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.1: De-broglie wavelength of an electron from accelerating potential : Page-202 (2010)\n",
+"V = 100; // Accelerating potential for electron, volt\n",
+"lambda = sqrt(150/V)*1e-010; // de-Broglie wavelength of electron, m\n",
+"printf('\nThe De-Broglie wavelength of electron = %4.2e m', lambda);\n",
+"\n",
+"// Result\n",
+"// The De-Broglie wavelength of electron = 1.22e-010 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: De_broglie_wavelength_of_an_electron_from_kinetic_energy.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.2: De-broglie wavelength of an electron from kinetic energy : Page-203 (2010)\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"m = 9.1e-031; // Mass of the electron, kg\n",
+"Ek = 10; // Kinetic energy of electron, eV\n",
+"// Ek = p^2/(2*m), solving for p\n",
+"p = sqrt(2*m*Ek*e); // Momentum of the electron, kg-m/s\n",
+"lambda = h/p ; // de-Broglie wavelength of electron from De-Broglie relation, m\n",
+"printf('\nThe de-Broglie wavelength of electron = %4.2e nm', lambda/1e-009);\n",
+"\n",
+"// Result\n",
+"// The de-Broglie wavelength of electron = 3.88e-001 nm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4: Uncertainty_principle_for_position_and_momentum.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.4: Uncertainty principle for position and momentum: Page-203 (2010)\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"m = 9.1e-031; // Mass of the electron, kg\n",
+"v = 1.1e+006; // Speed of the electron, m/s\n",
+"p = m*v; // Momentum of the electron, kg-m/s\n",
+"dp = 0.1/100*p; // Uncertainty in momentum, kg-m/s\n",
+"h_bar = h/(2*%pi); // Reduced Planck's constant, Js\n",
+"// From Heisenberg uncertainty principle,\n",
+"// dx*dp = h_bar/2, solving for dx\n",
+"dx = h_bar/(2*dp); // Uncertainty in position, m\n",
+"printf('\nThe uncertainty in position of electron = %4.2e m', dx);\n",
+"\n",
+"// Result\n",
+"// The uncertainty in position of electron = 5.27e-008 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5: Uncertainty_principle_for_energy_and_time.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.5: Uncertainty principle for energy and time: Page-203 (2010)\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"dt = 1e-008; // Uncertainty in time, s\n",
+"h_bar = h/(2*%pi); // Reduced Planck's constant, Js\n",
+"// From Heisenberg uncertainty principle,\n",
+"// dE*dt = h_bar/2, solving for dE\n",
+"dE = h_bar/(2*dt*e); // Uncertainty in energy of the excited state, m\n",
+"printf('\nThe uncertainty in energy of the excited state = %4.2e eV', dE);\n",
+"\n",
+"// Result\n",
+"// The uncertainty in energy of the excited state = 3.30e-008 eV"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.6: Width_of_spectral_line_from_Uncertainty_principle.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.6: Width of spectral line from Uncertainty principle: Page-204 (2010)\n",
+"c = 3e+008; // Speed of light, m/s\n",
+"dt = 1e-008; // Average lifetime, s\n",
+"lambda = 400e-009; // Wavelength of spectral line, m\n",
+"// From Heisenberg uncertainty principle,\n",
+"// dE = h_bar/(2*dt) and also dE = h*c/lambda^2*d_lambda, which give\n",
+"// h_bar/(2*dt) = h*c/lambda^2*d_lambda, solving for d_lambda\n",
+"d_lambda = lambda^2/(4*%pi*c*dt); // Width of spectral line, m\n",
+"printf('\nThe width of spectral line = %4.2e m', d_lambda);\n",
+"\n",
+"// Result\n",
+"// The width of spectral line = 4.24e-015 m "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}