summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_G_Aruldhas/10-STATISTICAL_MECHANICS.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_G_Aruldhas/10-STATISTICAL_MECHANICS.ipynb')
-rw-r--r--Engineering_Physics_by_G_Aruldhas/10-STATISTICAL_MECHANICS.ipynb155
1 files changed, 155 insertions, 0 deletions
diff --git a/Engineering_Physics_by_G_Aruldhas/10-STATISTICAL_MECHANICS.ipynb b/Engineering_Physics_by_G_Aruldhas/10-STATISTICAL_MECHANICS.ipynb
new file mode 100644
index 0000000..2c4cace
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/10-STATISTICAL_MECHANICS.ipynb
@@ -0,0 +1,155 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: STATISTICAL MECHANICS"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1: Ratio_of_occupancy_of_two_states.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex10.1: Page-222 (2010)\n",
+"k = 1.38e-023; // Boltzmann constant, J/K\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"g1 = 2; // The degeneracy of ground state\n",
+"g2 = 8; // The degeneracy of excited state\n",
+"delta_E = 10.2; // Energy of excited state above the ground state, eV\n",
+"T = 6000; // Temperature of the state, K\n",
+"D_ratio = g2/g1; // Ratio of degeneracy of states\n",
+"N_ratio = D_ratio*exp(-delta_E/(k*T/e)); // Ratio of occupancy of the excited to the ground state\n",
+"printf('\nThe ratio of occupancy of the excited to the ground state at %d K = %4.2e', T, N_ratio);\n",
+"\n",
+"// Result\n",
+"// The ratio of occupancy of the excited to the ground state at 6000 K = 1.10e-008 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4: Number_density_and_fermi_energy_of_silver.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex10.4: Page-223 (2010)\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"N_A = 6.023e+023; // Avogadro's number\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"me = 9.1e-031; // Mass of electron, kg\n",
+"rho = 10.5; // Density of silver, g per cm\n",
+"m = 108; // Molecular mass of silver, g/mol\n",
+"N_D = rho*N_A/(m*1e-006); // Number density of conduction electrons, per metre cube\n",
+"E_F = h^2/(8*me)*(3/%pi*N_D)^(2/3);\n",
+"printf('\nThe number density of conduction electrons = %4.2e per metre cube', N_D);\n",
+"printf('\nThe Fermi energy of silver = %4.2f eV', E_F/e);\n",
+"\n",
+"// Result\n",
+"// The number density of conduction electrons = 5.86e+028 per metre cube\n",
+"// The Fermi energy of silver = 5.51 eV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5: Electronic_contribution_to_the_molar_heat_capacity_of_silver.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex10.5: Page-224 (2010)\n",
+"N_A = 6.023e+023; // Avogadro's number\n",
+"k = 1.38e-023; // Boltzmann constant, J/K\n",
+"T = 293; // Temperature of sodium, K\n",
+"E_F = 3.24; // Fermi energy of sodium, eV\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"C_v = %pi^2*N_A*k^2*T/(2*E_F*e); // Molar specific heat of sodium, J/mole/K\n",
+"printf('\nThe molar specific heat of sodium = %4.2f J/mole/K', C_v);\n",
+"\n",
+"// Result\n",
+"// The molar specific heat of sodium = 0.32 J/mole/K"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6: Fermi_energy_and_mean_energy_of_aluminium.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex10.6: Page-224 (2010)\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"h = 6.626e-034; // Planck's constant, Js\n",
+"m = 9.1e-031; // Mass of the electron, kg\n",
+"N_D = 18.1e+028; // Number density of conduction electrons in Al, per metre cube\n",
+"E_F = h^2/(8*m)*(3/%pi*N_D)^(2/3); // Fermi energy of aluminium, J\n",
+"Em_0 = 3/5*E_F; // Mean energy of the electron at 0K, J\n",
+"printf('\nThe Fermi energy of aluminium = %5.2f eV', E_F/e);\n",
+"printf('\nThe mean energy of the electron at 0K = %4.2f eV', Em_0/e);\n",
+"\n",
+"// Result\n",
+"// The Fermi energy of aluminium = 11.70 eV\n",
+"// The mean energy of the electron at 0K = 7.02 eV "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}