summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb
blob: 504a0a32e62b3d5cf4f9ebdc5e26177eaba39041 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 13: DIELECTRIC PROPERTIES OF MATERIALS"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 13.1: Electronic_Polarizability_of_atom.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex13.1: Electronic Polarizability of atom : Page-287 (2010)\n",
"epsilon_0 = 8.854e-012;    // Absolute electrical permittivity of free space, farad per metre\n",
"R = 0.52e-010;    // Radius of hydrogen atom, angstrom\n",
"n = 9.7e+026;    // Number density of hydrogen, per metre cube\n",
"alpha_e = 4*%pi*epsilon_0*R^3;    // Electronic polarizability of hydrogen atom, farad-metre square\n",
"printf('\nThe electronic polarizability of hydrogen atom = %4.2e farad-metre square', alpha_e);\n",
"\n",
"// Result\n",
"// The electronic polarizability of hydrogen atom = 1.56e-041 farad-metre square"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 13.2: Parallel_plate_capacitor.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex13.2: Parallel plate capacitor: Page-287 (2010)\n",
"epsilon_0 = 8.854e-012;    // Absolute electrical permittivity of free space, farad per metre\n",
"A = 100e-004;    // Area of a plate of parallel plate capacitor, metre square\n",
"d = 1e-002;    // Distance between the plates of the capacitor, m\n",
"V = 100;    // Potential applied to the plates of the capacitor, volt\n",
"C = epsilon_0*A/d;    // Capacitance of parallel plate capacitor, farad\n",
"Q = C/V;    // Charge on the plates of the capacitor, coulomb\n",
"printf('\nThe capacitance of parallel plate capacitor = %5.3e F', C);\n",
"printf('\nThe charge on the plates of the capacitor = %5.3e C', Q);\n",
"\n",
"// Result\n",
"// The capacitance of parallel plate capacitor = 8.854e-012 F\n",
"// The charge on the plates of the capacitor = 8.854e-014 C"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 13.3: Dielectric_displacement_of_medium.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex13.3: Dielectric displacement of medium: Page-288 (2010)\n",
"epsilon_0 = 8.854e-012;    // Absolute electrical permittivity of free space, farad per metre\n",
"epsilon_r = 5.0;    // Dielectric constant of the material between the plates of capacitor\n",
"V = 15;    // Potential difference applied between the plates of the capacitor, volt\n",
"d = 1.5e-003;    // Separation between the plates of the capacitor, m\n",
"// Electric displacement, D = epsilon_0*epsilon_r*E, as E = V/d, so \n",
"D = epsilon_0*epsilon_r*V/d;    // Dielectric displacement, coulomb per metre square\n",
"printf('\nThe dielectric displacement = %5.3e coulomb per metre square', D);\n",
"\n",
"// Result\n",
"// The dielectric displacement = 4.427e-007 coulomb per metre square "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 13.4: Relative_dielectric_constant.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex13.4: Relative dielectric constant : Page-288 (2010)\n",
"epsilon_0 = 8.854e-012;    // Absolute electrical permittivity of free space, farad per metre\n",
"N = 3.0e+028;    // Number density of solid elemental dielectric, atoms per metre cube\n",
"alpha_e = 1e-040;    // Electronic polarizability, farad metre square\n",
"epsilon_r = 1 + N*alpha_e/epsilon_0;    // Relative dielectric constant of the material\n",
"printf('\nThe Relative dielectric constant of the material = %5.3f', epsilon_r);\n",
"\n",
"// Result\n",
"// The Relative dielectric constant of the material = 1.339 "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 13.5: Atomic_polarizability_of_sulphur.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex13.5: Atomic polarizability of sulphur : Page-288 (2010)\n",
"N_A = 6.023e+023;    // Avogadro's number, per mole\n",
"epsilon_0 = 8.854e-012;    // Absolute electrical permittivity of free space, farad per metre\n",
"epsilon_r = 3.75;    // Relative dielectric constant\n",
"d = 2050;    // Density of sulphur, kg per metre cube\n",
"y = 1/3;    // Internal field constant\n",
"M = 32;    // Atomic weight of sulphur, g/mol\n",
"N = N_A*1e+03*d/M;    // Number density of atoms of sulphur, per metre cube\n",
"// Lorentz relation for local fields give\n",
"// E_local = E + P/(3*epsilon_0) which gives\n",
"// (epsilon_r - 1)/(epsilon_r + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n",
"alpha_e = (epsilon_r - 1)/(epsilon_r + 2)*3*epsilon_0/N;    // Electronic polarizability of sulphur, farad metre square\n",
"printf('\nThe electronic polarizability of sulphur = %5.3e farad metre square', alpha_e);\n",
"\n",
"// Result\n",
"// The electronic polarizability of sulphur = 3.292e-040 farad metre square"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 13.6: Electronic_polarizability_from_refractive_index.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex13.6: Electronic polarizability from refractive index : Page-289 (2010)\n",
"N = 3e+028;    // Number density of atoms of dielectric material, per metre cube\n",
"epsilon_0 = 8.854e-012;    // Absolute electrical permittivity of free space, farad per metre\n",
"n = 1.6;    // Refractive index of dielectric material\n",
"// As (n^2 - 1)/(n^2 + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n",
"alpha_e = (n^2 - 1)/(n^2 + 2)*3*epsilon_0/N;    // Electronic polarizability of dielectric material, farad metre square\n",
"printf('\nThe electronic polarizability of dielectric material = %4.2e farad metre square', alpha_e);\n",
"\n",
"// Result\n",
"// The electronic polarizability of dielectric material = 3.03e-040 farad metre square "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 13.7: Ratio_of_electronic_polarizability_to_ionic_polarizability.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex13.7: Ratio of electronic polarizability to ionic polarizability: Page-289 (2010)\n",
"epsilon_r = 4.9;    // Absolute relative dielectric constant of material, farad per metre\n",
"n = 1.6;    // Refractive index of dielectric material\n",
"// As (n^2 - 1)/(n^2 + 2)*(alpha_e + alpha_i)/alpha_e = N*(alpha_e + alpha_i)/(3*epsilon_0) = (epsilon_r - 1)/(epsilon_r + 2), solving for alpha_i/alpha_e\n",
"alpha_ratio = ((epsilon_r - 1)/(epsilon_r + 2)*(n^2 + 2)/(n^2 - 1) - 1)^(-1);    // Ratio of electronic polarizability to ionic polarizability\n",
"printf('\nThe ratio of electronic polarizability to ionic polarizability = %4.2f', alpha_ratio);\n",
"\n",
"// Result\n",
"// The ratio of electronic polarizability to ionic polarizability = 1.53 "
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}