summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.gz
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.bz2
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb')
-rw-r--r--Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb234
1 files changed, 234 insertions, 0 deletions
diff --git a/Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb b/Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb
new file mode 100644
index 0000000..504a0a3
--- /dev/null
+++ b/Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb
@@ -0,0 +1,234 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 13: DIELECTRIC PROPERTIES OF MATERIALS"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1: Electronic_Polarizability_of_atom.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex13.1: Electronic Polarizability of atom : Page-287 (2010)\n",
+"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n",
+"R = 0.52e-010; // Radius of hydrogen atom, angstrom\n",
+"n = 9.7e+026; // Number density of hydrogen, per metre cube\n",
+"alpha_e = 4*%pi*epsilon_0*R^3; // Electronic polarizability of hydrogen atom, farad-metre square\n",
+"printf('\nThe electronic polarizability of hydrogen atom = %4.2e farad-metre square', alpha_e);\n",
+"\n",
+"// Result\n",
+"// The electronic polarizability of hydrogen atom = 1.56e-041 farad-metre square"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.2: Parallel_plate_capacitor.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex13.2: Parallel plate capacitor: Page-287 (2010)\n",
+"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n",
+"A = 100e-004; // Area of a plate of parallel plate capacitor, metre square\n",
+"d = 1e-002; // Distance between the plates of the capacitor, m\n",
+"V = 100; // Potential applied to the plates of the capacitor, volt\n",
+"C = epsilon_0*A/d; // Capacitance of parallel plate capacitor, farad\n",
+"Q = C/V; // Charge on the plates of the capacitor, coulomb\n",
+"printf('\nThe capacitance of parallel plate capacitor = %5.3e F', C);\n",
+"printf('\nThe charge on the plates of the capacitor = %5.3e C', Q);\n",
+"\n",
+"// Result\n",
+"// The capacitance of parallel plate capacitor = 8.854e-012 F\n",
+"// The charge on the plates of the capacitor = 8.854e-014 C"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.3: Dielectric_displacement_of_medium.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex13.3: Dielectric displacement of medium: Page-288 (2010)\n",
+"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n",
+"epsilon_r = 5.0; // Dielectric constant of the material between the plates of capacitor\n",
+"V = 15; // Potential difference applied between the plates of the capacitor, volt\n",
+"d = 1.5e-003; // Separation between the plates of the capacitor, m\n",
+"// Electric displacement, D = epsilon_0*epsilon_r*E, as E = V/d, so \n",
+"D = epsilon_0*epsilon_r*V/d; // Dielectric displacement, coulomb per metre square\n",
+"printf('\nThe dielectric displacement = %5.3e coulomb per metre square', D);\n",
+"\n",
+"// Result\n",
+"// The dielectric displacement = 4.427e-007 coulomb per metre square "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.4: Relative_dielectric_constant.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex13.4: Relative dielectric constant : Page-288 (2010)\n",
+"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n",
+"N = 3.0e+028; // Number density of solid elemental dielectric, atoms per metre cube\n",
+"alpha_e = 1e-040; // Electronic polarizability, farad metre square\n",
+"epsilon_r = 1 + N*alpha_e/epsilon_0; // Relative dielectric constant of the material\n",
+"printf('\nThe Relative dielectric constant of the material = %5.3f', epsilon_r);\n",
+"\n",
+"// Result\n",
+"// The Relative dielectric constant of the material = 1.339 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.5: Atomic_polarizability_of_sulphur.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex13.5: Atomic polarizability of sulphur : Page-288 (2010)\n",
+"N_A = 6.023e+023; // Avogadro's number, per mole\n",
+"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n",
+"epsilon_r = 3.75; // Relative dielectric constant\n",
+"d = 2050; // Density of sulphur, kg per metre cube\n",
+"y = 1/3; // Internal field constant\n",
+"M = 32; // Atomic weight of sulphur, g/mol\n",
+"N = N_A*1e+03*d/M; // Number density of atoms of sulphur, per metre cube\n",
+"// Lorentz relation for local fields give\n",
+"// E_local = E + P/(3*epsilon_0) which gives\n",
+"// (epsilon_r - 1)/(epsilon_r + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n",
+"alpha_e = (epsilon_r - 1)/(epsilon_r + 2)*3*epsilon_0/N; // Electronic polarizability of sulphur, farad metre square\n",
+"printf('\nThe electronic polarizability of sulphur = %5.3e farad metre square', alpha_e);\n",
+"\n",
+"// Result\n",
+"// The electronic polarizability of sulphur = 3.292e-040 farad metre square"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.6: Electronic_polarizability_from_refractive_index.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex13.6: Electronic polarizability from refractive index : Page-289 (2010)\n",
+"N = 3e+028; // Number density of atoms of dielectric material, per metre cube\n",
+"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n",
+"n = 1.6; // Refractive index of dielectric material\n",
+"// As (n^2 - 1)/(n^2 + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n",
+"alpha_e = (n^2 - 1)/(n^2 + 2)*3*epsilon_0/N; // Electronic polarizability of dielectric material, farad metre square\n",
+"printf('\nThe electronic polarizability of dielectric material = %4.2e farad metre square', alpha_e);\n",
+"\n",
+"// Result\n",
+"// The electronic polarizability of dielectric material = 3.03e-040 farad metre square "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.7: Ratio_of_electronic_polarizability_to_ionic_polarizability.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex13.7: Ratio of electronic polarizability to ionic polarizability: Page-289 (2010)\n",
+"epsilon_r = 4.9; // Absolute relative dielectric constant of material, farad per metre\n",
+"n = 1.6; // Refractive index of dielectric material\n",
+"// As (n^2 - 1)/(n^2 + 2)*(alpha_e + alpha_i)/alpha_e = N*(alpha_e + alpha_i)/(3*epsilon_0) = (epsilon_r - 1)/(epsilon_r + 2), solving for alpha_i/alpha_e\n",
+"alpha_ratio = ((epsilon_r - 1)/(epsilon_r + 2)*(n^2 + 2)/(n^2 - 1) - 1)^(-1); // Ratio of electronic polarizability to ionic polarizability\n",
+"printf('\nThe ratio of electronic polarizability to ionic polarizability = %4.2f', alpha_ratio);\n",
+"\n",
+"// Result\n",
+"// The ratio of electronic polarizability to ionic polarizability = 1.53 "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}