diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.gz all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.bz2 all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.zip |
Initial commit
Diffstat (limited to 'Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb')
-rw-r--r-- | Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb | 234 |
1 files changed, 234 insertions, 0 deletions
diff --git a/Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb b/Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb new file mode 100644 index 0000000..504a0a3 --- /dev/null +++ b/Engineering_Physics_by_G_Aruldhas/13-DIELECTRIC_PROPERTIES_OF_MATERIALS.ipynb @@ -0,0 +1,234 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: DIELECTRIC PROPERTIES OF MATERIALS" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1: Electronic_Polarizability_of_atom.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex13.1: Electronic Polarizability of atom : Page-287 (2010)\n", +"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n", +"R = 0.52e-010; // Radius of hydrogen atom, angstrom\n", +"n = 9.7e+026; // Number density of hydrogen, per metre cube\n", +"alpha_e = 4*%pi*epsilon_0*R^3; // Electronic polarizability of hydrogen atom, farad-metre square\n", +"printf('\nThe electronic polarizability of hydrogen atom = %4.2e farad-metre square', alpha_e);\n", +"\n", +"// Result\n", +"// The electronic polarizability of hydrogen atom = 1.56e-041 farad-metre square" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2: Parallel_plate_capacitor.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex13.2: Parallel plate capacitor: Page-287 (2010)\n", +"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n", +"A = 100e-004; // Area of a plate of parallel plate capacitor, metre square\n", +"d = 1e-002; // Distance between the plates of the capacitor, m\n", +"V = 100; // Potential applied to the plates of the capacitor, volt\n", +"C = epsilon_0*A/d; // Capacitance of parallel plate capacitor, farad\n", +"Q = C/V; // Charge on the plates of the capacitor, coulomb\n", +"printf('\nThe capacitance of parallel plate capacitor = %5.3e F', C);\n", +"printf('\nThe charge on the plates of the capacitor = %5.3e C', Q);\n", +"\n", +"// Result\n", +"// The capacitance of parallel plate capacitor = 8.854e-012 F\n", +"// The charge on the plates of the capacitor = 8.854e-014 C" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3: Dielectric_displacement_of_medium.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex13.3: Dielectric displacement of medium: Page-288 (2010)\n", +"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n", +"epsilon_r = 5.0; // Dielectric constant of the material between the plates of capacitor\n", +"V = 15; // Potential difference applied between the plates of the capacitor, volt\n", +"d = 1.5e-003; // Separation between the plates of the capacitor, m\n", +"// Electric displacement, D = epsilon_0*epsilon_r*E, as E = V/d, so \n", +"D = epsilon_0*epsilon_r*V/d; // Dielectric displacement, coulomb per metre square\n", +"printf('\nThe dielectric displacement = %5.3e coulomb per metre square', D);\n", +"\n", +"// Result\n", +"// The dielectric displacement = 4.427e-007 coulomb per metre square " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.4: Relative_dielectric_constant.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex13.4: Relative dielectric constant : Page-288 (2010)\n", +"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n", +"N = 3.0e+028; // Number density of solid elemental dielectric, atoms per metre cube\n", +"alpha_e = 1e-040; // Electronic polarizability, farad metre square\n", +"epsilon_r = 1 + N*alpha_e/epsilon_0; // Relative dielectric constant of the material\n", +"printf('\nThe Relative dielectric constant of the material = %5.3f', epsilon_r);\n", +"\n", +"// Result\n", +"// The Relative dielectric constant of the material = 1.339 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.5: Atomic_polarizability_of_sulphur.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex13.5: Atomic polarizability of sulphur : Page-288 (2010)\n", +"N_A = 6.023e+023; // Avogadro's number, per mole\n", +"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n", +"epsilon_r = 3.75; // Relative dielectric constant\n", +"d = 2050; // Density of sulphur, kg per metre cube\n", +"y = 1/3; // Internal field constant\n", +"M = 32; // Atomic weight of sulphur, g/mol\n", +"N = N_A*1e+03*d/M; // Number density of atoms of sulphur, per metre cube\n", +"// Lorentz relation for local fields give\n", +"// E_local = E + P/(3*epsilon_0) which gives\n", +"// (epsilon_r - 1)/(epsilon_r + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n", +"alpha_e = (epsilon_r - 1)/(epsilon_r + 2)*3*epsilon_0/N; // Electronic polarizability of sulphur, farad metre square\n", +"printf('\nThe electronic polarizability of sulphur = %5.3e farad metre square', alpha_e);\n", +"\n", +"// Result\n", +"// The electronic polarizability of sulphur = 3.292e-040 farad metre square" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.6: Electronic_polarizability_from_refractive_index.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex13.6: Electronic polarizability from refractive index : Page-289 (2010)\n", +"N = 3e+028; // Number density of atoms of dielectric material, per metre cube\n", +"epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n", +"n = 1.6; // Refractive index of dielectric material\n", +"// As (n^2 - 1)/(n^2 + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n", +"alpha_e = (n^2 - 1)/(n^2 + 2)*3*epsilon_0/N; // Electronic polarizability of dielectric material, farad metre square\n", +"printf('\nThe electronic polarizability of dielectric material = %4.2e farad metre square', alpha_e);\n", +"\n", +"// Result\n", +"// The electronic polarizability of dielectric material = 3.03e-040 farad metre square " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.7: Ratio_of_electronic_polarizability_to_ionic_polarizability.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex13.7: Ratio of electronic polarizability to ionic polarizability: Page-289 (2010)\n", +"epsilon_r = 4.9; // Absolute relative dielectric constant of material, farad per metre\n", +"n = 1.6; // Refractive index of dielectric material\n", +"// As (n^2 - 1)/(n^2 + 2)*(alpha_e + alpha_i)/alpha_e = N*(alpha_e + alpha_i)/(3*epsilon_0) = (epsilon_r - 1)/(epsilon_r + 2), solving for alpha_i/alpha_e\n", +"alpha_ratio = ((epsilon_r - 1)/(epsilon_r + 2)*(n^2 + 2)/(n^2 - 1) - 1)^(-1); // Ratio of electronic polarizability to ionic polarizability\n", +"printf('\nThe ratio of electronic polarizability to ionic polarizability = %4.2f', alpha_ratio);\n", +"\n", +"// Result\n", +"// The ratio of electronic polarizability to ionic polarizability = 1.53 " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |