summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_G_Aruldhas/7-SUPERCONDUCTIVITY.ipynb
blob: 23c2a849ae344f274bef13a6091711c89306f5e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 7: SUPERCONDUCTIVITY"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.2: Frequency_of_Josephson_current.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex7.2 : Frequency of Josephson current : Page-152 (2010)\n",
"V = 1e-06;    // DC voltage applied across the Josephson junction, volt\n",
"e = 1.6e-019;    // Charge on an electron, C\n",
"h = 6.626e-034;    // Planck's constant, Js\n",
"f = 2*e*V/h;    // Frequency of Josephson current, Hz\n",
"printf('\nThe frequency of Josephson current = %5.1f MHz', f/1e+06);\n",
"\n",
"// Result \n",
"// The frequency of Josephson current = 482.9 MHz "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.3: Superconducting_energy_gap_at_0K.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex7.3 : Superconducting energy gap at 0K : Page-152 (2010)\n",
"T_c = 0.517;    // Critical temperature for cadmium, K\n",
"k = 1.38e-023;    // Boltzmann constant, J/K\n",
"e = 1.6e-019;    // Energy equivalent of 1 eV, J/eV\n",
"E_g = 3.5*k*T_c/e;    // Superconducting energy gap at absolute zero, eV\n",
"printf('\nThe superconducting energy gap for Cd at absolute zero = %4.2e eV',E_g);\n",
"\n",
"// Result \n",
"// The superconducting energy gap for Cd at absolute zero = 1.56e-004 eV"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.4: Wavelength_of_photon_to_break_up_a_Cooper_pair.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex7.4 : Wavelength of photon to break up a Cooper-pair: Page-152 (2010)\n",
"e = 1.6e-019;    // Energy equivalent of 1 eV, J/eV\n",
"c = 3e+08;    // Speed of light in free space, m/s\n",
"h = 6.626e-034;    // Planck's constant, Js\n",
"E_g = 1.5e-004;   // Superconducting energy gap for a material, eV\n",
"// As E_g = h*f = h*c/lambda, solving for lambda\n",
"lambda = h*c/(E_g*e);    // Wavelength of photon to break up a Cooper-pair, m\n",
"printf('\nThe wavelength of photon to break up a Cooper-pair = %4.2e m', lambda);\n",
"\n",
"// Result \n",
"// The wavelength of photon to break up a Cooper-pair = 8.28e-003 m "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.5: Variation_of_London_penetration_depth_with_temperature.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex7.5: Variation of London penetration depth with temperature: Page-153 (2010)\n",
"lambda_0 = 37e-009;    // Penetration depth of lead at 0 kelvin, m\n",
"T_c = 7.193;    // Critical temperature of superconducting transition for lead, kelvin\n",
"T = 5.2;    // Temperature at which penetration depth for lead becomes lambda_T, kelvin   \n",
"lambda_T = lambda_0*(1-(T/T_c)^4)^(-1/2);    // Penetration depth of lead at 5.2 kelvin, m\n",
"printf('\nThe penetration depth of lead at %3.1f K = %4.1f nm',T, lambda_T/1e-009);\n",
"\n",
"// Result\n",
"// The penetration depth of lead at 5.2 K = 43.4 nm "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.6: Isotope_Effect_in_mercury.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex7.6: Isotope Effect in mercury: Page-153 (2010)\n",
"M1 = 199;    // Mass of an isotope of mercury, amu\n",
"T_C1 = 4.185;    // Transition temperature of the isoptope of Hg, K\n",
"T_C2 = 4.153;    // Transition temperature of another isoptope of Hg, K\n",
"alpha = 0.5;    // Isotope coefficient\n",
"M2 = M1*(T_C1/T_C2)^(1/alpha);    // Mass of another isotope of mercury, amu\n",
"printf('\nThe mass of another isotope of mercury at %5.3f K = %6.2f amu',T_C2, M2);\n",
"\n",
"// Result\n",
"// The mass of another isotope of mercury at 4.153 K = 202.08 amu "
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}