diff options
author | prashantsinalkar | 2020-04-14 10:19:27 +0530 |
---|---|---|
committer | prashantsinalkar | 2020-04-14 10:23:54 +0530 |
commit | 476705d693c7122d34f9b049fa79b935405c9b49 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Modern_Physics_by_R_A_Serway | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
download | all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.gz all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.bz2 all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.zip |
Initial commit
Diffstat (limited to 'Modern_Physics_by_R_A_Serway')
16 files changed, 3852 insertions, 0 deletions
diff --git a/Modern_Physics_by_R_A_Serway/1-Relativity_I.ipynb b/Modern_Physics_by_R_A_Serway/1-Relativity_I.ipynb new file mode 100644 index 0000000..642bc32 --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/1-Relativity_I.ipynb @@ -0,0 +1,272 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Relativity I" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.10: Relative_velocity_of_recession_of_two_gang_leaders.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex1.10: Pg 30-31 (2005)\n", +"clc; clear;\n", +"// For simplification assume velocity of light equal to unity\n", +"c = 1; // Velocity of light, m/s\n", +"ux = 0.75*c; // Velocity of pack leader alpha, m/s\n", +"gama = 1/(sqrt(1 - (ux/c)^2));\n", +"u_x = 0; // Velocity component of beta measured in S frame, m/s\n", +"U_x = (u_x - ux)/(1 - u_x*ux/c^2); // Velocity component of beta along X-axis measured in S' frame, (Velocity Addition Rule), m/s\n", +"u_y = -0.90*c; // Velocity component of beta long Y-axis measured in S frame\n", +"U_y = u_y/(gama*(1 - u_x*ux/c^2)); // Velocity component of beta along Y-axis measured in S' frame, m/s\n", +"U = sqrt(U_x^2+U_y^2); // Relative velocity of recession of two gang leaders, m/s\n", +"printf('\nThe relative velocity of recession of two gang leaders = %4.2fc', U);\n", +"\n", +"// Result\n", +"// The relative velocity of recession of two gang leaders = 0.96c " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: Period_of_the_pendulum_wrt_different_frames_of_references.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex1.2: Pg.18 (2005)\n", +"clc; clear;\n", +"c = 3e+08; // Velocity of light, m/s\n", +"v = 0.95*c; // Velocity of observer, m/s\n", +"T_proper = 3; // Proper time period of pendulum in rest frame, s\n", +"gama = 1/(sqrt(1 - (v/c)^2)); // Multiplying factor\n", +"// From time-dilation formula, we have\n", +"T = gama*T_proper; // Time period of pendulum w.r.t to moving observer, s\n", +"printf('\nTime period of pendulum w.r.t to moving observer = %3.1f s', T);\n", +"\n", +"// Result\n", +"// Time period of pendulum w.r.t to moving observer = 9.6 s" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: Contraction_of_spaceship.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex1.3: Pg 20 (2005)\n", +"clc; clear;\n", +"c = 3e+08; // Velocity of light, m/s\n", +"L_p = 100; // Proper length of spaceship, m\n", +"v = 0.99*c; // Velocity of spaceship, m/s\n", +"// Using length contracction formula,\n", +"L = L_p*sqrt(1 - (v/c)^2); // Observed length of spaceship, m\n", +"printf('Observed length of spaceship = %2d m', L);\n", +"\n", +"// Result\n", +"// Observed length of spaceship = 14 m" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: Altitude_of_spaceship_wrt_different_frames_of_references.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex1.4: Pg 20 (2005)\n", +"clc; clear;\n", +"c = 3e+08; // Velocity of light, m/s\n", +"L_p = 435; // Proper altitude of spaceship, m\n", +"v = 0.970*c; // Velocity of spaceship, m/s\n", +"// Using length contracction formula,\n", +"L = L_p*sqrt(1 - (v/c)^2); // Observed altitude of spaceship, m\n", +"printf('Observed altitude of spaceship = %2d m', ceil(L));\n", +"\n", +"// Result\n", +"// Observed altitude of spaceship = 106 m" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: Shape_of_spaceship_seen_from_different_frames_of_references.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex1.5: Pg 20 (2005)\n", +"clc; clear;\n", +"c = 3e+08; // Velocity of light, m/s\n", +"L_p = 50; // Proper distance between points x & y of spaceship, m\n", +"v = 0.950*c; // Velocity of spaceship, m/s\n", +"// Using length contracction formula,\n", +"L = L_p*sqrt(1 - (v/c)^2); // Observed distance between points x & y of spaceship, m\n", +"printf('\nObserved distance between points x and y of spaceship = %4.1f m', L);\n", +"printf('\nThe spaceship will get contracted in the direction of motion');\n", +"\n", +"// Result\n", +"// Observed distance between points x and y of spaceship = 15.6 m\n", +"// The spaceship will get contracted in the direction of motion " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: Speed_of_recession_of_the_galaxy_Hydra.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex1.6: Pg 25 (2005)\n", +"clc; clear;\n", +"// For simplification assume velocity of light equal to unity\n", +"c = 1 // Velocity of light, m/s\n", +"lamda_obs = 474e-09; // Wavelength measured by observer, m\n", +"lamda_source = 394e-09; // Wavelength measured in the source's rest frame, m\n", +"v = ((lamda_obs^2 - lamda_source^2)/(lamda_obs^2 + lamda_source^2))*c; // Receding velocity of Hydra, m/s\n", +"printf('\nReceding velocity of Hydra = %5.3fc m/s', v);\n", +"\n", +"// Result\n", +"// Receding velocity of Hydra = 0.183c m/s " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: Relative_velocity_of_spaceships.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex1.8: Pg 30 (2005)\n", +"clc; clear;\n", +"// For simplification assume velocity of light equal to unity\n", +"c = 1; // Velocity of light, m/s\n", +"v = 0.750*c; // Velocity of spaceship A relative to S frame, m/s\n", +"u_x = (-0.850)*c; // Velocity of spaceship B relative to S frame, m/s\n", +"// Using Lorentz velocity transformation\n", +"U_x = (u_x - v)/(1 - u_x*v/c^2); // Velocity of spaceship B with respect to spaceship A, m/s\n", +"printf('\nVelocity of spaceship B with respect to spaceship A = %6.4fc m/s', U_x);\n", +"\n", +"// Result\n", +"// Velocity of spaceship B with respect to spaceship A = -0.9771c m/s" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.9: Velocity_of_ball_wrt_stationary_observer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex1.9: Pg 30 (2005)\n", +"clc; clear;\n", +"// For simplification assume velocity of light equal to unity\n", +"c = 1; // Velocity of light, m/s\n", +"v = 0.800*c; // Velocity of motorcycle w.r.t stationary observer, m/s\n", +"U_x = 0.700*c; // Velocity of ball in the reference frame of motorcyclist, m/s\n", +"// Using inverse Lorentz velocity transformation\n", +"u_x = (U_x + v)/(1 + U_x*v/ c^2); // Velocity of ball relative to stationary observer, m/s\n", +"printf('\nVelocity of ball relative to stationary observer = %6.4fc m/s', u_x);\n", +"\n", +"// Result\n", +"// Velocity of ball relative to stationary observer = 0.9615c m/s" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_R_A_Serway/10-Statistical_Physics.ipynb b/Modern_Physics_by_R_A_Serway/10-Statistical_Physics.ipynb new file mode 100644 index 0000000..c269d82 --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/10-Statistical_Physics.ipynb @@ -0,0 +1,248 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Statistical Physics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1: Population_of_excited_states_with_respect_to_ground_states_in_Hydrogen.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex10.1: Pg 340 (2005)\n", +"clc; clear;\n", +"// Part (a)\n", +"E1 = -13.6; // Energy of ground state, eV\n", +"E2 = -3.40; // Energy of first excited state, eV\n", +"E3 = -1.51; // Energy of second excited state, eV\n", +"g1 = 2; // Degeneracy for ground state\n", +"g2 = 8; // Degeneracy for first excited state\n", +"g3 = 18; // Degeneracy for second excited state\n", +"kB = 8.617e-05; // Boltzmann constant, eV/K\n", +"Ta = 300; // Temperature, K\n", +"// As n_2/n_1 = (g_2*A*e^(-E_2/(k_B*T)))/(g_1*A*e^(-E_1/(k_B*T))), on simplifying we get\n", +"N21 = (g2/g1)*exp((E1 - E2)/(kB*Ta)); // The population of first excited state w.r.t ground state\n", +"printf('\nThe population of first excited state w.r.t. ground state at %3d K = %1d', Ta, N21);\n", +"\n", +"// Part (b)\n", +"Tb = 20000; // Temperature, K\n", +"n21 = (g2/g1)*exp((E1 - E2)/(kB*Tb)); // The population of first excited state w.r.t ground state\n", +"n31 = (g3/g1)*exp((E1 - E3)/(kB*Tb)); // The population of second excited state w.r.t ground state\n", +"printf('\nThe population of first excited state w.r.t. ground state at %4d K = %6.4f', Tb, n21);\n", +"printf('\nThe population of second excited state w.r.t ground state at %4d K = %6.4f', Tb, n31);\n", +"\n", +"// Part (c)\n", +"E_strength = (g3/g2)*exp((E2 - E3)/(kB*Tb)); // Emission strength\n", +"printf('\nEmission strength of spectral lines = %3.2f', E_strength);\n", +"\n", +"// Result\n", +"// The population of first excited state w.r.t. ground state at 300 K = 0\n", +"// The population of first excited state w.r.t. ground state at 20000 K = 0.0108\n", +"// The population of second excited state w.r.t ground state at 20000 K = 0.0081\n", +"// Emission strength of spectral lines = 0.75 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.2: Validity_of_Maxwell_Boltzmann_Statistics.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex10.2: Pg 345 (2005)\n", +"clc; clear;\n", +"// Part (a)\n", +"N = 6.02e+23; // Number of molecules at STP\n", +"m = 3.34e-27; // Mass of H-molecule, kg\n", +"h_cross = 1.055e-34; // Reduced Plank's constant, J-s\n", +"V = 22.4e-03; // Volume occupied by molecules at STP, m^3\n", +"T = 273; // Absolute temperature, K\n", +"k_B = 13.8e-24; // Boltzmann constant, J/K\n", +"x_H = N/V*h_cross^3/(8*(m*k_B*T)^(3/2)); // Particle concentration at STP\n", +"printf('\nx_H = %4.2e', x_H);\n", +"if (x_H < 1)\n", +"printf('\nThe criterion for the validity of Maxwell–Boltzmann Statistics is satisfied in hydrogen.');\n", +"\n", +"// Part (b)\n", +"d_Ag = 10.5; // Density of silver, g/m^3\n", +"M_Ag = 107.9; // Molar weight of silver, g\n", +"NV_Ag = (d_Ag/M_Ag)*(6.02e+023)*1e+06; // Density of free electrons in silver, electrons/m^3\n", +"me = 9.109e-031; // Mass of an electron, kg\n", +"T = 300; // Room temperature, K\n", +"x_Ag = ((NV_Ag)*h_cross^3)/(8*(me*k_B*T)^(3/2)); // Particle concentration at STP\n", +"printf('\nx_Ag = %4.2f', x_Ag);\n", +"if (x_Ag > 1)\n", +"printf('\nThe criterion for the validity of Maxwell–Boltzmann Statistics does not hold for electrons in silver');\n", +"\n", +"// Result\n", +"// x_H = 8.84e-08\n", +"// The criterion for the validity of Maxwell–Boltzmann Statistics is satisfied in hydrogen.\n", +"// x_Ag = 37.13\n", +"// The criterion for the validity of Maxwell–Boltzmann Statistics does not hold for electrons in silver " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.3: Photons_in_a_box.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex10.3: Pg 352 (2005)\n", +"clc; clear;\n", +"// Part (b)\n", +"I = integrate('z^2/(exp(z)-1)', 'z', 0, 100); // Integral value\n", +"k_B = 8.62e-05; // Boltzmann constant, eV/K\n", +"T = 3000; // Temperature, K\n", +"h = 4.136e-15; // Plank's constant, eV\n", +"c = 3e+10; // Velocity of light, cm/s\n", +"N_V = 8*%pi*((k_B*T)/(h*c))^3*I; // Number of photons/cc\n", +"printf('\nThe density of photons inside the cavity = %4.2fe+11 photons/cc', N_V*1e-11);\n", +"\n", +"// Result\n", +"// The density of photons inside the cavity = 5.47e+11 photons/cc" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.4: Specific_Heat_of_Diamond.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex10.4: Pg 356 (2005)\n", +"clc; clear;\n", +"\n", +"// Part (a)\n", +"k_B = 8.62e-05; // Boltzmann constant, eV/K\n", +"T_E = 1300; // Temperature, K\n", +"h_cross = 6.58e-16; // Reduced plank's constant, eV-s\n", +"omega = (k_B*T_E)/h_cross; // Frequency of vibration of carbon atom in diamond, Hz\n", +"spacing = (h_cross*omega); // Spacing between adjacent oscillator energy level, eV\n", +"printf('\nFrequency of vibration of carbon atom in diamond = %4.2e Hz', omega);\n", +"printf('\nSpacing between adjacent oscillator energy level = %5.3f eV', spacing);\n", +"\n", +"// Part (b)\n", +"T_R = 300; // Room temperature, K\n", +"p = exp((h_cross*omega)/(k_B*T_R)); // For simplication\n", +"E_R = (h_cross*omega)/(p-1); // Average energy of oscillator at room temperature, eV\n", +"T = 1500; // Temperature, K\n", +"q = exp((h_cross*omega)/(k_B*T)); // For simplication\n", +"E_bar = (h_cross*omega)/(q-1); // Average energy at 1500 K, eV\n", +"printf('\nAverage energy of oscillator at room temperature = %7.5f eV', E_R);\n", +"printf('\nAverage oscillator energy at %4d K = %7.5f eV', T, E_bar);\n", +"\n", +"\n", +"// Result\n", +"// Frequency of vibration of carbon atom in diamond = 1.70e+14 Hz\n", +"// Spacing between adjacent oscillator energy level = 0.112 eV\n", +"// Average energy of oscillator at room temperature = 0.00149 eV\n", +"// Average oscillator energy at 1500 K = 0.0813 eV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.5: Fermi_Energy_of_Gold.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex10.5: Pg 360 (2005)\n", +"clc; clear;\n", +"\n", +"// Part (a)\n", +"h = 6.625e-34; // Plank's constant, J-s\n", +"m_e = 9.11e-31; // Mass of electron, kg\n", +"density = 19.32/(1e-02)^3; // Density of gold, g/m^3\n", +"weight = 197; // Molar weight, g/mol\n", +"N_V = (density/weight)*6.02e+23; // Number of electrons per mole\n", +"E_F = (h^2/(2*m_e*1.6e-19))*((3*(N_V))/(8*%pi))^(2/3); // Fermi energy of Gold at 0 K\n", +"printf('\nFermi energy of Gold at 0 K = %4.2f eV', E_F); \n", +"\n", +"// Part (b)\n", +"v_F = sqrt((2*E_F*1.6e-19)/m_e); // Fermi speed of Gold at 0 K\n", +"printf('\nFermi speed of Gold at 0 K = %4.2fe+06 m/s', v_F*1e-06);\n", +"\n", +"// Part (c)\n", +"k_B = 8.62e-05; // Boltzmann constant, eV/K\n", +"T_F = (E_F)/(k_B); // Fermi temperature for Gold at 0 K, K\n", +"printf('\nFermi temperature for Gold at 0 K = %5d K', T_F);\n", +"\n", +"// Result\n", +"// Fermi energy of Gold at 0 K = 5.53 eV\n", +"// Fermi speed of Gold at 0 K = 1.39fe+06 m/s\n", +"// Fermi temperature for Gold at 0 K = 64201 K" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_R_A_Serway/11-Molecular_Structure.ipynb b/Modern_Physics_by_R_A_Serway/11-Molecular_Structure.ipynb new file mode 100644 index 0000000..e674f8e --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/11-Molecular_Structure.ipynb @@ -0,0 +1,106 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: Molecular Structure" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.1: Rotation_of_CO_molecule.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex11.1: Pg 380 (2005)\n", +"clc; clear;\n", +"// Part (a)\n", +"f = 1.15e+11; // Frequency of transitions, Hz\n", +"omega = 2*(%pi)*f; // Angular frequency of absorbed radiations, Hz\n", +"h_cross = 1.055e-34; // Reduced planks constant, J-s\n", +"// Since E = (h_cross)^2/I_CM = h_cross*omega, solving for I_CM\n", +"I_CM = h_cross/omega; // Moment of inertia of molecule about its center of mass, kg-m^2\n", +"printf('\nThe moment of inertia of molecule about its center of mass = %4.2e kg-m^2', I_CM);\n", +"\n", +"// Part (b)\n", +"m_O = 16; // Mass of oxygen atom, a.m.u\n", +"m_C = 12; // Mass of carbon atom, a.m.u\n", +"mu = ( m_O * m_C *0.166e-26)/(m_O + m_C); // Reduced mass, kg\n", +"// Since I_CM = mew*R_o^2, solving for R_o\n", +"R_0 = sqrt(I_CM/mu); // Bond length of carbon monoxide molecule, m \n", +"printf('\nThe bond length of carbon monoxide molecule = %5.3f nm', R_0/1e-09);\n", +"\n", +"// Result\n", +"// The moment of inertia of molecule about its center of mass = 1.46e-046 kg-m^2\n", +"// The bond length of carbon monoxide molecule = 0.113 nm " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.2: Variation_of_CO_molecule.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex11.2: Pg 383 (2005)\n", +"clc; clear;\n", +"\n", +"// Part (a)\n", +"f = 6.42e+13; // Frequency of absorption, Hz\n", +"omega = 2*(%pi)*f; // Angular frequency of absorbed radiations, Hz\n", +"mu = 1.14e-26; // Reduced mass of CO molecule, kg\n", +"K = mu*(omega^2); // Effective force constant of CO molecule, N/m\n", +"printf('\nThe effective force constant of CO molecule = %4.2e N/m', K);\n", +"\n", +"// Part (b)\n", +"h_cross = 1.055e-34; // Reduced Planck's constant, J-s\n", +"A = sqrt(h_cross/(mu*omega)); // Amplitude of vibrations, m\n", +"printf('\nThe amplitude of vibrations = %7.5f nm', A/1e-09);\n", +"\n", +"// Result\n", +"// The effective force constant of CO molecule = 1.85e+003 N/m\n", +"// The amplitude of vibrations = 0.00479 nm " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_R_A_Serway/12-The_Solid_State.ipynb b/Modern_Physics_by_R_A_Serway/12-The_Solid_State.ipynb new file mode 100644 index 0000000..d8926ab --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/12-The_Solid_State.ipynb @@ -0,0 +1,139 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: The Solid State" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: Classical_free_electron_model.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex12.1: Pg 418 (2005)\n", +"clc; clear;\n", +"// Part (a)\n", +"k_B = 1.38e-23; // Boltzmann constat, J/K\n", +"m_e = 9.11e-31; // Mass of electron, kg\n", +"T = 300; // Temperature, K\n", +"N_A = 6.023e+023; // Avogadro's number\n", +"v_rms = sqrt((3*k_B*T)/m_e); // Root mean square velocity of electrons, m/s\n", +"I = 10; // Electric current, A\n", +"A = 4e-06; // Area of cross-section of copper wire, m^2\n", +"J = I/A; // Current density, A-m^(-2)\n", +"d = 8.96; // Density of copper at room temperature, g/cc\n", +"M = 63.5; // Atomic mass of Cu, g\n", +"n = d*N_A/M*1e+06; // Number of electrons per metre cube\n", +"e = 1.6e-19; // Charge on electron, C\n", +"v_d = J/(n*e); // Drift velocity, m/s\n", +"v_d_rms = v_d/v_rms; // Ratio of drift speed to rms speed\n", +"printf('\nThe ratio of drift speed to rms speed is = %3.1e', v_d_rms);\n", +"\n", +"// Part (b)\n", +"L = 2.6e-10;\n", +"tau = L/v_rms; // Average time between two collisions, s\n", +"printf('\nAverage time between two collisions = %2.2e s', tau);\n", +"\n", +"// Part (c)\n", +"sigma = (n*e^2*L)/sqrt(3*k_B*T*m_e); // Conductivity of copper, per ohm-m\n", +"printf('\nConductivity of copper at room temperature = %3.1e per ohm-m', sigma);\n", +"\n", +"\n", +"// Result\n", +"// The ratio of drift speed to rms speed is = 1.6e-009\n", +"// Average time between two collisions = 2.23e-015 s\n", +"// Conductivity of copper at room temperature = 5.3e+006 per ohm-m " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: Conduction_in_diamond.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex12.2: Pg 429 (2005)\n", +"clc; clear;\n", +"V = 7; // Energy gap, V\n", +"L = 5e-08; // Mean free path , m\n", +"E = V/L; // Electric field, V/m\n", +"printf('\nThe electric field strength required to produce conduction in diamond = %3.1fe+08 V/m', E*1e-08);\n", +"printf('\n');\n", +"\n", +"// Result\n", +"// The electric field strength required to produce conduction in diamond = 1.4e+08 V/m" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: Forward_and_reverse_currents_in_diode.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex12.3: Pg 436 (2005)\n", +"clc; clear;\n", +"e_V = 1; // Energy applied to diode, eV\n", +"k_B_T = 0.025; // Product of Boltzmann constant and temperature, eV\n", +"// For simplicity let (q*V)/(k_B*T) = x\n", +"x = (e_V/(k_B_T));\n", +"I_f_r = (exp(x)-1)/(exp(-x)-1); // Ratio of forward current to reverse current in diode\n", +"printf('\nThe ratio of forward current to reverse current in diode = %3.1fe+17', I_f_r*1e-17);\n", +"\n", +"// Result\n", +"// The ratio of forward current to reverse current in diode = -2.4e+17 " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_R_A_Serway/13-Nuclear_Structure.ipynb b/Modern_Physics_by_R_A_Serway/13-Nuclear_Structure.ipynb new file mode 100644 index 0000000..192dcd0 --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/13-Nuclear_Structure.ipynb @@ -0,0 +1,347 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Nuclear Structure" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.11: Radioactive_Dating.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.11: Pg 490 (2005)\n", +"clc; clear;\n", +"T_half = 5370*3.6e+07; // Half life of C-14, s\n", +"lambda = 0.693/T_half; // // Decay constant for C-14 disintegration, per sec\n", +"N_C12 = 6.02e+023/12*25; // Number of C-12 nuclei in 25.0 g of carbon\n", +"N0_C14 = 1.3e-012*N_C12; // Number of C-14 nuclei in 25.0 g of carbon before decay\n", +"R0 = N0_C14*3.83e-012*60; // Initial activty of the sample, decays/min\n", +"R = 250; // Present activity of the sample\n", +"// As R = R0*exp(-lambda*t), solving for t\n", +"t = -1/lambda*log(R/R0); // Time during which the tree dies, s\n", +"printf('\nThe lifetime of the tree = %3.1e yr', t/(365*24*60*60));\n", +"\n", +"// Result\n", +"// The lifetime of the tree = 3.6e+03 yr " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1: The_Atomic_Mass_Unit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.1: Pg 466 (2005)\n", +"clc; clear;\n", +"M = 0.012; // Atomic mass of carbon, kg\n", +"N_A = 6.02e+023; // Avogadro's number\n", +"m = M/N_A; // Mass of one Carbon-12 atom, kg\n", +"// As m = 12*u, twelve mass units, solving for u\n", +"u = m/12; // The atomic mass unit, kg\n", +"printf('\nThe atomic mass unit = %4.2e kg', u);\n", +"\n", +"// Result\n", +"// The atomic mass unit = 1.66e-27 kg " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2: The_Volume_and_Density_of_Nucleus.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.2: Pg 468 (2005)\n", +"clc; clear;\n", +"r0 = 1.2e-015; // Nuclear mean radius, m\n", +"m = 1.67e-027; // Mass of the nucleon, kg\n", +"rho_0 = 3*m/(4*%pi*r0^3); // Density of the nucleus, kg per metre cube\n", +"printf('\nThe mass of the nucleus = Am approx.');\n", +"printf('\nThe volume of the nucleus = 4/3*pi*r0^3*A');\n", +"printf('\nThe density of the nucleus = %3.1e kg per metre cube', rho_0);\n", +"\n", +"// Result\n", +"// The mass of the nucleus = Am approx.\n", +"// The volume of the nucleus = 4/3*pi*r0^3*A\n", +"// The density of the nucleus = 2.3e+17 kg per metre cube " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3: Binding_energy_of_the_Deuteron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.3: Pg 473 (2005)\n", +"clc; clear;\n", +"M2 = 2.014102; // Atomic mass of deuteron, u\n", +"M_H = 1.007825; // Atomic mass of hydrogen, u\n", +"m_n = 1.008665; // Mass of a neutron, u\n", +"E_b = (M_H + m_n - M2)*931.494; // Binding energy of the deuteron, MeV/u\n", +"printf('\nThe binding energy of the Deuteron = %5.3f MeV', E_b);\n", +"\n", +"// Result\n", +"// The binding energy of the Deuteron = 2.224 MeV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.4: Left_out_sample_during_radioactive_decay.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.4: Pg 482 (2005)\n", +"clc; clear;\n", +"T = 5730; // Half life of the carbon-14 isotope, years\n", +"N0 = 1000; // Initial number of carbon-14 isotope\n", +"t = 22920; // Time of decay, years\n", +"n = t/T; // Total number of half lives\n", +"N = (1/2)^n*N0; // Sample remains after 22920 years\n", +"printf('\nNumber of C-14 isotopes remained after %d years = %d', t, N);\n", +"\n", +"// Result\n", +"// Number of C-14 isotopes remained after 22920 years = 62 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.5: The_Activity_of_Radium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.5: Pg 483 (2005)\n", +"clc; clear;\n", +"T_half = 1.6e+03*3.16e+07; // Half life of radioactive nucleus Ra-226, s\n", +"lambda = 0.693/T_half; // Decay constant of Ra-226, per second\n", +"N0 = 3.0e+016; // Number of radioactive nuclei at t = 0\n", +"R0 = lambda*N0; // Activity of sample at t = 0, decays/s\n", +"t = 2.0e+003*3.16e+07; // Time during which the radioactive disintegration takes place, s\n", +"R = R0*exp(-1*lambda*t); // Decay rate after 2.0e+003 years, decay/s\n", +"printf('\nThe decay constant of Ra-226 = %3.1e per second', lambda);\n", +"printf('\nThe activity of sample at t = 0 = %4.1f micro-Ci', R0/(3.7e+010*1e-006)); \n", +"printf('\nThe activity of sample after %3.1e years = %3.1e decays/s', t, R); \n", +"\n", +"// Result\n", +"// The decay constant of Ra-226 = 1.4e-11 per second\n", +"// The activity of sample at t = 0 = 11.1 micro-Ci\n", +"// The activity of sample after 6.3e+10 years = 1.7e+05 decays/s " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.6: The_Activity_of_Carbo.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.6: Pg 483 (2005)\n", +"clc; clear;\n", +"M = 11.0; // Atomic mass of C-11 isotope, g\n", +"NA = 6.02e+023; // Avogadro's number\n", +"m = 3.50e-06; // Given mass of Cabon-11, g\n", +"\n", +"// Part (a)\n", +"N = m/M*NA; // Number of C-11 atoms in 3.50 micro-g of sample\n", +"printf('\nThe number of C-11 atoms in %4.2f micro-g of sample = %4.2e nuclei', m/1e-06, N);\n", +"\n", +"// Part (b)\n", +"T_half = 20.4*60; // Half life of radioactive nucleus C-11, s\n", +"lambda = 0.693/T_half; // Decay constant of C-11, per second\n", +"R0 = lambda*N; // Activity of sample at t = 0, decays/s\n", +"t = 8.00*60*60; // Time during which the radioactive disintegration takes place, s\n", +"R = R0*exp(-1*lambda*t); // Decay rate after 2.0e+003 years, decay/s\n", +"\n", +"printf('\nThe activity of C-11 sample at t = 0 is %4.2e decays/s', R0); \n", +"printf('\nThe activity of sample after %4.2f hours = %4.2e decays/s', t/3600, R); \n", +"\n", +"// Result\n", +"// The number of C-11 atoms in 3.50 micro-g of sample = 1.92e+17 nuclei\n", +"// The activity of C-11 sample at t = 0 is 1.08e+14 decays/s\n", +"// The activity of sample after 8.00 hours = 8.99e+06 decays/s " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.7: The_Radiactive_Isotope_of_Iodine.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.7: Pg 484 (2005)\n", +"clc; clear;\n", +"R0 = 5; // Activity of I-131 isotope at the time of shipment, mCi\n", +"R = 4.2; // Activity of I-131 isotope at the time of receipt by the medical laboratory, mCi\n", +"T_half = 8.04; // Half life of radioactive nucleus I-131, days\n", +"lambda = 0.693/T_half; // Decay constant of C-11, per second\n", +"// As log(R/R0) = -lambda*t, solving for t\n", +"t = -1/lambda*log(R/R0); // Time that has elapsed between two measurements, days\n", +"printf('\nThe time that has elapsed between two measurements = %4.2f days', t);\n", +"\n", +"// Result\n", +"// The time that has elapsed between two measurements = 2.02 days " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.8: Energy_Liberated_during_Decay_of_Radium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.8: Pg 486 (2005)\n", +"clc; clear;\n", +"M_X = 226.025406; // Atomic mass of Ra-226, u\n", +"M_Y = 222.017574; // Atomic mass of Rn-222, u\n", +"M_alpha = 4.002603; // Mass of alpha particle, u\n", +"Q = (M_X - M_Y - M_alpha)*931.494; // Q-value for Radium Decay, MeV/u\n", +"printf('\nThe Q-value for Radium Decay = %4.2f MeV', Q);\n", +"\n", +"// Result\n", +"// The Q-value for Radium Decay = 4.87 MeV " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.9: Probability_of_Alpha_Decay.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.9: Pg 487 (2005)\n", +"clc; clear;\n", +"Z = 86; // Atomic number of radon\n", +"A = 222; // Mass number of radon\n", +"k = 9e+09; // Coulomb constant, N-metre square per C-square\n", +"e = 1.6e-019; // Charge on an electron, C\n", +"r0 = 7.25e-015; // Bohr radius for alpha particle, m\n", +"E0 = k*e^2/(2*r0*1e+06*e); // Rydberg energy, MeV\n", +"R = 1.2e-015*A^(1/3); // Radius of radon nucleus, fm\n", +"E = 5; // Disintegration energy during alpha decay, MeV\n", +"T_E = exp(-4*%pi*Z*sqrt(E0/E)+8*sqrt(Z*R/r0)); // Decay probability for alpha disintegration\n", +"printf('\nThe decay probability for alpha disintegration at %d MeV energy = %4.2e', E, T_E);\n", +"\n", +"// Result\n", +"// The decay probability for alpha disintegration at 5 MeV energy = 1.29e-34 " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_R_A_Serway/14-Nuclear_Physics_Applications_.ipynb b/Modern_Physics_by_R_A_Serway/14-Nuclear_Physics_Applications_.ipynb new file mode 100644 index 0000000..355badd --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/14-Nuclear_Physics_Applications_.ipynb @@ -0,0 +1,226 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 14: Nuclear Physics Applications " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.1: Energy_released_in_Fission.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex14.1: Pg 513 (2005)\n", +"clc; clear;\n", +"// Part (a)\n", +"u = 931.5; // Atomic mass unit, Mev \n", +"M_Li = 7.016003; // Mass of Lithium, kg\n", +"M_H = 1.007825; // Mass of Hydrogen, kg\n", +"M_He = 4.002603; // Mass of Helium, kg\n", +"Q = (M_Li + M_H - 2*M_He)*u; // Q-value of the reaction, MeV\n", +"// Part (b)\n", +"K_incident = 0.6; // Kinetic energy of the incident protons, MeV\n", +"K_products = Q + K_incident; // Kinetic energy of the products\n", +"printf('\nThe Q value of the reaction = %4.1f MeV', Q);\n", +"printf('\nThe kinetic energy of the products (two alpha particles) = %4.1f MeV', K_products);\n", +"\n", +"// Result\n", +"// The Q value of the reaction = 17.3 MeV\n", +"// The kinetic energy of the products (two alpha particles) = 17.9 MeV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.2: Neutron_capture_by_Al.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex14.2: Pg 509 (2005)\n", +"clc; clear;\n", +"roh = 2.7e+06; // Density of Al, g/cm^3\n", +"A = 27; // Mass number of Al\n", +"n = (6.02e+23*roh)/A; // Number of nuclei/m^3\n", +"sigma = 2.0e-31; // Effective area of nucleas normal to motion, m^2\n", +"R_0 = 5.0e+12; // Rate of incident particles per unit area, neutrons/cm^2-s\n", +"x = 0.30e-03; // Thickness of foil, m\n", +"R = (R_0*sigma*n*x) // Number of neutrons captured by foil, neutrons/cm^2-s\n", +"printf('\nThe number of neutrons captured by foil = %3.1fe+07 neutrons/Sq.cm-s', R*1e-07);\n", +"\n", +"// Result\n", +"// The number of neutrons captured by foil = 1.8e+07 neutrons/Sq.cm-s " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.4: Energy_released_in_the_Fission_of_U235.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex14.4: Pg 513 (2005)\n", +"clc; clear;\n", +"m = 1; // Mass of Uranium taken, kg\n", +"Q = 208; // Disintegration energy per event, MeV\n", +"A = 235; // Mass number of Uranium\n", +"N = (6.02e+23*m)/A; // Number of nuclei\n", +"E = N*Q; // Disintegration energy, MeV\n", +"printf('\nThe total energy released if %1d kg of Uranium undergoes fission = %4.2fe+26 MeV', m, E*1e-23);\n", +"\n", +"// Result\n", +"// The total energy released if 1 kg of Uranium undergoes fission = 5.33e+26 MeV " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.5: A_Rough_Mechanism_for_Fission_Process.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex14.5: Pg 513 (2005)\n", +"clc; clear;\n", +"A_Ba = 141; // Mass number of Barium\n", +"A_Kr = 92; // Mass number of Barium\n", +"r_0 = 1.2e-15; // Separation constant, m\n", +"r_Ba = r_0*A_Ba^(1/3); // Nuclear radius of Barium, m \n", +"r_Kr = r_0*A_Kr^(1/3); // Nuclear radius of Krypton, m\n", +"r = r_Ba + r_Kr; // Separation between two atoms, m\n", +"Z_1 = 56; // Atomic number of Barium\n", +"Z_2 = 36; // Atomic number of Barium\n", +"k = 1.440e-09; // Coulomb constant, eV-m\n", +"U = k*Z_1*Z_2/r // Coulomb Potential energy of two charges, MeV\n", +"printf('\nThe Coulomb potential energy for two charges = %3d MeV' , U/1e+06);\n", +"printf('\nThis shows that the fission mechanism is plausible');\n", +"\n", +"// Result\n", +"// The Coulomb potential energy for two charges = 248 MeV\n", +"// This shows that the fission mechanism is plausible " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.6: The_Fusion_of_Two_Deutrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex14.6: Pg 519 (2005)\n", +"clc; clear;\n", +"// Part (a)\n", +"e = 1.6e-19; // Charge on electron, C\n", +"k = 8.99e-09; // Coulomb constant, N-m^2/C^2\n", +"r = 1.0e-14; // Distance between two duetrons, m\n", +"// We have U = (k*q1*q2)/r, for duetrons q1 = q2 = e, therefore we get\n", +"U = (k*e^2)/r; // Potential energy of duetrons, J\n", +"E_C = 1.1e-014; // The coulomb energy per deutron, J\n", +"k_B = 1.38e-023; // Boltzmann constant, J/mol/K\n", +"T = 2/3*E_C/k_B; // Effective temperature required for deutron to overcome the potential barrier, K\n", +"printf('\nThe potential energy of two duetrons separated by the distance of %1.0de-14 m = %4.2f MeV', r*1e+14, (U*1e+12)/e);\n", +"printf('\nThe effective temperature required for deutron to overcome the potential barrier = %3.1e K', T);\n", +"\n", +"// Result\n", +"// The potential energy of two duetrons separated by the distance of 1e-14 m = 0.14 MeV\n", +"// The effective temperature required for deutron to overcome the potential barrier = 5.3e+008 K \n", +"// Result\n", +"// The potential energy of two duetrons separated by the distance of 1e-14 m = 0.14 MeV " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.7: Half_value_thickness.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex14.7: Pg 530 (2005)\n", +"clc; clear;\n", +"mew = 55e-02; // Linear absoption coefficient, per m\n", +"// In equation I(x) = I_o*exp(-mew*x), replacing I(x) by I_o/2 & solving for x, we get\n", +"x = log(2)/mew; // Half value thickness, m \n", +"printf('\nThe half value thickness for lead = %4.2fe-02 cm', x);\n", +"\n", +"// Result\n", +"// The half value thickness for lead = %1.26e-02 cm" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_R_A_Serway/15-Elementary_Particle.ipynb b/Modern_Physics_by_R_A_Serway/15-Elementary_Particle.ipynb new file mode 100644 index 0000000..5872534 --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/15-Elementary_Particle.ipynb @@ -0,0 +1,243 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 15: Elementary Particle" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.2: Checking_Baryon_Numbers.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex15.2: Pg 560 (2005)\n", +"clc; clear;\n", +"// Data for Reaction 1\n", +"R1 = cell(6,2); // Declare a 6X2 cell\n", +"R1(1,1).entries = 'p';\n", +"R1(2,1).entries = 'n';\n", +"R1(3,1).entries = 'p';\n", +"R1(4,1).entries = 'p';\n", +"R1(5,1).entries = 'n';\n", +"R1(6,1).entries = 'p_bar';\n", +"R1(1,2).entries = 1;\n", +"R1(2,2).entries = 1;\n", +"R1(3,2).entries = 1;\n", +"R1(4,2).entries = 1;\n", +"R1(5,2).entries = 1;\n", +"R1(6,2).entries = -1;\n", +"// Data for reaction 2\n", +"R2 = cell(5,2); // Declare a 5X2 cell\n", +"R2(1,1).entries = 'p';\n", +"R2(2,1).entries = 'n';\n", +"R2(3,1).entries = 'p';\n", +"R2(4,1).entries = 'p';\n", +"R2(5,1).entries = 'p_bar';\n", +"R2(1,2).entries = 1;\n", +"R2(2,2).entries = 1;\n", +"R2(3,2).entries = 1;\n", +"R2(4,2).entries = 1;\n", +"R2(5,2).entries = -1;\n", +"// Check baryon number conservation for first reaction\n", +"if (R1(1,2).entries+R1(2,2).entries) == (R1(3,2).entries+R1(4,2).entries+R1(5,2).entries+R1(6,2).entries) then\n", +" printf('\nThe reaction %s + %s --> %s + %s + %s + %s can occur (B is conserved)', R1(1,1).entries, R1(2,1).entries, R1(3,1).entries, R1(4,1).entries, R1(5,1).entries, R1(6,1).entries);\n", +"else\n", +" printf('\nThe reaction %s + %s --> %s + %s + %s + %s cannot occur (B is not conserved)', R1(1,1).entries, R1(2,1).entries, R1(3,1).entries, R1(4,1).entries, R1(5,1).entries, R1(6,1).entries);\n", +"end\n", +"// Check baryon number conservation for second reaction\n", +"if R2(1,2).entries+R2(2,2).entries == R2(3,2).entries+R2(4,2).entries+R2(5,2).entries then\n", +" printf('\nThe reaction %s + %s --> %s + %s + %s can occur (B is conserved)', R2(1,1).entries, R2(2,1).entries, R2(3,1).entries, R2(4,1).entries, R2(5,1).entries);\n", +"else\n", +" printf('\nThe reaction %s + %s --> %s + %s + %s cannot occur (B is not conserved)', R2(1,1).entries, R2(2,1).entries, R2(3,1).entries, R2(4,1).entries, R2(5,1).entries);\n", +"end\n", +"\n", +"// Result\n", +"// The reaction p + n --> p + p + n + p_bar can occur (B is conserved)\n", +"// The reaction p + n --> p + p + p_bar cannot occur (B is not conserved) " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.3: Checking_Lepton_Numbers.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex15.3: Pg 561 (2005)\n", +"clc; clear;\n", +"// Data for Reaction 1\n", +"R1 = cell(4,3); // Declare a 4X3 cell\n", +"R1(1,1).entries = 'mu';\n", +"R1(2,1).entries = 'e-';\n", +"R1(3,1).entries = 'nue_bar';\n", +"R1(4,1).entries = 'nu_mu';\n", +"R1(1,2).entries = 1; // Muon number for mu\n", +"R1(2,2).entries = 0; // Muon number for e-\n", +"R1(3,2).entries = 0; // Muon number for nue_bar\n", +"R1(4,2).entries = 1; // Muon number for nu_mu\n", +"R1(1,3).entries = 0; // Lepton number for mu\n", +"R1(2,3).entries = 1; // Lepton number for e-\n", +"R1(3,3).entries = -1; // Lepton number for nue_bar\n", +"R1(4,3).entries = 0; // Lepton number for nu_mu\n", +"// Data for Reaction 2\n", +"R2 = cell(4,3); // Declare a 4X3 cell\n", +"R2(1,1).entries = 'Pi+';\n", +"R2(2,1).entries = 'mu+';\n", +"R2(3,1).entries = 'nu_mu';\n", +"R2(4,1).entries = 'nu_e';\n", +"R2(1,2).entries = 0; // Muon number for Pi+\n", +"R2(2,2).entries = -1; // Muon number for mu+\n", +"R2(3,2).entries = 1; // Muon number for nu_mu\n", +"R2(4,2).entries = 0; // Muon number for nu_e\n", +"R2(1,3).entries = 0; // Lepton number for Pi+\n", +"R2(2,3).entries = 0; // Lepton number for mu+\n", +"R2(3,3).entries = 0; // Lepton number for nu_mu\n", +"R2(4,3).entries = 1; // Lepton number for nu_e\n", +"// Check lepton number conservation for first reaction\n", +"if (R1(1,2).entries== R1(2,2).entries+R1(3,2).entries+R1(4,2).entries) & (R1(1,3).entries == R1(2,3).entries+R1(3,3).entries+R1(4,3).entries) then\n", +" printf('\nThe reaction %s --> %s + %s + %s can occur (Both L_mu and L_e are conserved)', R1(1,1).entries, R1(2,1).entries, R1(3,1).entries, R1(4,1).entries);\n", +"else\n", +" printf('\nThe reaction %s + %s --> %s + %s + %s + %s cannot occur (L_mu and L_e are not conserved)', R1(1,1).entries, R1(2,1).entries, R1(3,1).entries, R1(4,1).entries);\n", +"end\n", +"// Check lepton number conservation for second reaction\n", +"if (R2(1,2).entries== R2(2,2).entries+R2(3,2).entries+R2(4,2).entries) & (R2(1,3).entries == R2(2,3).entries+R2(3,3).entries+R2(4,3).entries) then\n", +" printf('\nThe reaction %s --> %s + %s + %s can occur (Both L_mu and L_e are conserved)', R2(1,1).entries, R2(2,1).entries, R2(3,1).entries, R2(4,1).entries);\n", +"else\n", +" printf('\nThe reaction %s --> %s + %s + %s cannot occur (L_mu is conserved but L_e is not conserved)', R2(1,1).entries, R2(2,1).entries, R2(3,1).entries, R2(4,1).entries);\n", +"end\n", +"\n", +"// Result\n", +"// The reaction mu --> e- + nue_bar + nu_mu can occur (Both L_mu and L_e are conserved)\n", +"// The reaction Pi+ --> mu+ + nu_mu + nu_e cannot occur (L_mu is conserved but L_e is not conserved0 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.4: Conservation_of_strangeness.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex15.4: Pg 563 (2005)\n", +"clc; clear;\n", +"// Data for Reaction 1\n", +"R1 = cell(4,2); // Declare a 4X2 cell\n", +"R1(1,1).entries = 'Pi0';\n", +"R1(2,1).entries = 'n';\n", +"R1(3,1).entries = 'K+';\n", +"R1(4,1).entries = 'sigma-';\n", +"R1(1,2).entries = 0; // Strangeness number for Pi0\n", +"R1(2,2).entries = 0; // Strangeness number for n\n", +"R1(3,2).entries = 1; // Strangeness number for K+\n", +"R1(4,2).entries = -1; // Strangeness number for sigma-\n", +"// Data for Reaction 2\n", +"R2 = cell(4,2); // Declare a 4X2 cell\n", +"R2(1,1).entries = 'Pi-';\n", +"R2(2,1).entries = 'p';\n", +"R2(3,1).entries = 'Pi-';\n", +"R2(4,1).entries = 'sigma+';\n", +"R2(1,2).entries = 0; // Strangeness number for Pi-\n", +"R2(2,2).entries = -1; // Strangeness number for p\n", +"R2(3,2).entries = 1; // Strangeness number for pi-\n", +"R2(4,2).entries = 0; // Strangeness number for sigma+\n", +"// Check strangeness number conservation for first reaction\n", +"if R1(1,2).entries + R1(2,2).entries == R1(3,2).entries+R1(4,2).entries then\n", +" printf('\nThe reaction %s + %s --> %s + %s can occur (Strangness is conserved)', R1(1,1).entries, R1(2,1).entries, R1(3,1).entries, R1(4,1).entries);\n", +"else\n", +" printf('\nThe reaction %s + %s --> %s + %s cannot occur (Strangness is not conserved)', R1(1,1).entries, R1(2,1).entries, R1(3,1).entries, R1(4,1).entries);\n", +"end\n", +"// Check strangeness number conservation for second reaction\n", +"if R2(1,2).entries + R2(2,2).entries == R2(3,2).entries+R2(4,2).entries then\n", +" printf('\nThe reaction %s + %s --> %s + %s can occur (Strangness is conserved)', R2(1,1).entries, R2(2,1).entries, R2(3,1).entries, R2(4,1).entries);\n", +"else\n", +" printf('\nThe reaction %s + %s --> %s + %s cannot occur (Strangness is not conserved)', R2(1,1).entries, R2(2,1).entries, R2(3,1).entries, R2(4,1).entries);\n", +"end\n", +"\n", +"// Result\n", +"// The reaction Pi0 + n --> K+ + sigma- can occur (Strangness is conserved)\n", +"// The reaction Pi- + p --> Pi- + sigma+ cannot occur (Strangness is not conserved)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.5: Making_virtual_particle_real.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex15.5: Pg 570 (2005)\n", +"clc; clear;\n", +"m_pi = 135; // Mass of pion, MeV/c^2\n", +"m_p = 938.3; // Mass op proton, MeV/c^2\n", +"// For simplification, let velocity of light be unity\n", +"c = 1; // Velocity of light, m/s\n", +"// Simplifying K_th = (m_3 + m_4 + m_5 + ....)^2*c^2 - (m_1 + m_2)^2*c^2, we get\n", +"K_th = 2*m_pi*c^(2) + ((m_pi*c)^2/(2*m_p)); // Required kinetic energy of proton, MeV\n", +"printf('\nRequired kinetic energy of proton = %3d MeV', ceil(K_th));\n", +"\n", +"// Result\n", +"// Required kinetic energy of proton = 280 MeV " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_R_A_Serway/16-Cosmology.ipynb b/Modern_Physics_by_R_A_Serway/16-Cosmology.ipynb new file mode 100644 index 0000000..8b5cd2f --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/16-Cosmology.ipynb @@ -0,0 +1,90 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 16: Cosmology" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.1: Hubbles_law.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex16.1: Pg 15 (2005)\n", +"clc; clear;\n", +"c = 3e+05; // Velocity of light, km/s\n", +"v = c/4; // Recessional velocity, km/s\n", +"H_0 = 20e-06; // Hubble's constant, km/s/lightyear\n", +"// From Hubble's law, v = H_o*R_max, solving for R_max\n", +"R_max = v/H_0; // Maximum distance at which Hubble's law applies without relativistic correction, lightyears\n", +"printf('\nThe maximum distance at which Hubbles law applies without relativistic correction = %1.0e ly', R_max);\n", +"printf('\n');\n", +"\n", +"// Result\n", +"// The maximum distance at which Hubbles law applies without relativistic correction = 4e+09 ly" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.2: Critical_density_of_universe.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex16.2: Pg 22 (2005)\n", +"clc; clear;\n", +"H = 23e-03/(9.46e15); // Hubble's constant, km/s/ly\n", +"G = 6.67e-11; // Gravitational constant, N-m^2/kg^2\n", +"// Since H^2 = (8*%pi*G*p_c)/3, solving for p_c\n", +"p_c = (3*H^2)/(8*%pi*G); // Critical mass density of universe, kg/m^3\n", +"printf('\nCritical mass density of universe = %4.2e kg per metre cube', p_c);\n", +"\n", +"\n", +"// Result\n", +"// Critical mass density of universe = %1.06e-27 kg/m^3" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_R_A_Serway/2-Relativity_II.ipynb b/Modern_Physics_by_R_A_Serway/2-Relativity_II.ipynb new file mode 100644 index 0000000..541e6e6 --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/2-Relativity_II.ipynb @@ -0,0 +1,297 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Relativity II" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: Momentum_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex2.1: Pg.44 (2005)\n", +"clc; clear;\n", +"c = 3e08; // Velocity of light, m/s\n", +"u = 0.750*c; // Velocity of electron, m/s\n", +"m = 9.11e-31; // Rest mass of electron, kg\n", +"p_r = m*u/(sqrt(1 - (u/c)^2)); // Relativistic momentum of electron, kgm/s\n", +"p = m*u; // Classical momentum of electron, kg-m/s\n", +"printf('\nThe relativistic momentum of electron = %4.2fe-22 kg-m/s', p_r*1e+22);\n", +"printf('\nThe classical momentum of electron = %4.2fe-22 kg-m/s', p*1e+22);\n", +"printf('\nThe relativistic result is 50 percent greater than the classical result.');\n", +"\n", +"//Result\n", +"// The relativistic momentum of electron = 3.10e-22 kg-m/s\n", +"// The classical momentum of electron = 2.05e-22 kg-m/s\n", +"// The relativistic result is 50 percent greater than the classical result." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Energy_of_a_speedy_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex2.3: Pg.47 (2005)\n", +"clc; clear;\n", +"c = 3e+08; // Velocity of light, m/s\n", +"u = 0.85*c; // Velocity of electron, m/s\n", +"E_0 = 0.511; // Rest energy of electron, MeV\n", +"E = E_0/(sqrt(1-(u/c)^2)); // Total energy of electron, MeV\n", +"K = E - E_0; // Kinetic energy of electron, MeV\n", +"printf('\nThe total energy of electron = %5.3f MeV', E);\n", +"printf('\nThe kinetic energy of electron = %5.3f MeV', K);\n", +"\n", +"// Result\n", +"// The total energy of electron = 0.970 MeV\n", +"// The kinetic energy of electron = 0.459 MeV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: Energy_of_a_speedy_proton.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex2.4: Pg.47 (2005)\n", +"clc; clear;\n", +"c = 3e+08; // Velocity of light, m/s\n", +"u = 0.85*c; // Velocity of electron, m/s\n", +"m_p = 1.67e-27; // Rest mass of proton, kg\n", +"\n", +"// Part (a)\n", +"E_o = m_p*c^2/1.602e-019; // Rest energy of proton, MeV\n", +"printf('\nRest energy of proton = %3d MeV', E_o/1e+06);\n", +"\n", +"// Part (b)\n", +"// Since given that E = 3*E_o = (3*m_p*c^2)/sqrt(1-(u/c)^2), solving for u\n", +"u = sqrt(8/9)*c; // Velocity of proton, m/s\n", +"printf('\nVelocity of proton = %4.2fe+08 m/s', u*1e-08);\n", +"\n", +"// Part (c)\n", +"// Since K = E - m_p*(c^2) = 3*m_p*(c^2) - m_p*(c^2) = 2*m_p*(c^2)\n", +"K = 2*E_o; // Kinetic energy of proton, MeV\n", +"printf('\nThe kinetic energy of proton = %4d MeV', K*1e-06);\n", +"\n", +"// Part (d)\n", +"p = sqrt(8)*(E_o);\n", +"printf('\nThe momentum of proton = %4d MeV/c', p*1e-06);\n", +"\n", +"// Result\n", +"// Rest energy of proton = 938 MeV\n", +"// Velocity of proton = 2.83e+08 m/s\n", +"// The kinetic energy of proton = 1876 MeV\n", +"// The momentum of proton = 2653 MeV/c " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: Increase_in_mass_of_colliding_balls.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex2.5: Pg.49 (2005)\n", +"clc; clear;\n", +"u = 450; // Velocity ofeach ball, m/s\n", +"m = 5; // Mass of each ball, kg\n", +"c = 3e+08; // Velocity of light, m/s\n", +"// Since (u/c)^2 << 1, therefore, substituting 1/sqrt(1 - (u/c)^2) = 1 + (1/2)*(u/c)^2\n", +"delta_M = m*(u/c)^2; // Increase in the mass of balls, kg\n", +"printf('\nIncrease in the mass of the balls = %3.1fe-11 kg', delta_M*1e+11);\n", +"\n", +"// Result\n", +"// Increase in the mass of the balls = 1.1e-11 kg" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: A_Fission_Reaction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex2.7: Pg.50 (2005)\n", +"clc; clear;\n", +"u = 1.660e-27; // Atomic mass unit\n", +"M_U = 236.045563; // Atomic mass of Uranium, u\n", +"M_Rb = 89.914811; // Atomic mass of Rubidium, u\n", +"M_Cs = 142.927220; // Atomic mass of Caesium, u\n", +"m_n = 1.008665; // Mass of neutons, u\n", +"\n", +"// Part (a)\n", +"printf('\nU(92,235) --> Rb(37,90) + Cs(55,143) + 3n(0,1)');\n", +"printf('\nSo three neutrons are produced per fission.\n');\n", +"\n", +"// Part (b)\n", +"delta_M = (M_U - (M_Rb + M_Cs + 3*m_n))*u; // Combined mass of all products, kg\n", +"printf('\nCombined mass of all products = %6.4fe-28 kg\n', delta_M*1e+28);\n", +"\n", +"// Part (c)\n", +"// For simplification let velocity of light = 1 m/s\n", +"c = 1; // Velocity of light, m/s\n", +"// Since 1u = 931.5 MeV/(c^2), therefore\n", +"Q = (delta_M/u)*931.5*(c^2); // Energy given out per fission event, MeV\n", +"printf('\nEnergy given out per fission event = %5.1f MeV\n', Q);\n", +"\n", +"// Part (d)\n", +"N = ((6.02e23)*1000)/236; // Number of nuclei present\n", +"efficiency = 0.40;\n", +"E = efficiency*N*Q*(4.45e-20); // Total energy released, kWh\n", +"printf('\nTotal energy released = %4.2fe+06 kWh\n', E*1e-06);\n", +"\n", +"printf('\nThis amount of energy will keep a 100-W lightbulb burning for %d years', E*1000/(100*24*365));\n", +"\n", +"// Result\n", +"// U(92,235) --> Rb(37,90) + Cs(55,143) + 3n(0,1)\n", +"// So three neutrons are produced per fission.\n", +"// Combined mass of all products = 2.9471e-28 kg\n", +"// Energy given out per fission event = 165.4 MeV\n", +"// Total energy released = 7.51e+06 kWh\n", +"// This amount of energy will keep a 100-W lightbulb burning for 8571 years " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: Energy_conservation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex2.8: Pg.52 (2005)\n", +"clc; clear;\n", +"\n", +"// Part (a)\n", +"// Since 1 eV = 1.6e-19 J, therefore 3 eV = 3*1.6e-19\n", +"BE = 3*1.6e-19; // Binding energy of water, J\n", +"c = 3e+08; // Velocity of light, m/s\n", +"delta_m = BE/(c^2); // Mass difference of water molecule & it constituents, kg\n", +"printf('\nMass difference of water molecule & it constituents = %3.1fe-36 kg', delta_m*1e+36);\n", +"\n", +"// Part (b)\n", +"M = 3.0e-26; // Mass of water molecule, kg\n", +"M_f = delta_m/M; // Fractional loss of mass per molecule\n", +"printf('\nThe fractional loss of mass per molecule = %3.1fe-10', M_f*1e+10);\n", +"\n", +"// Part (c)\n", +"E = M_f*(c^2); // Energy released when 1 g of water is formed, kJ\n", +"printf('\nEnergy released when 1 g of water is formed = %2.0f kJ', E*1e-06);\n", +"\n", +"// Result\n", +"// Mass difference of water molecule & it constituents = 5.3e-36 kg\n", +"// The fractional loss of mass per molecule = 1.8e-10\n", +"// Energy released when 1 g of water is formed = 16 kJ" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.9: Mass_of_Pio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex2.9: Pg.53 (2005)\n", +"clc; clear;\n", +"K_mu = 4.6; // Kinetic energy of muon, MeV\n", +"// For convinience let m_mew*(c^2) = E_mew\n", +"E_mu = 106; // Energy of muon, MeV\n", +"E_pion = sqrt((E_mu^2) + (K_mu^2) + (2*K_mu*E_mu)) + sqrt((K_mu^2) + (2*K_mu*E_mu));\n", +"m_pion = E_pion; // Mass of pion, MeV/(c^2)\n", +"printf('\nMass of Pion = %3.0f MeV/(c^2)', m_pion);\n", +"\n", +"// Result\n", +"// Mass of Pion = 142 MeV/(c^2)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_R_A_Serway/3-The_Quantum_theory_of_light.ipynb b/Modern_Physics_by_R_A_Serway/3-The_Quantum_theory_of_light.ipynb new file mode 100644 index 0000000..15427b8 --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/3-The_Quantum_theory_of_light.ipynb @@ -0,0 +1,357 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: The Quantum theory of light" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: Temperature_of_su.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex3.1: Pg 69 (2005)\n", +"clc; clear;\n", +"e_total = 1400; // Total power per unit area, W/(m^2)\n", +"sigma = 5.6e-08; // Stefan-Boltzmann constant\n", +"R = 1.5e+11; // Earth-sun distance, m\n", +"R_s = 7.0e+08; // Radius of sun, m\n", +"// Using Stefan's law & solving for T, we get\n", +"T = (e_total*R^2/(sigma*R_s^2))^0.25; // Temperature of sun, K\n", +"printf('\nThe temperature of sun = %4d K', T);\n", +"\n", +"// Result\n", +"// The temperature of sun = 5820 K" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: Quantum_oscillator_vs_classical_oscillator.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex3.2: Pg 75 (2005)\n", +"clc; clear;\n", +"\n", +"// Part (a)\n", +"h = 6.63e-34; // Plank's constant, Js\n", +"c = 3e+08; // Velocity of light, m/s\n", +"lamda_green = 540e-09; // Wavelength of green light, nm\n", +"delta_E_green = h*c/lamda_green/1.602e-19; // Minimum energy change in green light, eV\n", +"lamda_red = 700e-09; // Wavelength of red light, nm\n", +"delta_E_red = h*c/lamda_red/1.602e-19; // Minimum energy change in red light, eV\n", +"\n", +"printf('\nMinimum energy change in green light = %4.2f eV', delta_E_green);\n", +"printf('\nMinimum energy change in red light = %4.2f eV', delta_E_red);\n", +"\n", +"// Part (b)\n", +"f = 0.50; // Frequency, Hz\n", +"m = 0.1; // Mass of pendulum, kg\n", +"l = 1; // Length of pendulum, m\n", +"theta = %pi/180*10; // Angle, radians\n", +"g = 9.8; // Acceleration due to gravity, m/s^2\n", +"E = m*g*l*(1-cos(theta));\n", +"delta_E = (h*f)/(1.6e-19); // Minimum energy change in pendulum, eV\n", +"delta_E_f = (delta_E*1.6e-19)/E ; // Fractional energy change \n", +"printf('\nFractional energy change = %3.1fe-32', delta_E_f*1e+32);\n", +"\n", +"// Result\n", +"// Minimum energy change in green light = 2.30 eV\n", +"// Minimum energy change in red light = 1.77 eV\n", +"// Fractional energy change = 2.2e-32 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: Stefan_law_from_Planck_distribution.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex3.3: Pg 80 (2005)\n", +"clc; clear;\n", +"k_B = 1.381e-23; // Boltzmann's constant, J/K\n", +"c = 3e+08; // Velocity of light, m/s\n", +"h = 6.626e-34; // Plank's constant, Js\n", +"// Since e_total = sigma*(T^4) = (2*(%pi)^5*(k_B)^4)/(15*(c^2)*(h^3))*T^4\n", +"sigma = (2*(%pi)^5*(k_B)^4)/(15*(c^2)*(h^3));\n", +"printf('\nThe value of sigma = %3.2fe-08 W/Sq.m/K^4', sigma*1e+08);\n", +"\n", +"// Result\n", +"// The value of sigma = 5.67e-08 W/Sq.m/K^4" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: Time_lag_between_start_of_illumination_and_photocurrent_generation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex3.4: Pg 83 (2005)\n", +"clc; clear;\n", +"phi = 2.38; // Work function for sodium, eV\n", +"I = 1e-07; // Absorbed light intensity, mJcm^2/s\n", +"A = %pi*1e-16; // Cross-sectional area, m^2\n", +"t = phi*1.6e-16/(I*A) // Time lag, days\n", +"printf('\nTime lag between start of illumination and photocurrent generation = %3.1fe+07 s', t*1e-07);\n", +"\n", +"// Result\n", +"// Time lag between start of illumination and photocurrent generation = 1.2e+07 s" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: Time_lag_between_start_of_illumination_and_photocurrent_generation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex3.5: Pg 85 (2005)\n", +"clc; clear;\n", +"e = 1.6e-19; // Electric charge, C\n", +"V_s = 4.3; // Stopping potential, V\n", +"K_max = e*V_s; // Maximum kinetic energy attained by photoelectrons, J\n", +"m_e = 9.11e-31 // Mass of electron, kg\n", +"// Since K.E = eV_s = 0.5m_e(v_max^2), therefore\n", +"v_max = sqrt((2*K_max)/m_e); // Maximum velocity attained by photoelectron, m/s\n", +"printf('\nMaximum velocity attained by photoelectron = %3.1fe+06 m/s', v_max*1e-06);\n", +"\n", +"// Result\n", +"// Maximum velocity attained by photoelectron = 1.2e+06 m/s" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: Photoelectric_effect_for_iro.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex3.6: Pg 85 (2005)\n", +"clc; clear;\n", +"\n", +"// Part (a)\n", +"I_o = 1; // Total intensity of light, micro-W/cm^2\n", +"I = (0.030)*(.040)*I_o; // Intensity available to produce photoelectric effect, nW/cm^2\n", +"printf('\nIntensity available to produce photoelectric effect = %3.1f nW/cm^2', I*1e+03);\n", +"\n", +"// Part (b)\n", +"h = 6.6e-34; // Planck's constant, Js\n", +"c = 3e+08; // Velocity of light, m/s\n", +"lamda = 250e-09; // Wavelength, m\n", +"e_per_sec = (I*lamda*1e-06)/(h*c); // Number of electrons emitted per second\n", +"printf('\nNumber of electrons emitted per second = %3.1e', e_per_sec);\n", +"\n", +"// Part (c)\n", +"e = 1.6e-019; // Energy equivalent of 1 eV, C\n", +"i = (e_per_sec)*e; // Electric current in phototube, A\n", +"printf('\nElectric current in phototube = %3.1e A', i);\n", +"\n", +"// Part (d)\n", +"f_o = 1.1e+15; // Cut-off frequeny, Hz\n", +"phi = (h*f_o)/e; // Work function for iron, eV\n", +"printf('\nWork function for iron = %3.1f eV', phi);\n", +"\n", +"// Part (e)\n", +"V_s = (h*c/(e*lamda))-phi; // Stopping voltage, V\n", +"printf('\nStopping voltage = %4.2f V', V_s);\n", +"\n", +"// Result\n", +"// Intensity available to produce photoelectric effect = 1.2 nW/cm^2\n", +"// Number of electrons emitted per second = 1.5e-09\n", +"// Electric current in phototube = 2.4e-10 A\n", +"// Work function for iron = 4.5 eV\n", +"// Stopping voltage = 0.41 V" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.7: Compton_shift_for_carbon.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex3.7: Pg 93 (2005)\n", +"clc; clear;\n", +"h = 6.63e-34; // Plank's constant, Js\n", +"m_e = 9.11e-31; // Mass of electron, kg\n", +"c = 3e+08; // Velocity of light, m/s\n", +"theta = ((%pi)/180)*45; // Angle, radians\n", +"delta_lamda = (h/(m_e*c)*(1-cos(theta))); // Compton shift, nm\n", +"lamda_o = 0.200e-09; // Wavelength of X-ray, nm\n", +"lamda = delta_lamda+lamda_o // Increased wavelength of scattered X-ray, nm\n", +"printf('\nIncreased wavelength of scattered X-ray = %8.6f nm', lamda*1e+09);\n", +"\n", +"// Result\n", +"// Increased wavelength of scattered X-ray = 0.200711 nm" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.8: Xray_photons_vs_visible_photons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex3.8: Pg 93 (2005)\n", +"clc; clear;\n", +"\n", +"// Part (a)\n", +"h = 6.63e-34; // Plank's constant, Js\n", +"q = 1.6e-19; // Electric charge, C\n", +"m_e = 9.11e-31; // Mass of electron, kg\n", +"c = 3e+08; // Velocity of light, m/s\n", +"theta = ((%pi)/180)*90; // Angle, radians\n", +"delta_lamda = (h/(m_e*c)*(1-cos(theta))); // Compton shift, Angstrom\n", +"lamda_C = 0.0106; // Wavelength of gamma-rays from Cobalt, \n", +"f_dl_C = delta_lamda/ lamda_C; // Fractional change in wavelength of gamma rays from cobalt\n", +"printf('\nFractional change in wavelength of gamma rays from Cobalt = %4.2f', f_dl_C*1e+10);\n", +"lamda_Mo = 0.712; // Wavelength of gamma-rays from Molybdenum, Angstrom \n", +"f_dl_Mo = delta_lamda/ lamda_Mo; // Fractional change in wavelength of gamma rays from Molybdenum\n", +"printf('\nFractional change in wavelength of gamma rays from Molybdenum = %6.4f', f_dl_Mo*1e+10);\n", +"lamda_Hg = 5461; // Wavelength of gamma-rays from Mercury, Angstrom\n", +"f_dl_Hg = delta_lamda/ lamda_Hg; // Fractional change in wavelength of gamma rays from mercury\n", +"printf('\nFractional change in wavelength of gamma rays from Mercury = %4.2fe-06', f_dl_Hg*1e+16);\n", +"\n", +"// Part (b)\n", +"lamda = 0.712e-10; // Wavelength of X-rays, Angstrom\n", +"E = (h*c)/(q*lamda); // Energy of X-rays' photon, eV\n", +"printf('\nEnergy of X-rays photon = %5.0f eV\n', E);\n", +"\n", +"// Result\n", +"// Fractional change in wavelength of gamma rays from Cobalt = 2.29\n", +"// Fractional change in wavelength of gamma rays from Molybdenum = 0.0341\n", +"// Fractional change in wavelength of gamma rays from Mercury = 4.45fe-06\n", +"// Energy of X-rays photon = 17460 eV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9: Gravitational_redshift_for_a_white_dwarf.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex3.9: Pg 96 (2005)\n", +"clc; clear;\n", +"M = 1.99e+30; // Mass of sun, kg\n", +"R_s = 6.37e+06; // Radius of earth, m\n", +"G = 6.67e-11; // Gravitational constant, Nm^2/kg^2\n", +"lamda = 300e-09; // Wavelength, m\n", +"c = 3e+08; // Velocity of light, m/s\n", +"delta_lamda = lamda*((G*M)/(R_s*c^2)); // Gravitational redshift, angstrom\n", +"printf('\nGravitational redshift = %3.1f angstrom', delta_lamda*1e+10);\n", +"\n", +"// Result\n", +"// Gravitational redshift = 0.7 angstrom" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_R_A_Serway/4-The_particle_nature_of_matter.ipynb b/Modern_Physics_by_R_A_Serway/4-The_particle_nature_of_matter.ipynb new file mode 100644 index 0000000..46e82ac --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/4-The_particle_nature_of_matter.ipynb @@ -0,0 +1,380 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: The particle nature of matter" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: Electrolysis_of_barium_chloride.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex4.1: Pg 109 (2005)\n", +"clc; clear;\n", +"I = 10; // Electric current, A\n", +"t = 3600; // Time, s\n", +"q = I*t; // Electric charge liberated, C\n", +"mm_Ba = 137; // Molar mass of Barium, g\n", +"mm_Cl = 35.5; // Molar mass of Chlorine, g\n", +"valence_Ba = 2; // Valence electrons of Barium\n", +"valence_Cl = 1; // Valence electrons of Chlorine\n", +"// Using Faraday’s law of electrolysis, we have\n", +"m_Ba = (q*mm_Ba)/(96500*valence_Ba); // Mass of Barium obtained, g\n", +"m_Cl = (q*mm_Cl)/(96500*valence_Cl); // Mass of Chlorine obtained, g\n", +"printf('\nMass of Barium obtained = %4.1f g', m_Ba);\n", +"printf('\nMass of Chlorine obtained = %4.1f g', m_Cl);\n", +"\n", +"// Result\n", +"// Mass of Barium obtained = 25.6 g\n", +"// Mass of Chlorine obtained = 13.2 g" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: Deflection_of_electron_beam_by_E_and_B_Fields.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex4.2: Pg 113 (2005)\n", +"clc; clear;\n", +" V = 200; // Electrc potential, V\n", +"theta = 0.20; // Angle, radians\n", +"l = 0.050; // Length of plates, m\n", +"d = 1.5e-02; // Distance between two plates, m\n", +"c_m_r = 1.76e+11; // Charge-to-mass ratio, C/kg\n", +"// Since e/m_e = (V*theta)/(B^2*l*d), solving for B\n", +"B = sqrt((V*theta)/(l*d*c_m_r)); // Magnetic field, T\n", +"printf('\nThe magnetic field required to produce the deflection of %4.2f rad = %3.1e T', theta, B);\n", +"\n", +"// Result\n", +"// The magnetic field required to produce the deflection of 0.20 rad = 5.5e-04 T " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: Experimental_determination_of_e.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex4.3: Pg 117 (2005)\n", +"clc; clear;\n", +"\n", +"// Part (a)\n", +"delta_y = 0.600; // Distance of rise or fall of a droplet, cm\n", +"t_av = 21.0; // Average time of fall of droplet, s\n", +"delta_t = [46.0, 15.5, 28.1, 12.9, 45.3, 20.0]; // Rise time of the droplet in succession, s\n", +"v = delta_y/t_av; // Average speed of the falling droplet, cm/s\n", +"v_prime = zeros(6);\n", +"for i = 1:1:6\n", +" v_prime(i) = delta_y/delta_t(i); // Successive speeds of the rising drops, cm/s \n", +"end\n", +"\n", +"// Calculate charge ratios\n", +"q1byq2 = (v+v_prime(1))/(v + v_prime(2));\n", +"q2byq3 = (v+v_prime(2))/(v + v_prime(3));\n", +"q3byq4 = (v+v_prime(3))/(v + v_prime(4));\n", +"q4byq5 = (v+v_prime(4))/(v + v_prime(5));\n", +"q5byq6 = (v+v_prime(5))/(v + v_prime(6));\n", +"printf('\nq1/q2 = %5.3f', q1byq2);\n", +"printf('\nq2/q3 = %5.3f', q2byq3);\n", +"printf('\nq3/q4 = %5.3f', q3byq4);\n", +"printf('\nq4/q5 = %5.3f', q4byq5);\n", +"printf('\nq5/q6 = %5.3f', q5byq6);\n", +"printf('\nThe charge ratios are ratios of small whole numbers\n');\n", +"\n", +"// Part (b)\n", +"eta = 1.83e-05; // Viscosity of air, kg/ms\n", +"rho = 858; // Oil density, kg/m^3\n", +"g = 9.81; // Acceleration due to gravity, m/s^2\n", +"a = sqrt((9*eta*v*1e-02)/(2*rho*g)); // Radius of oil droplet, m\n", +"V = 4/3*(%pi)*a^3; // Volume of oil droplet, m^3\n", +"m = rho*V; // Mass of oil droplet, kg\n", +"printf('\nRadius of oil droplet = %4.2e m', a);\n", +"printf('\nVolume of oil droplet = %4.2e m^3', V);\n", +"printf('\nMass of oil droplet = %4.2e kg', m);\n", +"\n", +"// Part (c)\n", +"V = 4550; // Potential difference across the plates of the capacitor, volt\n", +"d = 0.0160; // Distance between the plates\n", +"E = V/d; // Electric field between plates, V/m\n", +"q = zeros(6), e = zeros(6);\n", +"for i=1:1:6\n", +" q(i) = m*g/E*((v+v_prime(i))/v); // Charge on first drop, C \n", +" printf('\nq%d = %4.2e V/m', i, q(i)); \n", +"end\n", +"e(1) = q(1)/5;\n", +"e(2) = q(2)/8;\n", +"e(3) = q(3)/6;\n", +"e(4) = q(4)/9;\n", +"e(5) = q(5)/5;\n", +"e(6) = q(6)/7;\n", +"e_tot = 0;\n", +"for i = 1:1:6\n", +" e_tot = e_tot + e(i);\n", +"end\n", +"e = e_tot/6;\n", +"printf('\nThe average charge on an electron = %5.3e C', e);\n", +"\n", +"// Result\n", +"// q1/q2 = 1.105\n", +"// q2/q3 = 0.958\n", +"// q3/q4 = 1.053\n", +"// q4/q5 = 0.899\n", +"// q5/q6 = 1.086\n", +"// The charge ratios are ratios of small whole numbers\n", +"\n", +"// Radius of oil droplet = 1.67e-06 m\n", +"// Volume of oil droplet = 1.96e-17 m^3\n", +"// Mass of oil droplet = 1.68e-14 kg \n", +"\n", +"// q1 = 8.44e-019 V/m\n", +"// q2 = 1.36e-018 V/m\n", +"// q3 = 1.01e-018 V/m\n", +"// q4 = 1.52e-018 V/m\n", +"// q5 = 8.48e-019 V/m\n", +"// q6 = 1.19e-018 V/m\n", +"// The average charge on an electron = 1.694e-019 C " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: Collision_of_alpha_particle_with_proton.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex4.4: Pg 121 (2005)\n", +"clc; clear;\n", +"\n", +"// Part (b)\n", +"// For easy calculations, assume all variables to be unity\n", +"m_p = 1; // Mass of proton, a.m.u\n", +"m_a = 4*m_p; // Mass of alpha particle, a.m.u\n", +"Valpha = 1; // Velocity of alpha particle before collision, m/s\n", +"v_p = (2*m_a*Valpha)/(m_a + m_p); // Velocity of proton after collision, m/s\n", +"v_a = ((m_a - m_p)*(Valpha))/(m_a + m_p); // Velocity of alph particle after collision, m/s\n", +"p_change = ((v_a - Valpha)/(Valpha))*100; // Percentage change in velocity of alpha particle\n", +"printf('\nVelocity of proton after collision = %4.2fVa m/s', v_p);\n", +"printf('\nVelocity of alpha particle after collision = %4.2fVa m/s', v_a);\n", +"printf('\nPercentage change in velocity of alpha particle = %2d percent', p_change);\n", +"\n", +"// Result\n", +"// Velocity of proton after collision = 1.60 V_a m/s\n", +"// Velocity of alph particle after collision = 0.60 V_a m/s\n", +"// Percentage change in velocity of alpha particle = -40 percent" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: Radius_of_Aluminium_Nucleus.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex4.5: Pg 124 (2005)\n", +"clc; clear;\n", +"Z = 13; // Atomic number of Aluminium\n", +"e = 1.6e-19; // Charge on electron, C\n", +"k = 8.99e+09; // Coulomb constant, Nm^2/C^2\n", +"K_a = 7.7e+06*e; // Since K_a = (k*Z_e*2*e)/d_min, solving for d_min\n", +"d_min = (k*2*Z*e^2)/K_a; // Radius of Aluminum, m\n", +"printf('\nRadius of Aluminum = %3.1e m', d_min);\n", +"\n", +"// Result\n", +"// Radius of Aluminum = 4.9e-15 m" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7: Collision_of_alpha_particle_with_proton.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex4.7: Pg 135 (2005)\n", +"clc; clear;\n", +"// Part (a)\n", +"n_i = 2; // Initial level of electron\n", +"n_f = 1; // Final level of electron\n", +"R = 1.097e+07; // Rydberg constant, per metre\n", +"c = 3e+08; // Velocity of light, m/s\n", +"h = 4.136e-15; // Planck's constant, eV\n", +"lamda = n_i^2*n_f^2/((n_i^2-n_f^2)*R); // Wavelength of emitted photon, m\n", +"f = c/lamda; // Frequency of emitted photon, Hz\n", +"E = h*f; // Energy of emitted photon, eV\n", +"printf('\nThe wavelength of emitted photon = %5.1f nm', lamda/1e-09);\n", +"printf('\nThe frequency of emitted photon = %4.2e Hz', f);\n", +"printf('\nEnergy of emitted photon = %4.1f eV', E);\n", +"\n", +"// Part (b)\n", +"mc_square = 938.8e+06; // Energy of recoil of hydrogen atom, eV\n", +"K = 0.5*(E^2/mc_square); // Recoil kinetic energy of H atom, eV\n", +"E_difference = K/E; // Energy difference\n", +"printf('\nRecoil kinetic energy of H atom = %4.2e eV', K);\n", +"printf('\nThe fraction of energy difference = %3.1e', E_difference);\n", +"\n", +"// Result\n", +"// The wavelength of emitted photon = 121.5 nm\n", +"// The frequency of emitted photon = 2.47e+15 Hz\n", +"// Energy of emitted photon = 10.2 eV\n", +"// Recoil kinetic energy of H atom = 5.55e-08 eV\n", +"// The fraction of energy difference = 5.4e-09 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8: series_for_Hydrge.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex4.8: Pg 136 (2005)\n", +"clc; clear;\n", +"\n", +"// Part (a)\n", +"n_i = 3; // Initial level of electron\n", +"n_f = 2; // Final level of electron\n", +"R = 1.097e+07; // Rydberg constant, per metre\n", +"c = 3e+08; // Velocity of light, m/s\n", +"h = 6.626e-34; // Plank's constant, Js\n", +"lamda_max = (n_i^2*n_f^2)/((n_i^2-n_f^2)*R); // Maximum wavelength of emitted photon, m\n", +"E_photon = (h*c)/(lamda_max*1.6e-19); // Energy of emitted photon, eV\n", +"printf('\nThe maximum wavelength of emitted photon = %5.1f nm', lamda_max/1e-09);\n", +"printf('\nEnergy of emitted photon = %4.2f eV', E_photon);\n", +"\n", +"// Part (b)\n", +"n_i = %inf; // Initial level of electron\n", +"lamda_min = 1/(R*(1/n_f^2-1/n_i^2));\n", +"printf('\nThe wavelength corresponding to the series limit = %5.1f nm which is in the ultraviolet region', lamda_min/1e-09);\n", +"\n", +"// Result\n", +"// The maximum wavelength of emitted photon = 656.3 nm\n", +"// Energy of emitted photon =1.89 eV\n", +"//// The wavelength corresponding to the series limit = 364.6 nm which is in the ultraviolet region " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: Hydrogen_in_its_first_excited_state.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex4.9: Pg 137 (2005)\n", +"clc; clear;\n", +"k_B = 8.62e-05; // Boltzmann constant, eV/K\n", +"delta_E = 10.2; // Average thermal energy, eV\n", +"// Since (3/2)*k_B*T = averge thermal energy per atom = 10.2eV, solving for T\n", +"T = 10.2/(3/2*k_B); // Temperature at which H-atoms jump to first excited state, K\n", +"printf('\nThe temperature at which H-atoms jump to first excited state = %5d K', T);\n", +"N_ratio = 0.10; // Number ratio of population of first excited state relative to the ground state\n", +"// As N_ratio = exp(-delta_E/(k_B*T)), solving for T\n", +"T = -delta_E/(k_B*log(N_ratio)); // Temperature at which H-atoms jump to first excited state, K\n", +"printf('\nThe temperature of excitation from Boltzmann distribution = %5d K', T);\n", +"\n", +"// Result\n", +"// The temperature at which H-atoms jump to first excited state = 78886 K\n", +"// The temperature of excitation from Boltzmann distribution = 51389 K " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_R_A_Serway/5-Matter_waves.ipynb b/Modern_Physics_by_R_A_Serway/5-Matter_waves.ipynb new file mode 100644 index 0000000..7bdbbd9 --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/5-Matter_waves.ipynb @@ -0,0 +1,228 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Matter waves" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.10: Width_of_spectral_lines.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex5.10: Pg 178 (2005)\n", +"clc; clear;\n", +"\n", +"// Part (a)\n", +"h_cross = 1.05e-34; // Reduced Plank's constant, J-s\n", +"h = 6.63e-34; // Plank's constant, J-s\n", +"delta_t = 1.0e-08; // Average time to measure the excited state, s\n", +"delta_E = h_cross/(2*delta_t); // Uncertainty in energy of the excited state, J\n", +"// Since delta_E = h*delta_f, solving for delta_f\n", +"delta_f = delta_E/h; // Line width of emitted light, Hz\n", +"printf('\nLine width of emitted light = %2.0e Hz', delta_f);\n", +"\n", +"// Part (b)\n", +"c = 3e+08; // Velocity of light, m/s\n", +"lamda = 500e-09; // Wavelength of spectral line, m\n", +"f_o = c/lamda; // Center frequency of spectral line, Hz\n", +"f_b = delta_f/f_o; // Fractional broadening of spectral line\n", +"printf('\nFractional broadening of spectral line = %3.1e', f_b);\n", +"\n", +"// Result\n", +"// Line width of emitted light = 8.0e+06 Hz\n", +"// Fractional broadening of spectral line = 1.3e-08" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: Wave_properties_of_a_baseball.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex5.1: Pg 154 (2005)\n", +"clc; clear;\n", +"h = 6.63e-34; // Plank's constant, Js\n", +"m = 140e-03; // Mass of baseball, kg\n", +"v = 27; // Velocity of baseball, m/s\n", +"p = m*v; // Momentum of baseball, kgm/s\n", +"lamda = h/p; // de Broglie wavelength associated with baseball, m\n", +"printf('\nde-Broglie wavelength associated with baseball = %3.1e m', lamda);\n", +"\n", +"// Result\n", +"// de-Broglie wavelength associated with baseball = 1.8e-34 m " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: de_Broglie_wavelength_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex5.2: Pg 154 (2005)\n", +"clc; clear;\n", +"\n", +"// Part (b)\n", +"h = 6.63e-34; // Plank's constant, Js\n", +"m_e = 9.11e-31; // Mass of electron, kg\n", +"q = 1.6e-19; // Charge on electron, C\n", +"V = 50; // Electric potential applied, V\n", +"lamda = h/(sqrt(2*m_e*q*V)); // de Broglie wavelength of an electron, m\n", +"printf('\nde Broglie wavelength of an electron = %3.1f angstrom', lamda/1e-10);\n", +"\n", +"// Result\n", +"// de Broglie wavelength of an electron = 1.7 angstrom " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: Diffraction_of_neutrons_at_the_crystal_lattice.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex5.3: Pg 158 (2005)\n", +"clc; clear;\n", +"h = 6.63e-34; // Plank's constant, J-s\n", +"lamda = 1e-10; // de Broglie wavelength of neutron, m\n", +"p = h/lamda; // Momentum associated with neutron, kg-m/s\n", +"m_n = 1.66e-27; // Mass of neutron, kg\n", +"e = 1.6e-19; // Energy equivalent of 1 eV, J/eV\n", +"K = p^2/(2*m_n); // Kinetic energy of neutron, eV\n", +"printf('\nThe momentum of neutrons = %4.2e kg-m/s', p)\n", +"printf('\nThe kinetic energy of neutrons = %4.2fe-20 J = %6.4f eV', K*1e+20, K/e);\n", +"\n", +"// Result\n", +"// The momentum of neutrons = 6.63e-24 kg-m/s\n", +"// The kinetic energy of neutrons = 1.32e-20 J = 0.0828 eV " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.8: Uncertainity_principle_for_macroscopic_objects.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex5.8: Pg 177 (2005)\n", +"clc; clear;\n", +"h_cross = 1.05e-34; // Reduced Plank's constant, J-s\n", +"delta_x = 15; // Uncertainity in position, m\n", +"v_x = 2; // Velocity of ball, m/s\n", +"m = 100e-03; // Mass of ball, kg\n", +"delta_p_x = h_cross/(2*delta_x); // Uncertainity in momentum, kg-m/s\n", +"delta_v_x = delta_p_x/m; // Minimum spread in velcoity, m/s\n", +"U_r = delta_v_x/v_x; // Relative uncertainity in velocity of ball\n", +"printf('\nThe minimum spread in velcoity of ball = %3.1e m/s', delta_v_x);\n", +"printf('\nThe relative uncertainity in velocity of ball = %4.2e', U_r);\n", +"\n", +"// Result\n", +"// The minimum spread in velcoity of ball = 3.5e-35 m/s\n", +"// The relative uncertainity in velocity of ball = 1.75e-35 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.9: Kinetic_energy_of_electron_confined_within_the_nucleus.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex5.9: Pg 178 (2005)\n", +"clc; clear;\n", +"delta_x = 1.0e-14/2; // Uncertainity in position of electron, m\n", +"q = 1.6e-19; // Charge on electron, C\n", +"h_cross = 1.05e-34; // Reduced Plank's constant, J-s\n", +"c = 3e+08; // Velocity of light, m/s\n", +"delta_p_x = (h_cross*c)/(2*delta_x*q); // Uncertainity in momentum, eV/c\n", +"E_r = 0.551e+06; // Rest mass energy if electron, eV\n", +"E = sqrt((delta_p_x)^2 + (E_r)^2);\n", +"K = E - E_r; // Kinetic energy of electron within nucleus, eV\n", +"printf('\nKinetic energy of electron within nucleus = %4.1f MeV', K/1e+06);\n", +"\n", +"// Result\n", +"// Kinetic energy of electron within nucleus = 19.1 MeV" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_R_A_Serway/6-Quantum_mechanics_in_one_dimension.ipynb b/Modern_Physics_by_R_A_Serway/6-Quantum_mechanics_in_one_dimension.ipynb new file mode 100644 index 0000000..ef78190 --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/6-Quantum_mechanics_in_one_dimension.ipynb @@ -0,0 +1,360 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Quantum mechanics in one dimension" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.12: The_quantum_oscillator_in_nonclassical_region.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex6.12: Pg 214 (2005)\n", +"clc; clear;\n", +"P = 2/sqrt(%pi)*integrate('exp(-z^2)', 'z', 1, 100); // Probability that the quantum oscillator in its ground state will be found in the nonclassical region\n", +"printf('\nThe probability that the quantum oscillator in its ground state will be found in the nonclassical region = %5.3f', P);\n", +"\n", +"// Result\n", +"// The probability that the quantum oscillator in its ground state will be found in the nonclassical region = 0.157 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.13: Quantization_of_vibrational_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex6.13: Pg 211 (2005)\n", +"clc; clear;\n", +"h_cross = 6.582e-016; // Reduced Planck's constant, eV-s\n", +"// For spring-mass system\n", +"K = 0.100; // Force constant of the spring-mass system, N/m\n", +"m = 0.0100; // Mass attached to the spring, kg\n", +"omega = sqrt(K/m); // Angular frequency of oscillations, rad/s\n", +"delta_E = h_cross*omega; // Energy spacing between quantum levels, eV\n", +"printf('\nThe energy spacing between quantum levels for spring-mass system = %4.2e eV\nwhich is far below present limits of detection', delta_E);\n", +"// For vibrating hydrogen molecule\n", +"K = 510.5; // Force constant of the hydrogen molecule system, N/m\n", +"mu = 8.37e-028; // Reduced mass of the hydrogen molecule, kg\n", +"omega = sqrt(K/mu); // Angular frequency of oscillations, rad/s\n", +"delta_E = h_cross*omega; // Energy spacing between quantum levels, eV\n", +"printf('\nThe energy spacing between quantum levels for hydrogen molecule = %5.3f eV\nwhich can be measured easily', delta_E);\n", +"\n", +"// Result\n", +"// The energy spacing between quantum levels for spring-mass system = 2.08e-15 eV\n", +"// which is far below present limits of detection\n", +"// The energy spacing between quantum levels for hydrogen molecule = 0.514 eV\n", +"// which can be measured easily " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.14: Standard_Deviations_from_Averages.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex6.14: Pg 219 (2005)\n", +"clc; clear;\n", +"x = [2.5, 3.7, 1.4, 7.9, 6.2, 5.4, 8.0, 6.4, 4.1, 5.4, 7.0, 3.3, 4.2, 8.8, 6.2, 7.1, 5.4, 5.3]; // Data entries\n", +"sum_x = 0; // Initialize the accumulator\n", +"sum_x_sq = 0; // Initialize the second accumulator\n", +"N = 18; // Total number of data points\n", +"for i = 1:1:N\n", +" sum_x = sum_x + x(i); // Sum of data\n", +" sum_x_sq = sum_x_sq + x(i)^2; // Sum of square of data\n", +"end\n", +"x_av = sum_x/N; // Average of data\n", +"x_sq_av = sum_x_sq/N; // Mean square value\n", +"sigma = sqrt(x_sq_av-x_av^2); // Standard deviation from averages\n", +"printf('\nThe standard deviation from averages = %4.2f', sigma);\n", +"\n", +"\n", +"// Result\n", +"// The standard deviation from averages = 1.93 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.15: Location_of_a_particle_in_the_box.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex6.15: Pg 219 (2005)\n", +"clc; clear;\n", +"L = 1; // For simplicity assume length of the box to be unity, unit\n", +"x_av = 2*L/%pi^2*integrate('theta*sin(theta)^2', 'theta', 0, %pi); // Average value of x\n", +"x_sq_av = L^2/%pi^3*(integrate('theta^2', 'theta', 0, %pi)-integrate('theta^2*cos(2*theta)', 'theta', 0, %pi)); // Average value of x square\n", +"delta_x = sqrt(x_sq_av - x_av^2); // Uncertainty in the position for this particle, unit\n", +"printf('\nThe average position of the particle in the box = L/%1d', x_av*4);\n", +"printf('\nThe uncertainty in the position for the particle = %5.3fL', delta_x);\n", +"\n", +"// Result\n", +"// The average position of the particle in the box = L/2\n", +"// The uncertainty in the position for the particle = 0.181L " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: Probability_from_wave_function.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex6.2: Pg 193 (2005)\n", +"clc; clear;\n", +"x0 = 1; // For simplicity assume x0 = 1\n", +"C = 1/sqrt(x0); // Normalization constant\n", +"P = 2*C^2*integrate('exp(-2*x/x0)', 'x', 0, x0);\n", +"printf('\nThe probability that the particle will be found in the interval -x0 <= x <= x0 is %6.4f or %4.1f percent', P, P*100);\n", +"\n", +"// Result\n", +"// The probability that the particle will be found in the interval -x0 <= x <= x0 is 0.8647 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: Dispersion_of_matter_waves.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex6.4: Pg 197 (2005)\n", +"clc; clear;\n", +"delta_x0 = 1e-010; // Initial width of the localized space, m\n", +"delta_xt = 10*delta_x0; // Final width at which the wave packet is dispersed, m\n", +"h_cross = 1.055e-034; // Reduced Planck's constant, Js\n", +"m = 9.11e-031; // Mass of the electron, kg\n", +"// From Dispersion relation, delta_xt^2 - delta_x0^2 = sqrt(h_cross*t/(2*m*deltax0)^2), solving for t\n", +"t = 2*m*sqrt(delta_xt^2 - delta_x0^2)*delta_x0/h_cross; // Time which elapses before delocalization\n", +"printf('\nThe time which elapses before the localization of electron destroys = %3.1e s', t);\n", +"m = 1e-03; // Mass of marble, kg\n", +"delta_x0 = 1e-004; // Initial width of the localized space, m\n", +"delta_xt = 10*delta_x0; // Final width at which the wave packet is dispersed, m\n", +"t = 2*m*sqrt(delta_xt^2 - delta_x0^2)*delta_x0/h_cross; // Time which elapses before delocalization\n", +"printf('\nThe time which elapses before the localization of marble destroys = %3.1e s', t);\n", +"printf('\nFor all the practical purposes, the marble will remain localized for ever');\n", +"// Result\n", +"// \n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: Energy_Quantization_for_Macroscopic_Object.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex6.5: Pg 202 (2005)\n", +"clc; clear;\n", +"h = 6.626e-034; // Planck's constant, Js\n", +"m = 1e-06; // Mass of the object, kg\n", +"n = 1; // Quantum number for minimum energy level\n", +"L = 1e-02; // Distance between two rigid walls, m\n", +"E1 = n^2*h^2/(8*m*L^2); // Minimum energy of the object, J\n", +"v1 = sqrt(2*E1/m); // Minimum speed of the object, m/s\n", +"v = 3.00e-02; // Given speed of the objct, m/s\n", +"E = 1/2*m*v^2; // Energy of the object for given speed, J\n", +"n = sqrt(8*m*L^2*E)/h; // Quantum number corresponding to the given speed\n", +"printf('\nThe minimum speed of the object = %4.2e m/s', v1);\n", +"printf('\nThe quantum number corresponding to the speed of %4.2e m/s is n = %4.2e', v1, n);\n", +"\n", +"// Result\n", +"// The minimum speed of the object = 3.31e-26 m/s\n", +"// The quantum number corresponding to the speed of 3.31e-26 m/s is n = 9.06e+23 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6: Model_of_an_Atom.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex6.6: Pg 203 (2005)\n", +"clc; clear;\n", +"c = 1; // Assume speed of light to be unity, m/s\n", +"h_cross = 197.3; // Reduced Planck's constant, eV.nm/c^2\n", +"m_e = 511e+03; // Mass of an electron, eV/c^2\n", +"L = 0.200; // Length of the box, nm\n", +"E1 = %pi^2*(h_cross/c)^2/(2*m_e*L^2); // Ground state energy of atomic electron, eV\n", +"E2 = 2^2*E1; // Excited state energy of the atomic electron, eV\n", +"delta_E = E2- E1; // Energy that must be applied to the electron to raise it from ground to the first excited state, eV\n", +"h = 2*%pi*h_cross; // Planck's constant, Js\n", +"lambda = h*c/delta_E; // Wavelength of the photon to cause the electron transition, nm\n", +"printf('\nThe energy that must be applied to the electron to raise it from ground to the first excited state = %4.1f eV', delta_E);\n", +"printf('\nThe wavelength of the photon to cause this electron transition = %4.1f nm', lambda);\n", +"printf('\nThis wavelength is in the far ultraviolet region.');\n", +"\n", +"// Result\n", +"// The energy that must be applied to the electron to raise it from ground to the first excited state = 28.2 eV\n", +"// The wavelength of the photon to cause this electron transition = 44.0 nm\n", +"// This wavelength is in the far ultraviolet region. " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.7: Probabilities_for_a_particle_in_a_Box.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex6.7: Pg 205 (2005)\n", +"clc; clear;\n", +"L = 1; // For simplicity assume length of finite square well to be unity, m\n", +"P = 2/L*integrate('sin(%pi*x/L)^2', 'x', L/4, 3*L/4); // Probability that the particle will be found in the middle half of the well\n", +"printf('\nThe probability that the particle will be found in the middle half of the well = %5.3f', P);\n", +"\n", +"// Result\n", +"// The probability that the particle will be found in the middle half of the well = 0.818" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.8: Ground_state_energy_of_an_electron_confined_to_a_potential_well.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"// Scilab code Ex6.8: Pg 211 (2005)\n", +"clc; clear;\n", +"c = 1; // Assume speed of light to be unity, m/s\n", +"L = 0.200; // Width of the potential well, nm\n", +"h_cross = 197.3; // Reduced Planck's constant, eV.nm/c^2\n", +"m = 511e+03; // Mass of an electron, eV/c^2\n", +"U = 100; // Height of potential well, eV\n", +"delta = h_cross/sqrt(2*m*U); // Decay length of electron, nm\n", +"L = L + 2*delta; // Effective length of the infinite potential well, nm\n", +"E = %pi^2*(h_cross/c)^2/(2*m*L^2); // Ground state energy of the electron with effective length, eV\n", +"U = U - E; // New potential energy, eV\n", +"delta = h_cross/sqrt(2*m*U); // New decay length of electron, nm\n", +"printf('\nThe ground state energy of an electron confined to the potential well = %4.2f eV', E);\n", +"printf('\nThe new decay length of the electron = %6.4f nm', delta);\n", +"\n", +"// Result\n", +"// The ground state energy of an electron confined to the potential well = 6.58 eV \n", +"// The new decay length of the electron = 0.0202 nm " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_R_A_Serway/7-Tunnelling_phenomena.ipynb b/Modern_Physics_by_R_A_Serway/7-Tunnelling_phenomena.ipynb new file mode 100644 index 0000000..05a54f5 --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/7-Tunnelling_phenomena.ipynb @@ -0,0 +1,174 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Tunnelling phenomena" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: Transmission_coefficient_for_an_oxide_layer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex7.1: Pg 235 (2005)\n", +"clc; clear;\n", +"c = 3e+08; // Velocity of light, m/s\n", +"m_e = 511e+03/(c^2); // Mass of electron, eV\n", +"U = 3.00; // Ground state energy neglecting E, eV\n", +"h_cross = (1.973e+03)/c; // Reduced planck's constant, eV\n", +"alpha = sqrt(2*m_e*U)/h_cross;\n", +"L = 50; // Thickness of the layer, angstrom\n", +"T = 1/(1+1/4*10^2/(7*3)*sinh(alpha*L)^2);\n", +"printf('\nThe transmission coefficient for the layer thickness of');\n", +"printf('\n%2d angstrom = %5.3e', L, T);\n", +"L = 10; // // Thickness of the layer, angstrom\n", +"T = 1/(1+1/4*10^2/(7*3)*sinh(alpha*L)^2);\n", +"printf('\n%2d angstrom = %5.3e', L, T);\n", +"\n", +"// Result\n", +"// The transmission coefficient for the layer thickness of\n", +"// 50 angstrom = 9.628e-39\n", +"// 10 angstrom = 6.573e-08 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: Tunnelling_current_through_an_oxide_layer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex7.2: Pg 236 (2005)\n", +"clc; clear;\n", +"e = 1.60e-19; // Electrc charge, C\n", +"i = 1.00e-03; // Electron current, A\n", +"N = i/e; // Electrons per second\n", +"T = 0.657e-07; // Fraction of electrons transmitted\n", +"T_e = N*T; // Number of electrons transmitted per second\n", +"T_i = T_e*e; // Transmitted current, A\n", +"printf('\nThe transmitted current through the oxide layer = %4.1f pA', T_i*1e+12);\n", +"\n", +"// Result\n", +"// The transmitted current through the oxide layer = 65.7 pA " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.5: Tunnelling_in_a_parallel_plate_capacitor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex7.5: Pg 241 (2005)\n", +"clc; clear;\n", +"epsilon_c = 5.5e+10; // Characteristic field strength, V/m\n", +"epsilon = 1.0e+09; // Electric field, V/m\n", +"f = 1.0e+30; // Collision frequency, s(-1)cm(-2)\n", +"lamda = f*exp(-epsilon_c/epsilon); // Electron emission rate, electrons/sec\n", +"e = 1.60e-19; // Electrc charge, C\n", +"I = lamda*e; // Tunelling current, A\n", +"printf('\nTunelling current in parallel plate capacitor = %4.2f pA', I/1e-12);\n", +"printf('\n');\n", +"\n", +"// Result\n", +"// Tunelling current in parallel plate capacitor = 0.21 pA" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.6: Estimating_halflives_of_Thorium_and_Polonium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex7.6: Pg 244 (2005)\n", +"clc; clear;\n", +"Z_T = 88; // Atomic number of daughter nucleus\n", +"E_T = 4.05e+06; // Energy of ejected alphas, eV\n", +"R = 9.00e-15; // Nuclear radius, m\n", +"r_o = 7.25e-15; // Bohr radius, m\n", +"E_o = 0.0993e+06; // Energy analogous to the Rydberg in Atomic Physics \n", +"T_T = exp(-4*%pi*Z_T*sqrt(E_o/E_T) + 8*sqrt((Z_T*R)/r_o)); // Transmission factor in case of Thorium\n", +"f = 1e+21; // Frequency of collisions, Hz\n", +"lamda_T = f*T_T; // Decay rate in case of Thorium, s^(-1)\n", +"t_T = 0.693/lamda_T; // Half-life time of Thorium, s\n", +"Z_P = 82; // Atomic number of daughter nucleus\n", +"E_P = 8.95e+06; // Energy of ejected alphas, eV\n", +"R = 9.00e-15; // Nuclear radius, m\n", +"r_o = 7.25e-15; // Bohr radius, m\n", +"E_o = 0.0993e+06; // Energy unit, eV\n", +"T_P = exp(-4*%pi*Z_P*sqrt(E_o/E_P) + 8*sqrt((Z_P*R)/r_o)); // Transmission factor in case of Polonium\n", +"f = 1e+21; // Frequency of collisions, Hz\n", +"lamda_P = f*T_P; // Decay rate in case of Thorium, s^(-1)\n", +"t_P = 0.693/lamda_P; // Half-life time of Polonium, s\n", +"\n", +"printf('\nHalf-life time of Thorium = %3.1e s = %3.1e yrs', t_T, t_T/(365*24*60*60));\n", +"printf('\nHalf-life time of Polonium = %3.1e s', t_P);\n", +"\n", +"// Result\n", +"// Half-life time of Thorium = 5.3e+17 s = 1.7e+10 yrs\n", +"// Half-life time of Polonium = 8.4e-10 s " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_R_A_Serway/8-Quantum_Mechanics_in_Three_Dimensions.ipynb b/Modern_Physics_by_R_A_Serway/8-Quantum_Mechanics_in_Three_Dimensions.ipynb new file mode 100644 index 0000000..f06cdb4 --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/8-Quantum_Mechanics_in_Three_Dimensions.ipynb @@ -0,0 +1,168 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Quantum Mechanics in Three Dimensions" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: Orbital_quantum_number_for_a_stone.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex8.4: Pg 270 (2005)\n", +"clc; clear;\n", +"R = 1.00; // Radius of circle, m\n", +"T = 1.00; // Time period of revolution, s\n", +"v = (2*%pi*R)/T; // Speed of stone in its orbit, m/s\n", +"m = 1.00; // Mass of stone, kg\n", +"L = m*v*R; // Angular momentum of stone, kg-m^2/s\n", +"h_cross = 1.055e-34; // Reduced Planck's constant, kg-m^2/s\n", +"l = L/h_cross; // Orbtal quantum number\n", +"printf('\nThe orbtal quantum number for stone = %4.2fe+34', l*1e-34);\n", +"\n", +"// Result\n", +"// Orbtal quantum number for stone = 5.96e+34" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.6: Space_quantisation_for_an_atomic_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex8.6: Pg 272 (2005)\n", +"clc; clear;\n", +"// For simplicity let h_cross = 1\n", +"h_cross = 1; // Reduced planck's constant\n", +"l = 3; // Given orbital quantum number\n", +"L = sqrt(l*(l+1)*h_cross); // Magnitude of total angular momentum, in h_cross units\n", +"m_l = [-3, -2, -1, 0, 1, 2, 3];\n", +"L_z = m_l*h_cross; // Allowed values of L_z\n", +"cos_theta = L_z/L;\n", +"theta = acosd(L_z/L); // Orientations of L_z, degrees\n", +"for i = 1:1:7\n", +" if theta(i) > 90 then\n", +" theta(i) = theta(i)-180;\n", +" end\n", +"end\n", +"printf('\nThe magnitude of total angular momentum = 2*sqrt(%d)*h_cross\n', L^2/4);\n", +"printf('\nThe allowed values of L_z in units of h_cross are :');\n", +"disp(L_z);\n", +"printf('\nThe orientations of L_z in degrees are:');\n", +"disp(theta);\n", +"\n", +"// Result\n", +"// The magnitude of total angular momentum = 2*sqrt(2)*h_cross\n", +"\n", +"// The allowed values of L_z in units of h_cross are : \n", +"// - 3. - 2. - 1. 0. 1. 2. 3. \n", +"\n", +"// The orientations of L_z in degrees are: \n", +"// - 30. - 54.73561 - 73.221345 90. 73.221345 54.73561 30. " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.7: Energy_of_Hydrogen_atom_at_first_excited_state.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex8.7: Pg 281 (2005)\n", +"clc; clear;\n", +"k = 9e+09; // Coulomb constant, N/Sq.m/C\n", +"e = 1.6e-019; // Electronic charge, C\n", +"a_0 = 0.529e-010; // Bohr's radius, m\n", +"n = 2; // Principal quantum number\n", +"l = [0, 1]; // Orbital quantum number\n", +"m_l = [-1, 0, 1]; // Orbital magnetic quantum number\n", +"Z = 1; // Atomic number of hydrogen\n", +"E2 = -k*e^2/(2*a_0)*Z^2/n^2; // Energy of first excited level of hydrogen, \n", +"printf('\nThe energy of first excited level of hydrogen = %3.1f eV', E2/e);\n", +"\n", +"// Result\n", +"// The energy of first excited level of hydrogen = -3.4 eV \n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.8: Probabilities_for_the_Electron_in_Hydrogen.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex8.8: Pg 284 (2005)\n", +"clc; clear;\n", +"P = 1/2*integrate('z^2*exp(-z)', 'z', 2, 100); // Take some large value of upper limit\n", +"printf('\nP(electron in the ground state of hydrogen will be found outside the first Bohr radius) = %4.1f percent', P*100);\n", +"\n", +"// Result\n", +"// P(electron in the ground state of hydrogen will be found outside the first Bohr radius) = 67.7 percent \n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Modern_Physics_by_R_A_Serway/9-Atomic_Structure_.ipynb b/Modern_Physics_by_R_A_Serway/9-Atomic_Structure_.ipynb new file mode 100644 index 0000000..932c72c --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/9-Atomic_Structure_.ipynb @@ -0,0 +1,217 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: Atomic Structure " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: Magnetic_energy_of_electron_in_Hydrogen.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex9.1: Pg 300 (2005)\n", +"clc; clear;\n", +"// Since mu_B = (e*h_cross)/(2*m_e)\n", +"mu_B = 9.27e-24; // Bohr magneton, J/T\n", +"B = 1.00; // Magnetic flux, T\n", +"// Since 1 eV = 1.6e-19 J\n", +"eV = 1.6e-19; // Energy, J\n", +"h_cross = 6.58e-16; // Reduced Plank's constant, eV-s\n", +"omega_L = (mu_B*B)/(eV*h_cross); // Larmor frequency, rad/s\n", +"printf('\nLarmour frequency at n = 2 is %4.2fe+10 rad/s', omega_L*1e-10);\n", +"\n", +"// Result\n", +"// Larmour frequency at n = 2 is 8.81e+10 rad/s" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: Angles_between_z_axis_and_the_spin_angular_momentum_vector.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex9.2: Pg 307 (2005)\n", +"clc; clear;\n", +"h_cross = 6.58e-16; // Reduced Plank's constant, eV-s\n", +"S = h_cross*sqrt(3)/2; // Spin angular momentum, eV-s\n", +"S_z = h_cross/2; // Z-component of spin angular momentum, eV-s\n", +"theta_up = acosd(S_z/S);\n", +"theta_down = acosd(-S_z/S);\n", +"printf('\nFor up spin state, theta = %4.2f degrees', theta_up);\n", +"printf('\nFor down spin state, theta = %5.1f degrees', theta_down);\n", +"\n", +"// Result\n", +"// For up spin state, theta = 54.74 degrees\n", +"// For down spin state, theta = 125.3 degrees " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.3: Zeeman_Spectrum_of_Hydrogen_Including_Spin.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex9.3: Pg 311 (2005)\n", +"clc; clear;\n", +"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n", +"B = 1.00; // Magnitude of magnetic field, tesla\n", +"n = 2; // Initial state of the hydrogen atom\n", +"mu_B = 9.27e-024; // Bohr's magneton, J/T\n", +"E_Z = mu_B*B/e; // Zeeman energy, eV\n", +"E2 = -13.6/n^2; // Energy of first excited state, eV\n", +"m_l = [-2, -1, 0, 1, 2]; // Orbital magnetic quantum number for l = 2\n", +"printf('\nThe energies of the electron (in eV) in n = 2 state are:\n');\n", +"for i = 1:1:5\n", +" if m_l(i) < 0 then\n", +" sig = '-';\n", +" else\n", +" sig = '+';\n", +" end\n", +" printf(' (%4.2f %s %4.2e) ', E2, sig, abs(E_Z*m_l(i)));\n", +"end\n", +"\n", +"// Result\n", +"// The energies of the electron (in eV) in n = 2 state are:\n", +"// (-3.40 - 1.16e-04) (-3.40 - 5.79e-05) (-3.40 + 0.00e+00) (-3.40 + 5.79e-05) (-3.40 + 1.16e-04" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.4: Spin_orbit_energy_of_Sodium_doublet.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex9.4: Pg 311 (2005)\n", +"clc; clear;\n", +"hc = 1240; // Product of plank's constant & velocity of light, eV\n", +"lamda_1 = 588.995; // Wavelength of first doublet of Na lines, nm\n", +"lamda_2 = 589.592; // Wavelength of second doublet of Na lines, nm\n", +"delta_E = hc*(lamda_2 - lamda_1)/(lamda_1*lamda_2); // Spin orbit energy, eV\n", +"printf('\nSpin orbit energy from doublet spacing = %4.2fe-03 eV', delta_E*1e+03);\n", +"\n", +"// Result\n", +"// Spin orbit energy from doublet spacing = 2.13e-03 eV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.5: Ground_state_of_Helium_atom.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex9.5: Pg 316 (2005)\n", +"clc; clear;\n", +"n = 1; // Principal quantum number\n", +"Z = 2; // Atomic number of Helium\n", +"E_a = (-13.6*Z^2)/n^2; // Energy of the electron in state 'a', eV\n", +"E_b = (-13.6*Z^2)/n^2; // Energy of the electron in state 'b', eV\n", +"E = E_a + E_b; // Total electronic energy of Helium, eV\n", +"printf('\nTotal electronic energy of Helium = %5.1f eV', E);\n", +"\n", +"// Result\n", +"// Total electronic energy of Helium = -108.8 eV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.6: Effective_atomic_number_for_3s_electron_in_Na.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex9.6: Pg 317 (2005)\n", +"clc; clear;\n", +"E_i = 5.14; // Ionisation energy of Na, eV\n", +"n = 3; // Principal quantum number\n", +"Z_eff = sqrt((n^2*E_i)/13.6); // Effective atmic number\n", +"printf('\nEffective atomic number for 3s electron in Na = %4.2f', Z_eff);\n", +"\n", +"// Result\n", +"// Effective atomic number for 3s electron in Na = 1.84" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |