diff options
Diffstat (limited to 'Modern_Physics_by_R_A_Serway/5-Matter_waves.ipynb')
-rw-r--r-- | Modern_Physics_by_R_A_Serway/5-Matter_waves.ipynb | 228 |
1 files changed, 228 insertions, 0 deletions
diff --git a/Modern_Physics_by_R_A_Serway/5-Matter_waves.ipynb b/Modern_Physics_by_R_A_Serway/5-Matter_waves.ipynb new file mode 100644 index 0000000..7bdbbd9 --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/5-Matter_waves.ipynb @@ -0,0 +1,228 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Matter waves" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.10: Width_of_spectral_lines.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex5.10: Pg 178 (2005)\n", +"clc; clear;\n", +"\n", +"// Part (a)\n", +"h_cross = 1.05e-34; // Reduced Plank's constant, J-s\n", +"h = 6.63e-34; // Plank's constant, J-s\n", +"delta_t = 1.0e-08; // Average time to measure the excited state, s\n", +"delta_E = h_cross/(2*delta_t); // Uncertainty in energy of the excited state, J\n", +"// Since delta_E = h*delta_f, solving for delta_f\n", +"delta_f = delta_E/h; // Line width of emitted light, Hz\n", +"printf('\nLine width of emitted light = %2.0e Hz', delta_f);\n", +"\n", +"// Part (b)\n", +"c = 3e+08; // Velocity of light, m/s\n", +"lamda = 500e-09; // Wavelength of spectral line, m\n", +"f_o = c/lamda; // Center frequency of spectral line, Hz\n", +"f_b = delta_f/f_o; // Fractional broadening of spectral line\n", +"printf('\nFractional broadening of spectral line = %3.1e', f_b);\n", +"\n", +"// Result\n", +"// Line width of emitted light = 8.0e+06 Hz\n", +"// Fractional broadening of spectral line = 1.3e-08" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: Wave_properties_of_a_baseball.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex5.1: Pg 154 (2005)\n", +"clc; clear;\n", +"h = 6.63e-34; // Plank's constant, Js\n", +"m = 140e-03; // Mass of baseball, kg\n", +"v = 27; // Velocity of baseball, m/s\n", +"p = m*v; // Momentum of baseball, kgm/s\n", +"lamda = h/p; // de Broglie wavelength associated with baseball, m\n", +"printf('\nde-Broglie wavelength associated with baseball = %3.1e m', lamda);\n", +"\n", +"// Result\n", +"// de-Broglie wavelength associated with baseball = 1.8e-34 m " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: de_Broglie_wavelength_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex5.2: Pg 154 (2005)\n", +"clc; clear;\n", +"\n", +"// Part (b)\n", +"h = 6.63e-34; // Plank's constant, Js\n", +"m_e = 9.11e-31; // Mass of electron, kg\n", +"q = 1.6e-19; // Charge on electron, C\n", +"V = 50; // Electric potential applied, V\n", +"lamda = h/(sqrt(2*m_e*q*V)); // de Broglie wavelength of an electron, m\n", +"printf('\nde Broglie wavelength of an electron = %3.1f angstrom', lamda/1e-10);\n", +"\n", +"// Result\n", +"// de Broglie wavelength of an electron = 1.7 angstrom " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: Diffraction_of_neutrons_at_the_crystal_lattice.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex5.3: Pg 158 (2005)\n", +"clc; clear;\n", +"h = 6.63e-34; // Plank's constant, J-s\n", +"lamda = 1e-10; // de Broglie wavelength of neutron, m\n", +"p = h/lamda; // Momentum associated with neutron, kg-m/s\n", +"m_n = 1.66e-27; // Mass of neutron, kg\n", +"e = 1.6e-19; // Energy equivalent of 1 eV, J/eV\n", +"K = p^2/(2*m_n); // Kinetic energy of neutron, eV\n", +"printf('\nThe momentum of neutrons = %4.2e kg-m/s', p)\n", +"printf('\nThe kinetic energy of neutrons = %4.2fe-20 J = %6.4f eV', K*1e+20, K/e);\n", +"\n", +"// Result\n", +"// The momentum of neutrons = 6.63e-24 kg-m/s\n", +"// The kinetic energy of neutrons = 1.32e-20 J = 0.0828 eV " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.8: Uncertainity_principle_for_macroscopic_objects.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex5.8: Pg 177 (2005)\n", +"clc; clear;\n", +"h_cross = 1.05e-34; // Reduced Plank's constant, J-s\n", +"delta_x = 15; // Uncertainity in position, m\n", +"v_x = 2; // Velocity of ball, m/s\n", +"m = 100e-03; // Mass of ball, kg\n", +"delta_p_x = h_cross/(2*delta_x); // Uncertainity in momentum, kg-m/s\n", +"delta_v_x = delta_p_x/m; // Minimum spread in velcoity, m/s\n", +"U_r = delta_v_x/v_x; // Relative uncertainity in velocity of ball\n", +"printf('\nThe minimum spread in velcoity of ball = %3.1e m/s', delta_v_x);\n", +"printf('\nThe relative uncertainity in velocity of ball = %4.2e', U_r);\n", +"\n", +"// Result\n", +"// The minimum spread in velcoity of ball = 3.5e-35 m/s\n", +"// The relative uncertainity in velocity of ball = 1.75e-35 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.9: Kinetic_energy_of_electron_confined_within_the_nucleus.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex5.9: Pg 178 (2005)\n", +"clc; clear;\n", +"delta_x = 1.0e-14/2; // Uncertainity in position of electron, m\n", +"q = 1.6e-19; // Charge on electron, C\n", +"h_cross = 1.05e-34; // Reduced Plank's constant, J-s\n", +"c = 3e+08; // Velocity of light, m/s\n", +"delta_p_x = (h_cross*c)/(2*delta_x*q); // Uncertainity in momentum, eV/c\n", +"E_r = 0.551e+06; // Rest mass energy if electron, eV\n", +"E = sqrt((delta_p_x)^2 + (E_r)^2);\n", +"K = E - E_r; // Kinetic energy of electron within nucleus, eV\n", +"printf('\nKinetic energy of electron within nucleus = %4.1f MeV', K/1e+06);\n", +"\n", +"// Result\n", +"// Kinetic energy of electron within nucleus = 19.1 MeV" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |