summaryrefslogtreecommitdiff
path: root/Modern_Physics_by_R_A_Serway/5-Matter_waves.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Modern_Physics_by_R_A_Serway/5-Matter_waves.ipynb')
-rw-r--r--Modern_Physics_by_R_A_Serway/5-Matter_waves.ipynb228
1 files changed, 228 insertions, 0 deletions
diff --git a/Modern_Physics_by_R_A_Serway/5-Matter_waves.ipynb b/Modern_Physics_by_R_A_Serway/5-Matter_waves.ipynb
new file mode 100644
index 0000000..7bdbbd9
--- /dev/null
+++ b/Modern_Physics_by_R_A_Serway/5-Matter_waves.ipynb
@@ -0,0 +1,228 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Matter waves"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10: Width_of_spectral_lines.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab code Ex5.10: Pg 178 (2005)\n",
+"clc; clear;\n",
+"\n",
+"// Part (a)\n",
+"h_cross = 1.05e-34; // Reduced Plank's constant, J-s\n",
+"h = 6.63e-34; // Plank's constant, J-s\n",
+"delta_t = 1.0e-08; // Average time to measure the excited state, s\n",
+"delta_E = h_cross/(2*delta_t); // Uncertainty in energy of the excited state, J\n",
+"// Since delta_E = h*delta_f, solving for delta_f\n",
+"delta_f = delta_E/h; // Line width of emitted light, Hz\n",
+"printf('\nLine width of emitted light = %2.0e Hz', delta_f);\n",
+"\n",
+"// Part (b)\n",
+"c = 3e+08; // Velocity of light, m/s\n",
+"lamda = 500e-09; // Wavelength of spectral line, m\n",
+"f_o = c/lamda; // Center frequency of spectral line, Hz\n",
+"f_b = delta_f/f_o; // Fractional broadening of spectral line\n",
+"printf('\nFractional broadening of spectral line = %3.1e', f_b);\n",
+"\n",
+"// Result\n",
+"// Line width of emitted light = 8.0e+06 Hz\n",
+"// Fractional broadening of spectral line = 1.3e-08"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Wave_properties_of_a_baseball.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab code Ex5.1: Pg 154 (2005)\n",
+"clc; clear;\n",
+"h = 6.63e-34; // Plank's constant, Js\n",
+"m = 140e-03; // Mass of baseball, kg\n",
+"v = 27; // Velocity of baseball, m/s\n",
+"p = m*v; // Momentum of baseball, kgm/s\n",
+"lamda = h/p; // de Broglie wavelength associated with baseball, m\n",
+"printf('\nde-Broglie wavelength associated with baseball = %3.1e m', lamda);\n",
+"\n",
+"// Result\n",
+"// de-Broglie wavelength associated with baseball = 1.8e-34 m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: de_Broglie_wavelength_of_an_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab code Ex5.2: Pg 154 (2005)\n",
+"clc; clear;\n",
+"\n",
+"// Part (b)\n",
+"h = 6.63e-34; // Plank's constant, Js\n",
+"m_e = 9.11e-31; // Mass of electron, kg\n",
+"q = 1.6e-19; // Charge on electron, C\n",
+"V = 50; // Electric potential applied, V\n",
+"lamda = h/(sqrt(2*m_e*q*V)); // de Broglie wavelength of an electron, m\n",
+"printf('\nde Broglie wavelength of an electron = %3.1f angstrom', lamda/1e-10);\n",
+"\n",
+"// Result\n",
+"// de Broglie wavelength of an electron = 1.7 angstrom "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: Diffraction_of_neutrons_at_the_crystal_lattice.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab code Ex5.3: Pg 158 (2005)\n",
+"clc; clear;\n",
+"h = 6.63e-34; // Plank's constant, J-s\n",
+"lamda = 1e-10; // de Broglie wavelength of neutron, m\n",
+"p = h/lamda; // Momentum associated with neutron, kg-m/s\n",
+"m_n = 1.66e-27; // Mass of neutron, kg\n",
+"e = 1.6e-19; // Energy equivalent of 1 eV, J/eV\n",
+"K = p^2/(2*m_n); // Kinetic energy of neutron, eV\n",
+"printf('\nThe momentum of neutrons = %4.2e kg-m/s', p)\n",
+"printf('\nThe kinetic energy of neutrons = %4.2fe-20 J = %6.4f eV', K*1e+20, K/e);\n",
+"\n",
+"// Result\n",
+"// The momentum of neutrons = 6.63e-24 kg-m/s\n",
+"// The kinetic energy of neutrons = 1.32e-20 J = 0.0828 eV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8: Uncertainity_principle_for_macroscopic_objects.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab code Ex5.8: Pg 177 (2005)\n",
+"clc; clear;\n",
+"h_cross = 1.05e-34; // Reduced Plank's constant, J-s\n",
+"delta_x = 15; // Uncertainity in position, m\n",
+"v_x = 2; // Velocity of ball, m/s\n",
+"m = 100e-03; // Mass of ball, kg\n",
+"delta_p_x = h_cross/(2*delta_x); // Uncertainity in momentum, kg-m/s\n",
+"delta_v_x = delta_p_x/m; // Minimum spread in velcoity, m/s\n",
+"U_r = delta_v_x/v_x; // Relative uncertainity in velocity of ball\n",
+"printf('\nThe minimum spread in velcoity of ball = %3.1e m/s', delta_v_x);\n",
+"printf('\nThe relative uncertainity in velocity of ball = %4.2e', U_r);\n",
+"\n",
+"// Result\n",
+"// The minimum spread in velcoity of ball = 3.5e-35 m/s\n",
+"// The relative uncertainity in velocity of ball = 1.75e-35 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9: Kinetic_energy_of_electron_confined_within_the_nucleus.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab code Ex5.9: Pg 178 (2005)\n",
+"clc; clear;\n",
+"delta_x = 1.0e-14/2; // Uncertainity in position of electron, m\n",
+"q = 1.6e-19; // Charge on electron, C\n",
+"h_cross = 1.05e-34; // Reduced Plank's constant, J-s\n",
+"c = 3e+08; // Velocity of light, m/s\n",
+"delta_p_x = (h_cross*c)/(2*delta_x*q); // Uncertainity in momentum, eV/c\n",
+"E_r = 0.551e+06; // Rest mass energy if electron, eV\n",
+"E = sqrt((delta_p_x)^2 + (E_r)^2);\n",
+"K = E - E_r; // Kinetic energy of electron within nucleus, eV\n",
+"printf('\nKinetic energy of electron within nucleus = %4.1f MeV', K/1e+06);\n",
+"\n",
+"// Result\n",
+"// Kinetic energy of electron within nucleus = 19.1 MeV"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}