1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 11: Molecular Structure"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.1: Rotation_of_CO_molecule.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Ex11.1: Pg 380 (2005)\n",
"clc; clear;\n",
"// Part (a)\n",
"f = 1.15e+11; // Frequency of transitions, Hz\n",
"omega = 2*(%pi)*f; // Angular frequency of absorbed radiations, Hz\n",
"h_cross = 1.055e-34; // Reduced planks constant, J-s\n",
"// Since E = (h_cross)^2/I_CM = h_cross*omega, solving for I_CM\n",
"I_CM = h_cross/omega; // Moment of inertia of molecule about its center of mass, kg-m^2\n",
"printf('\nThe moment of inertia of molecule about its center of mass = %4.2e kg-m^2', I_CM);\n",
"\n",
"// Part (b)\n",
"m_O = 16; // Mass of oxygen atom, a.m.u\n",
"m_C = 12; // Mass of carbon atom, a.m.u\n",
"mu = ( m_O * m_C *0.166e-26)/(m_O + m_C); // Reduced mass, kg\n",
"// Since I_CM = mew*R_o^2, solving for R_o\n",
"R_0 = sqrt(I_CM/mu); // Bond length of carbon monoxide molecule, m \n",
"printf('\nThe bond length of carbon monoxide molecule = %5.3f nm', R_0/1e-09);\n",
"\n",
"// Result\n",
"// The moment of inertia of molecule about its center of mass = 1.46e-046 kg-m^2\n",
"// The bond length of carbon monoxide molecule = 0.113 nm "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.2: Variation_of_CO_molecule.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Ex11.2: Pg 383 (2005)\n",
"clc; clear;\n",
"\n",
"// Part (a)\n",
"f = 6.42e+13; // Frequency of absorption, Hz\n",
"omega = 2*(%pi)*f; // Angular frequency of absorbed radiations, Hz\n",
"mu = 1.14e-26; // Reduced mass of CO molecule, kg\n",
"K = mu*(omega^2); // Effective force constant of CO molecule, N/m\n",
"printf('\nThe effective force constant of CO molecule = %4.2e N/m', K);\n",
"\n",
"// Part (b)\n",
"h_cross = 1.055e-34; // Reduced Planck's constant, J-s\n",
"A = sqrt(h_cross/(mu*omega)); // Amplitude of vibrations, m\n",
"printf('\nThe amplitude of vibrations = %7.5f nm', A/1e-09);\n",
"\n",
"// Result\n",
"// The effective force constant of CO molecule = 1.85e+003 N/m\n",
"// The amplitude of vibrations = 0.00479 nm "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|