diff options
Diffstat (limited to 'Modern_Physics_by_R_A_Serway/13-Nuclear_Structure.ipynb')
-rw-r--r-- | Modern_Physics_by_R_A_Serway/13-Nuclear_Structure.ipynb | 347 |
1 files changed, 347 insertions, 0 deletions
diff --git a/Modern_Physics_by_R_A_Serway/13-Nuclear_Structure.ipynb b/Modern_Physics_by_R_A_Serway/13-Nuclear_Structure.ipynb new file mode 100644 index 0000000..192dcd0 --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/13-Nuclear_Structure.ipynb @@ -0,0 +1,347 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Nuclear Structure" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.11: Radioactive_Dating.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.11: Pg 490 (2005)\n", +"clc; clear;\n", +"T_half = 5370*3.6e+07; // Half life of C-14, s\n", +"lambda = 0.693/T_half; // // Decay constant for C-14 disintegration, per sec\n", +"N_C12 = 6.02e+023/12*25; // Number of C-12 nuclei in 25.0 g of carbon\n", +"N0_C14 = 1.3e-012*N_C12; // Number of C-14 nuclei in 25.0 g of carbon before decay\n", +"R0 = N0_C14*3.83e-012*60; // Initial activty of the sample, decays/min\n", +"R = 250; // Present activity of the sample\n", +"// As R = R0*exp(-lambda*t), solving for t\n", +"t = -1/lambda*log(R/R0); // Time during which the tree dies, s\n", +"printf('\nThe lifetime of the tree = %3.1e yr', t/(365*24*60*60));\n", +"\n", +"// Result\n", +"// The lifetime of the tree = 3.6e+03 yr " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1: The_Atomic_Mass_Unit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.1: Pg 466 (2005)\n", +"clc; clear;\n", +"M = 0.012; // Atomic mass of carbon, kg\n", +"N_A = 6.02e+023; // Avogadro's number\n", +"m = M/N_A; // Mass of one Carbon-12 atom, kg\n", +"// As m = 12*u, twelve mass units, solving for u\n", +"u = m/12; // The atomic mass unit, kg\n", +"printf('\nThe atomic mass unit = %4.2e kg', u);\n", +"\n", +"// Result\n", +"// The atomic mass unit = 1.66e-27 kg " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2: The_Volume_and_Density_of_Nucleus.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.2: Pg 468 (2005)\n", +"clc; clear;\n", +"r0 = 1.2e-015; // Nuclear mean radius, m\n", +"m = 1.67e-027; // Mass of the nucleon, kg\n", +"rho_0 = 3*m/(4*%pi*r0^3); // Density of the nucleus, kg per metre cube\n", +"printf('\nThe mass of the nucleus = Am approx.');\n", +"printf('\nThe volume of the nucleus = 4/3*pi*r0^3*A');\n", +"printf('\nThe density of the nucleus = %3.1e kg per metre cube', rho_0);\n", +"\n", +"// Result\n", +"// The mass of the nucleus = Am approx.\n", +"// The volume of the nucleus = 4/3*pi*r0^3*A\n", +"// The density of the nucleus = 2.3e+17 kg per metre cube " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3: Binding_energy_of_the_Deuteron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.3: Pg 473 (2005)\n", +"clc; clear;\n", +"M2 = 2.014102; // Atomic mass of deuteron, u\n", +"M_H = 1.007825; // Atomic mass of hydrogen, u\n", +"m_n = 1.008665; // Mass of a neutron, u\n", +"E_b = (M_H + m_n - M2)*931.494; // Binding energy of the deuteron, MeV/u\n", +"printf('\nThe binding energy of the Deuteron = %5.3f MeV', E_b);\n", +"\n", +"// Result\n", +"// The binding energy of the Deuteron = 2.224 MeV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.4: Left_out_sample_during_radioactive_decay.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.4: Pg 482 (2005)\n", +"clc; clear;\n", +"T = 5730; // Half life of the carbon-14 isotope, years\n", +"N0 = 1000; // Initial number of carbon-14 isotope\n", +"t = 22920; // Time of decay, years\n", +"n = t/T; // Total number of half lives\n", +"N = (1/2)^n*N0; // Sample remains after 22920 years\n", +"printf('\nNumber of C-14 isotopes remained after %d years = %d', t, N);\n", +"\n", +"// Result\n", +"// Number of C-14 isotopes remained after 22920 years = 62 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.5: The_Activity_of_Radium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.5: Pg 483 (2005)\n", +"clc; clear;\n", +"T_half = 1.6e+03*3.16e+07; // Half life of radioactive nucleus Ra-226, s\n", +"lambda = 0.693/T_half; // Decay constant of Ra-226, per second\n", +"N0 = 3.0e+016; // Number of radioactive nuclei at t = 0\n", +"R0 = lambda*N0; // Activity of sample at t = 0, decays/s\n", +"t = 2.0e+003*3.16e+07; // Time during which the radioactive disintegration takes place, s\n", +"R = R0*exp(-1*lambda*t); // Decay rate after 2.0e+003 years, decay/s\n", +"printf('\nThe decay constant of Ra-226 = %3.1e per second', lambda);\n", +"printf('\nThe activity of sample at t = 0 = %4.1f micro-Ci', R0/(3.7e+010*1e-006)); \n", +"printf('\nThe activity of sample after %3.1e years = %3.1e decays/s', t, R); \n", +"\n", +"// Result\n", +"// The decay constant of Ra-226 = 1.4e-11 per second\n", +"// The activity of sample at t = 0 = 11.1 micro-Ci\n", +"// The activity of sample after 6.3e+10 years = 1.7e+05 decays/s " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.6: The_Activity_of_Carbo.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.6: Pg 483 (2005)\n", +"clc; clear;\n", +"M = 11.0; // Atomic mass of C-11 isotope, g\n", +"NA = 6.02e+023; // Avogadro's number\n", +"m = 3.50e-06; // Given mass of Cabon-11, g\n", +"\n", +"// Part (a)\n", +"N = m/M*NA; // Number of C-11 atoms in 3.50 micro-g of sample\n", +"printf('\nThe number of C-11 atoms in %4.2f micro-g of sample = %4.2e nuclei', m/1e-06, N);\n", +"\n", +"// Part (b)\n", +"T_half = 20.4*60; // Half life of radioactive nucleus C-11, s\n", +"lambda = 0.693/T_half; // Decay constant of C-11, per second\n", +"R0 = lambda*N; // Activity of sample at t = 0, decays/s\n", +"t = 8.00*60*60; // Time during which the radioactive disintegration takes place, s\n", +"R = R0*exp(-1*lambda*t); // Decay rate after 2.0e+003 years, decay/s\n", +"\n", +"printf('\nThe activity of C-11 sample at t = 0 is %4.2e decays/s', R0); \n", +"printf('\nThe activity of sample after %4.2f hours = %4.2e decays/s', t/3600, R); \n", +"\n", +"// Result\n", +"// The number of C-11 atoms in 3.50 micro-g of sample = 1.92e+17 nuclei\n", +"// The activity of C-11 sample at t = 0 is 1.08e+14 decays/s\n", +"// The activity of sample after 8.00 hours = 8.99e+06 decays/s " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.7: The_Radiactive_Isotope_of_Iodine.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.7: Pg 484 (2005)\n", +"clc; clear;\n", +"R0 = 5; // Activity of I-131 isotope at the time of shipment, mCi\n", +"R = 4.2; // Activity of I-131 isotope at the time of receipt by the medical laboratory, mCi\n", +"T_half = 8.04; // Half life of radioactive nucleus I-131, days\n", +"lambda = 0.693/T_half; // Decay constant of C-11, per second\n", +"// As log(R/R0) = -lambda*t, solving for t\n", +"t = -1/lambda*log(R/R0); // Time that has elapsed between two measurements, days\n", +"printf('\nThe time that has elapsed between two measurements = %4.2f days', t);\n", +"\n", +"// Result\n", +"// The time that has elapsed between two measurements = 2.02 days " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.8: Energy_Liberated_during_Decay_of_Radium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.8: Pg 486 (2005)\n", +"clc; clear;\n", +"M_X = 226.025406; // Atomic mass of Ra-226, u\n", +"M_Y = 222.017574; // Atomic mass of Rn-222, u\n", +"M_alpha = 4.002603; // Mass of alpha particle, u\n", +"Q = (M_X - M_Y - M_alpha)*931.494; // Q-value for Radium Decay, MeV/u\n", +"printf('\nThe Q-value for Radium Decay = %4.2f MeV', Q);\n", +"\n", +"// Result\n", +"// The Q-value for Radium Decay = 4.87 MeV " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.9: Probability_of_Alpha_Decay.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex13.9: Pg 487 (2005)\n", +"clc; clear;\n", +"Z = 86; // Atomic number of radon\n", +"A = 222; // Mass number of radon\n", +"k = 9e+09; // Coulomb constant, N-metre square per C-square\n", +"e = 1.6e-019; // Charge on an electron, C\n", +"r0 = 7.25e-015; // Bohr radius for alpha particle, m\n", +"E0 = k*e^2/(2*r0*1e+06*e); // Rydberg energy, MeV\n", +"R = 1.2e-015*A^(1/3); // Radius of radon nucleus, fm\n", +"E = 5; // Disintegration energy during alpha decay, MeV\n", +"T_E = exp(-4*%pi*Z*sqrt(E0/E)+8*sqrt(Z*R/r0)); // Decay probability for alpha disintegration\n", +"printf('\nThe decay probability for alpha disintegration at %d MeV energy = %4.2e', E, T_E);\n", +"\n", +"// Result\n", +"// The decay probability for alpha disintegration at 5 MeV energy = 1.29e-34 " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |