diff options
Diffstat (limited to '534/CH7')
-rw-r--r-- | 534/CH7/EX7.1/7_1_Cooling_rate.sce | 28 | ||||
-rw-r--r-- | 534/CH7/EX7.2/7_2_Turb_over_Plate.sce | 53 | ||||
-rw-r--r-- | 534/CH7/EX7.3/7_3_Daily_water_loss.sce | 37 | ||||
-rw-r--r-- | 534/CH7/EX7.4/7_4_Zukauskas_Correlation.sce | 36 | ||||
-rw-r--r-- | 534/CH7/EX7.5/7_5_Hydrogen_fuel_cell.sce | 32 | ||||
-rw-r--r-- | 534/CH7/EX7.6/7_6_Plastic_Film.sce | 35 | ||||
-rw-r--r-- | 534/CH7/EX7.7/7_7_Staggered_Arrangement.sce | 57 |
7 files changed, 278 insertions, 0 deletions
diff --git a/534/CH7/EX7.1/7_1_Cooling_rate.sce b/534/CH7/EX7.1/7_1_Cooling_rate.sce new file mode 100644 index 000000000..cfb77c486 --- /dev/null +++ b/534/CH7/EX7.1/7_1_Cooling_rate.sce @@ -0,0 +1,28 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 7.1 Page 415 \n'); //Example 7.1
+// Cooling rate per Unit Width of the Plate
+
+//Operating Conditions
+v = 10; //[m/s] Air velocity
+p = 6000; //[N/m^2] Air pressure
+Tsurr = 300+273; //[K] Surrounding Air Temperature
+L = .5; //[m] Length of plate
+Ts = 27+273; //[K] Surface Temp
+
+//Table A.4 Air Properties at T = 437K
+uv = 30.84*10^-6*(101325/6000); //[m^2/s] Kinematic Viscosity at P = 6000 N/m^2
+k = 36.4*10^-3; //[W/m.K] Thermal COnductivity
+Pr = .687; //Prandtl number
+
+Re = v*L/uv; //Reynolds number
+printf("\n Since Reynolds Number is %i, The flow is laminar over the entire plate",Re);
+
+//Correlation 7.30
+NuL = .664*Re^.5*Pr^.3334; //Nusselt Number over entire plate length
+hL = NuL*k/L; // Average Convection Coefficient
+//Required cooling rate per unit width of plate
+q = hL*L*(Tsurr-Ts);
+
+printf("\n\n Required cooling rate per unit width of plate = %i W/m", q);
+//END
\ No newline at end of file diff --git a/534/CH7/EX7.2/7_2_Turb_over_Plate.sce b/534/CH7/EX7.2/7_2_Turb_over_Plate.sce new file mode 100644 index 000000000..9833317a7 --- /dev/null +++ b/534/CH7/EX7.2/7_2_Turb_over_Plate.sce @@ -0,0 +1,53 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 7.2 Page 417 \n'); //Example 7.2
+// Maximum Heater Power Requirement
+
+//Operating Conditions
+v = 60; //[m/s] Air velocity
+Tsurr = 25+273; //[K] Surrounding Air Temperature
+w = 1; //[m] Width of plate
+L = .05; //[m] Length of stripper
+Ts = 230+273; //[K] Surface Temp
+
+//Table A.4 Air Properties at T = 400K
+uv = 26.41*10^-6; //[m^2/s] Kinematic Viscosity
+k = .0338; //[W/m.K] Thermal COnductivity
+Pr = .690; //Prandtl number
+
+Re = v*L/uv; //Reynolds number
+
+Rexc = 5*10^5; //Transition Reynolds Number
+xc = uv*Rexc/v; //Transition Length
+printf("\n Reynolds Number based on length L = .05m is %i. \n And the transition occur at xc = %.2f m ie fifth plate",Re,xc);
+
+//For first heater
+//Correlation 7.30
+Nu1 = .664*Re^.5*Pr^.3334; //Nusselt Number
+h1 = Nu1*k/L; // Average Convection Coefficient
+q1 = h1*(L*w)*(Ts-Tsurr); // Convective Heat exchange
+
+//For first four heaters
+Re4 = 4*Re;
+L4 = 4*L;
+Nu4 = .664*Re4^.5*Pr^.3334; //Nusselt Number
+h4 = Nu4*k/L4; // Average Convection Coefficient
+
+//For Fifth heater from Eqn 7.38
+Re5 = 5*Re;
+A = 871;
+L5 = 5*L;
+Nu5 = (.037*Re5^.8-A)*Pr^.3334; //Nusselt Number
+h5 = Nu5*k/L5; // Average Convection Coefficient
+q5 = (h5*L5-h4*L4)*w*(Ts-Tsurr);
+
+//For Sixth heater from Eqn 7.38
+Re6 = 6*Re;
+L6 = 6*L;
+Nu6 = (.037*Re6^.8-A)*Pr^.3334 ; //Nusselt Number
+h6 = Nu6*k/L6 ; // Average Convection Coefficient
+q6 = (h6*L6-h5*L5)*w*(Ts-Tsurr);
+
+printf("\n\n Power requirement are \n qconv1 = %i W qconv5 = %i W qconv6 = %i W", q1,q5,q6);
+printf("\n Hence %i > %i > %i and the sixth plate has largest power requirement", q6,q1,q5);
+//END
\ No newline at end of file diff --git a/534/CH7/EX7.3/7_3_Daily_water_loss.sce b/534/CH7/EX7.3/7_3_Daily_water_loss.sce new file mode 100644 index 000000000..aa0dd4c4b --- /dev/null +++ b/534/CH7/EX7.3/7_3_Daily_water_loss.sce @@ -0,0 +1,37 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 7.3 Page 417 \n'); //Example 7.2
+// Daily Water Loss
+
+//Operating Conditions
+v = 2; //[m/s] Air velocity
+Tsurr = 25+273; //[K] Surrounding Air Temperature
+H = .5; // Humidity
+w = 6; //[m] Width of pool
+L1 = 12; //[m] Length of pool
+e = 1.5; //[m] Deck Wide
+Ts = 25+273; //[K] Surface Temp of water
+
+//Table A.4 Air Properties at T = 298K
+uv = 15.7*10^-6; //[m^2/s] Kinematic Viscosity
+//Table A.8 Water vapor-Air Properties at T = 298K
+Dab = .26*10^-4; //[m^2/s] Diffusion Coefficient
+Sc = uv/Dab;
+//Table A.6 Air Properties at T = 298K
+rho = .0226; //[kg/m^3]
+
+L = L1+e;
+Re = v*L/uv; //Reynolds number
+
+//Equation 7.41 yields
+ShLe = .037*Re^.8*Sc^.3334;
+//Equation 7.44
+p = 8; //Turbulent Flow
+ShL = (L/(L-e))*ShLe*[1-(e/L)^((p+1)/(p+2))]^(p/(p+1));
+
+hmL = ShL*(Dab/L);
+n = hmL*(L1*w)*rho*(1-H);
+
+printf("\n Reynolds Number is %.2e. Hence for turbulent Flow p = 8 in Equation 7.44.\n Daily Water Loss due to evaporation is %i kg/day",Re,n*86400);
+
+//END
\ No newline at end of file diff --git a/534/CH7/EX7.4/7_4_Zukauskas_Correlation.sce b/534/CH7/EX7.4/7_4_Zukauskas_Correlation.sce new file mode 100644 index 000000000..3e80499cc --- /dev/null +++ b/534/CH7/EX7.4/7_4_Zukauskas_Correlation.sce @@ -0,0 +1,36 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 7.4 Page 428 \n'); //Example 7.4
+// Convection Coefficient associated with operating conditions
+// Convection Coefficient from an appropriate correlation
+
+//Operating Conditions
+v = 10; //[m/s] Air velocity
+Tsurr = 26.2+273; //[K] Surrounding Air Temperature
+P = 46; // [W] Power dissipation
+L = .094; //[m] Length of cylinder
+D = .0127; //[m] Diameter of cylinder
+Ts = 128.4+273; //[K] Surface Temp of water
+q = 46-.15*46; //[W] Actual power dissipation without the 15% loss
+
+//Table A.4 Air Properties at T = 300K
+uv = 15.89*10^-6; //[m^2/s] Kinematic Viscosity
+k = 26.3*10^-3; //[W/m.K] Thermal conductivity
+Pr = .707; //Prandtl Number
+//Table A.4 Air Properties at T = 401K
+Prs = .690; //Prandtl Number
+
+A = %pi*D*L;
+h = q/(A*(Ts-Tsurr));
+
+Re = v*D/uv; //Reynolds number
+//Using Zukauskas Relation, Equation 7.53
+C = .26;
+m = .6;
+n = .37;
+Nu = C*Re^m*Pr^n*(Pr/Prs)^.25;
+havg = Nu*k/D;
+
+printf("\n Convection Coefficient associated with operating conditions %i W/m^2.K. \n Reynolds Number is %i. Hence taking suitable corresponding data from Table 7.4.\n Convection Coefficient from an appropriate Zukauskas correlation %i W/m^2.K",h,Re,havg);
+
+//END
\ No newline at end of file diff --git a/534/CH7/EX7.5/7_5_Hydrogen_fuel_cell.sce b/534/CH7/EX7.5/7_5_Hydrogen_fuel_cell.sce new file mode 100644 index 000000000..3f8208c16 --- /dev/null +++ b/534/CH7/EX7.5/7_5_Hydrogen_fuel_cell.sce @@ -0,0 +1,32 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 7.5 Page 431 \n'); //Example 7.5
+// Convective Heat transfer to the canister and the additional heating needed
+
+//Operating Conditions
+v = 23; //[m/s] Air velocity
+Tsurr = 296; //[K] Surrounding Air Temperature
+L = .8; //[m] Length of cylinder
+Di = .1; //[m] Diameter of cylinder
+t = .005; //[m] Thickness of cylinder
+
+//Table A.4 Air Properties at T = 285K
+uv = 14.56*10^-6; //[m^2/s] Kinematic Viscosity
+k = 25.2*10^-3; //[W/m.K] Thermal conductivity
+Pr = .712; //Prandtl Number
+//Table A.1 AISI 316 Stainless steel Properties at T = 300K
+kss = 13.4; //[W/m.K]Conductivity
+
+pH2 = 1.01; //[N]
+Ti = -3550/(2.30*log10(pH2) - 12.9);
+Eg = -(1.35*10^-4)*(29.5*10^6);
+
+Re = v*(Di+2*t)/uv; //Reynolds number
+// Equation 7.54
+Nu = .3+.62*Re^.5*Pr^.3334/[1+(.4/Pr)^.6668]^.25*[1+(Re/282000)^(5/8)]^.8;
+h = Nu*k/(Di+2*t);
+
+qconv = (Tsurr-Ti)/[(1/(%pi*L*(Di+2*t)*h))+(2.30*log10((Di+2*t)/Di)/(2*%pi*kss*L))];
+printf("\n Additional Thermal Energy must be supplied to canister to mainatin steady-state operating temperatue %i W",-qconv-Eg);
+
+//END
\ No newline at end of file diff --git a/534/CH7/EX7.6/7_6_Plastic_Film.sce b/534/CH7/EX7.6/7_6_Plastic_Film.sce new file mode 100644 index 000000000..c36cf4224 --- /dev/null +++ b/534/CH7/EX7.6/7_6_Plastic_Film.sce @@ -0,0 +1,35 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 7.6 Page 434 \n'); //Example 7.6
+// Time required to cool from Ti = 75 degC to 35 degC
+
+//Operating Conditions
+v = 10; //[m/s] Air velocity
+Tsurr = 23+273; //[K] Surrounding Air Temperature
+D = .01; //[m] Diameter of sphere
+Ti = 75+273; //[K] Initial temp
+Tt = 35+273; //[K] Temperature after time t
+p = 1; //[atm]
+
+//Table A.1 Copper at T = 328K
+rho = 8933; //[kg/m^3] Density
+k = 399; //[W/m.K] Conductivity
+cp = 388; //[J/kg.K] specific
+//Table A.4 Air Properties T = 296 K
+u = 182.6*10^-7; //[N.s/m^2] Viscosity
+uv = 15.53*10^-6; //[m^2/s] Kinematic Viscosity
+k = 25.1*10^-3; //[W/m.K] Thermal conductivity
+Pr = .708; //Prandtl Number
+//Table A.4 Air Properties T = 328 K
+u2 = 197.8*10^-7; //[N.s/m^2] Viscosity
+
+Re = v*D/uv; //Reynolds number
+//Using Equation 7.56
+Nu = 2+(0.4*Re^.5 + 0.06*Re^.668)*Pr^.4*(u/u2)^.25;
+h = Nu*k/D;
+//From equation 5.4 and 5.5
+t = rho*cp*D*2.30*log10((Ti-Tsurr)/(Tt-Tsurr))/(6*h);
+
+printf("\nTime required for cooling is %.1f sec",t);
+
+//END
\ No newline at end of file diff --git a/534/CH7/EX7.7/7_7_Staggered_Arrangement.sce b/534/CH7/EX7.7/7_7_Staggered_Arrangement.sce new file mode 100644 index 000000000..aebb758cc --- /dev/null +++ b/534/CH7/EX7.7/7_7_Staggered_Arrangement.sce @@ -0,0 +1,57 @@ +clear;
+clc;
+printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 7.7 Page 443 \n'); //Example 7.7
+// Air side Convection coefficient and Heat rate
+// pressure Drop
+
+//Operating Conditions
+v = 6; //[m/s] Air velocity
+Tsurr = 15+273; //[K] Surrounding Air Temperature
+D = .0164; //[m] Diameter of tube
+Ts = 70+273; //[K] Temp of tube
+//Staggered arrangement dimensions
+St = .0313; //[m]
+Sl = .0343; //[m]
+
+//Table A.4 Air Properties T = 288 K
+rho = 1.217; //[kg/m^3] Density
+cp = 1007; //[J/kg.K] specific heat
+uv = 14.82*10^-6; //[m^2/s] Kinematic Viscosity
+k = 25.3*10^-3; //[W/m.K] Thermal conductivity
+Pr = .71; //Prandtl Number
+//Table A.4 Air Properties T = 343 K
+Pr2 = .701; //Prandtl Number
+//Table A.4 Air Properties T = 316 K
+uv3 = 17.4*10^-6; //[m^2/s] Kinematic Viscosity
+k3 = 27.4*10^-3; //[W/m.K] Thermal conductivity
+Pr3 = .705; //Prandtl Number
+
+Sd = [Sl^2 + (St/2)^2]^.5;
+Vmax = St*v/(St-D);
+
+Re = Vmax*D/uv; //Reynolds number
+
+C = .35*(St/Sl)^.2;
+m = .6;
+C2 = .95;
+N = 56;
+Nt = 8;
+//Using Equation 7.64 & 7.65
+Nu = C2*C*Re^m*Pr^.36*(Pr/Pr2)^.25;
+h = Nu*k/D;
+
+//From Eqnn 7.67
+Tso = (Ts-Tsurr)*exp(-(%pi*D*N*h)/(rho*v*Nt*St*cp));
+Tlm = ((Ts-Tsurr) - Tso)/(2.30*log10((Ts-Tsurr)/Tso));
+q = N*(h*%pi*D*Tlm);
+
+Pt = St/D;
+//From Fig 7.14
+X = 1.04;
+f = .35;
+NL = 7;
+press = NL*X*(rho*Vmax^2/2)*f;
+
+printf("\n Air side Convection coefficient h = %.1f W/m^2.k and Heat rate q = %.1f kW/m \n Pressure Drop = %.2e bars",h,q/1000,press/100000);
+
+//END
\ No newline at end of file |