blob: aa0dd4c4b7e0d22770a67ec079218268a059fcc1 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
clear;
clc;
printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 7.3 Page 417 \n'); //Example 7.2
// Daily Water Loss
//Operating Conditions
v = 2; //[m/s] Air velocity
Tsurr = 25+273; //[K] Surrounding Air Temperature
H = .5; // Humidity
w = 6; //[m] Width of pool
L1 = 12; //[m] Length of pool
e = 1.5; //[m] Deck Wide
Ts = 25+273; //[K] Surface Temp of water
//Table A.4 Air Properties at T = 298K
uv = 15.7*10^-6; //[m^2/s] Kinematic Viscosity
//Table A.8 Water vapor-Air Properties at T = 298K
Dab = .26*10^-4; //[m^2/s] Diffusion Coefficient
Sc = uv/Dab;
//Table A.6 Air Properties at T = 298K
rho = .0226; //[kg/m^3]
L = L1+e;
Re = v*L/uv; //Reynolds number
//Equation 7.41 yields
ShLe = .037*Re^.8*Sc^.3334;
//Equation 7.44
p = 8; //Turbulent Flow
ShL = (L/(L-e))*ShLe*[1-(e/L)^((p+1)/(p+2))]^(p/(p+1));
hmL = ShL*(Dab/L);
n = hmL*(L1*w)*rho*(1-H);
printf("\n Reynolds Number is %.2e. Hence for turbulent Flow p = 8 in Equation 7.44.\n Daily Water Loss due to evaporation is %i kg/day",Re,n*86400);
//END
|