blob: 9833317a7cc9a2a80b07e3084708f07209d60343 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
clear;
clc;
printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 7.2 Page 417 \n'); //Example 7.2
// Maximum Heater Power Requirement
//Operating Conditions
v = 60; //[m/s] Air velocity
Tsurr = 25+273; //[K] Surrounding Air Temperature
w = 1; //[m] Width of plate
L = .05; //[m] Length of stripper
Ts = 230+273; //[K] Surface Temp
//Table A.4 Air Properties at T = 400K
uv = 26.41*10^-6; //[m^2/s] Kinematic Viscosity
k = .0338; //[W/m.K] Thermal COnductivity
Pr = .690; //Prandtl number
Re = v*L/uv; //Reynolds number
Rexc = 5*10^5; //Transition Reynolds Number
xc = uv*Rexc/v; //Transition Length
printf("\n Reynolds Number based on length L = .05m is %i. \n And the transition occur at xc = %.2f m ie fifth plate",Re,xc);
//For first heater
//Correlation 7.30
Nu1 = .664*Re^.5*Pr^.3334; //Nusselt Number
h1 = Nu1*k/L; // Average Convection Coefficient
q1 = h1*(L*w)*(Ts-Tsurr); // Convective Heat exchange
//For first four heaters
Re4 = 4*Re;
L4 = 4*L;
Nu4 = .664*Re4^.5*Pr^.3334; //Nusselt Number
h4 = Nu4*k/L4; // Average Convection Coefficient
//For Fifth heater from Eqn 7.38
Re5 = 5*Re;
A = 871;
L5 = 5*L;
Nu5 = (.037*Re5^.8-A)*Pr^.3334; //Nusselt Number
h5 = Nu5*k/L5; // Average Convection Coefficient
q5 = (h5*L5-h4*L4)*w*(Ts-Tsurr);
//For Sixth heater from Eqn 7.38
Re6 = 6*Re;
L6 = 6*L;
Nu6 = (.037*Re6^.8-A)*Pr^.3334 ; //Nusselt Number
h6 = Nu6*k/L6 ; // Average Convection Coefficient
q6 = (h6*L6-h5*L5)*w*(Ts-Tsurr);
printf("\n\n Power requirement are \n qconv1 = %i W qconv5 = %i W qconv6 = %i W", q1,q5,q6);
printf("\n Hence %i > %i > %i and the sixth plate has largest power requirement", q6,q1,q5);
//END
|