blob: c36cf4224973de3506bdaaff4b3b76a06bda1f2c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
clear;
clc;
printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 7.6 Page 434 \n'); //Example 7.6
// Time required to cool from Ti = 75 degC to 35 degC
//Operating Conditions
v = 10; //[m/s] Air velocity
Tsurr = 23+273; //[K] Surrounding Air Temperature
D = .01; //[m] Diameter of sphere
Ti = 75+273; //[K] Initial temp
Tt = 35+273; //[K] Temperature after time t
p = 1; //[atm]
//Table A.1 Copper at T = 328K
rho = 8933; //[kg/m^3] Density
k = 399; //[W/m.K] Conductivity
cp = 388; //[J/kg.K] specific
//Table A.4 Air Properties T = 296 K
u = 182.6*10^-7; //[N.s/m^2] Viscosity
uv = 15.53*10^-6; //[m^2/s] Kinematic Viscosity
k = 25.1*10^-3; //[W/m.K] Thermal conductivity
Pr = .708; //Prandtl Number
//Table A.4 Air Properties T = 328 K
u2 = 197.8*10^-7; //[N.s/m^2] Viscosity
Re = v*D/uv; //Reynolds number
//Using Equation 7.56
Nu = 2+(0.4*Re^.5 + 0.06*Re^.668)*Pr^.4*(u/u2)^.25;
h = Nu*k/D;
//From equation 5.4 and 5.5
t = rho*cp*D*2.30*log10((Ti-Tsurr)/(Tt-Tsurr))/(6*h);
printf("\nTime required for cooling is %.1f sec",t);
//END
|