diff options
Diffstat (limited to '3864/CH6')
-rw-r--r-- | 3864/CH6/EX6.1/Ex6_1.sce | 25 | ||||
-rw-r--r-- | 3864/CH6/EX6.11/Ex6_11.sce | 45 | ||||
-rw-r--r-- | 3864/CH6/EX6.12/Ex6_12.sce | 43 | ||||
-rw-r--r-- | 3864/CH6/EX6.13/Ex6_13.sce | 36 | ||||
-rw-r--r-- | 3864/CH6/EX6.14/Ex6_14.sce | 40 | ||||
-rw-r--r-- | 3864/CH6/EX6.15/Ex6_15.sce | 55 | ||||
-rw-r--r-- | 3864/CH6/EX6.16/Ex6_16.sce | 52 | ||||
-rw-r--r-- | 3864/CH6/EX6.17/Ex6_17.sce | 45 | ||||
-rw-r--r-- | 3864/CH6/EX6.18/Ex6_18.sce | 39 | ||||
-rw-r--r-- | 3864/CH6/EX6.2/Ex6_2.sce | 26 | ||||
-rw-r--r-- | 3864/CH6/EX6.20/Ex6_20.sce | 31 | ||||
-rw-r--r-- | 3864/CH6/EX6.21/Ex6_21.sce | 29 | ||||
-rw-r--r-- | 3864/CH6/EX6.22/Ex6_22.sce | 32 | ||||
-rw-r--r-- | 3864/CH6/EX6.23/Ex6_23.sce | 35 | ||||
-rw-r--r-- | 3864/CH6/EX6.24/Ex6_24.sce | 30 | ||||
-rw-r--r-- | 3864/CH6/EX6.25/Ex6_25.sce | 27 | ||||
-rw-r--r-- | 3864/CH6/EX6.26/Ex6_26.sce | 36 | ||||
-rw-r--r-- | 3864/CH6/EX6.3/Ex6_3.sce | 27 | ||||
-rw-r--r-- | 3864/CH6/EX6.4/Ex6_4.sce | 28 | ||||
-rw-r--r-- | 3864/CH6/EX6.5/Ex6_5.sce | 26 | ||||
-rw-r--r-- | 3864/CH6/EX6.6/Ex6_6.sce | 30 | ||||
-rw-r--r-- | 3864/CH6/EX6.7/Ex6_7.sce | 33 | ||||
-rw-r--r-- | 3864/CH6/EX6.8/Ex6_8.sce | 64 |
23 files changed, 834 insertions, 0 deletions
diff --git a/3864/CH6/EX6.1/Ex6_1.sce b/3864/CH6/EX6.1/Ex6_1.sce new file mode 100644 index 000000000..13d455f14 --- /dev/null +++ b/3864/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,25 @@ +clear +// +// + +//Initilization of Variables + +L=10000 //mm //Length of solid shaft +d=100 //mm //Diameter of shaft +n=150 //rpm +P=112.5*10**6 //N-mm/sec //Power Transmitted +G=82*10**3 //N/mm**2 //modulus of Rigidity + +//Calculations + +J=%pi*d**4*(32)**-1 //mm**3 //Polar Modulus +T=P*60*(2*%pi*n)**-1 //N-mm //Torsional moment + +r=50 //mm //Radius + +q_s=T*r*J**-1 //N/mm**2 //Max shear stress intensity +Theta=T*L*(G*J)**-1 //angle of twist + +//Result +printf("\n Max shear stress intensity %0.2f N/mm**2",q_s) +printf("\n Angle of Twist %0.3f radian",Theta) diff --git a/3864/CH6/EX6.11/Ex6_11.sce b/3864/CH6/EX6.11/Ex6_11.sce new file mode 100644 index 000000000..a3f927997 --- /dev/null +++ b/3864/CH6/EX6.11/Ex6_11.sce @@ -0,0 +1,45 @@ +clear +// +// + +//Initilization of Variables + +P=250*10**6 //N-mm/sec //Power transmitted +n=100 //rpm +q_s=75 //N/mm**2 //Shear stress + +//Calculations + +//From Equation of Power we have +T=P*60*(2*%pi*n)**-1 //N-mm //Torsional moment + +//Now from torsional moment equation we have +//T=j*q_s*(d/2**-1)**-1 +//After substituting values in above equation and further simplifying we get +//T=%pi*16**-1**d**3*q_s +d=(T*16*(%pi*q_s)**-1)**0.3333 //mm //Diameter of solid shaft + +//PArt-2 + +//Let d1 and d2 be the outer and inner diameter of hollow shaft +//d2=0.6*d1 + +//Again from torsional moment equation we have +//T=%pi*32**-1*(d1**4-d2**4)*q_s*(d1/2)**-1 +d1=(T*16*(%pi*(1-0.6**4)*q_s)**-1)**0.33333 +d2=0.6*d1 + +//Cross sectional area of solid shaft +A1=%pi*4**-1*d**2 //mm**2 + +//cross sectional area of hollow shaft +A2=%pi*4**-1*(d1**2-d2**2) + +//Now percentage saving in weight +//Let W be the percentage saving in weight +W=(A1-A2)*100*A1**-1 + +//Result +printf("\n Size of shaft is:solid shaft:d %0.3f mm",d) +printf("\n :Hollow shaft:d1 %0.3f mm",d1) +printf("\n : :d2 %0.3f mm",d2) diff --git a/3864/CH6/EX6.12/Ex6_12.sce b/3864/CH6/EX6.12/Ex6_12.sce new file mode 100644 index 000000000..a38b0a948 --- /dev/null +++ b/3864/CH6/EX6.12/Ex6_12.sce @@ -0,0 +1,43 @@ +clear +// +// + +//Initilization of Variables +d=100 //mm //Diameter of solid shaft +d1=100 //mm //Outer Diameter of hollow shaft +d2=50 //mm //Inner Diameter of hollow shaft + +//Calculations + +//Torsional moment of solid shaft +//T_s=J*q_s*(d*2**-1)**-1 +//After substituting values in above equation and further simplifying we get +//T_s=%pi*16*d**3*q_s ...............(1) + +//torsional moment for hollow shaft is +//T_h=J*q_s*(d1**4-d2**4)**-1*(d1*2**-1) +//After substituting values in above equation and further simplifying we get +//T_h=%pi*32**-1*2*d1**-1*(d1**4-d2**4)*q_s ...........(2) + +//Dividing Equation 2 by 1 we get +//Let the ratio of T_h*T_s**-1 Be X +X=1-0.5**4 + +//Loss in strength +//Let s be the loss in strength +//s=T_s*T_h*100*T_s**-1 +//After substituting values in above equation and further simplifying we get +s=(1-0.9375)*100 + +//Weight Ratio +//Let w be the Weight ratio +//w=W_h*W_s**-1 + +A_h=%pi*32**-1*(d1**2-d2**2) //mm**2 //Area of Hollow shaft +A_s=%pi*32**-1*d**2 //mm**2 //Area of solid shaft + +w=A_h*A_s**-1 + +//Result +printf("\n Loss in strength is %0.2f ",s) +printf("\n Weight ratio is %0.2f ",w) diff --git a/3864/CH6/EX6.13/Ex6_13.sce b/3864/CH6/EX6.13/Ex6_13.sce new file mode 100644 index 000000000..12f36afcd --- /dev/null +++ b/3864/CH6/EX6.13/Ex6_13.sce @@ -0,0 +1,36 @@ +clear +// +// + +//Initilization of Variables +T=8 //KN-m //Torque +d=100 //mm //Diameter of portion AB +d1=100 //mm //External Diameter of Portion BC +d2=75 //mm //Internal Diameter of Portion BC +G=80 //KN/mm**2 //Modulus of Rigidity +L1=1500 //mm //Radial Distance of Portion AB +L2=2500 //mm //Radial Distance ofPortion BC + +//Calculations + +R=d*2**-1 //mm //Radius of shaft + +//For Portion AB,Polar Modulus +J1=%pi*32**-1*d**4 //mm**4 + +//For Portion BC,Polar modulus +J2=%pi*32**-1*(d1**4-d2**4) //mm**4 + +//Now Max stress occurs in portion BC since max radial Distance is sme in both cases +q_max=T*J2**-1*R*10**6 //N/mm**2 + +//Let theta1 be the rotation in Portion AB and theta2 be the rotation in portion BC +theta1=T*L1*(G*J1)**-1 //Radians +theta2=T*L2*(G*J2)**-1 //Radians + +//Total Rotational at end C +theta=(theta1+theta2)*10**3 //Radians + +//Result +printf("\n Max stress induced is %0.2f N/mm**2",q_max) +printf("\n Angle of Twist is %0.3f radians",theta) diff --git a/3864/CH6/EX6.14/Ex6_14.sce b/3864/CH6/EX6.14/Ex6_14.sce new file mode 100644 index 000000000..62b0e8876 --- /dev/null +++ b/3864/CH6/EX6.14/Ex6_14.sce @@ -0,0 +1,40 @@ +clear +// +// + +//Initilization of Variables + +q_b=80 //N/mm**2 //Shear stress in Brass +q_s=100 //N/mm**2 //Shear stress in Steel +G_b=40*10**3 //N/mm**2 +G_s=80*10**3 +L_b=1000 //mm //Length of brass shaft +L_s=1200 //mm //Length of steel shaft +d1=80 //mm //Diameter of brass shaft +d2=60 //mm //Diameter of steel shaft + +//Calculations + +//Polar modulus of brass rod +J_b=%pi*32**-1*d1**4 //mm**4 + +//Polar modulus of steel rod +J_s=%pi*32**-1*d2**4 //mm**4 + +//Considering bras Rod:AB +T1=J_b*q_b*(d1*2**-1)**-1 //N-mm + +//Considering Steel Rod:BC +T2=J_s*q_s*(d2*2**-1)**-1 //N-mm + +//Max Torque that can be applied +T2 + +//Let theta_b and theta_s be the rotations in Brass and steel respectively +theta_b=T2*L_b*(G_b*J_b)**-1 //Radians +theta_s=T2*L_s*(G_s*J_s)**-1 //Radians + +theta=theta_b+theta_s //Radians //Rotation of free end + +//Result +printf("\n Total of free end is %0.3f Radians",theta) diff --git a/3864/CH6/EX6.15/Ex6_15.sce b/3864/CH6/EX6.15/Ex6_15.sce new file mode 100644 index 000000000..a96281897 --- /dev/null +++ b/3864/CH6/EX6.15/Ex6_15.sce @@ -0,0 +1,55 @@ +clear +// +// + +//Initilization of Variables + +G=80*10**3 //N/mm**2 //Modulus of Rigidity +d1=100 //mm //Outer diameter of hollow shft +d2=80 //mm //Inner diameter of hollow shaft +d=80 //mm //diameter of Solid shaft +d3=60 //mm //diameter of Solid shaft having L=0.5m +L1=300 //mm //Length of Hollow shaft +L2=400 //mm //Length of solid shaft +L3=500 //mm //LEngth of solid shaft of diameter 60mm +T1=2*10**6 //N-mm //Torsion in Shaft AB +T2=1*10**6 //N-mm //Torsion in shaft BC +T3=1*10**6 //N-mm //Torsion in shaft CD + +//Calculations + +//Now Polar modulus of section AB +J1=%pi*32**-1*(d1**4-d2**4) //mm**4 + +//Polar modulus of section BC +J2=%pi*32**-1*d**4 //mm**4 + +//Polar modulus of section CD +J3=%pi*32**-1*d3**4 //mm**4 + +//Now angle of twist of AB +theta1=T1*L1*(G*J1)**-1 //radians + +//Angle of twist of BC +theta2=T2*L2*(G*J2)**-1 //radians + +//Angle of twist of CD +theta3=T3*L3*(G*J3)**-1 //radians + +//Angle of twist +theta=theta1-theta2+theta3 //Radians + +//Shear stress in AB From Torsion Equation +q_s1=T1*(d1*2**-1)*J1**-1 //N/mm**2 + +//Shear stress in BC +q_s2=T2*(d*2**-1)*J2**-1 //N/mm**2 + +//Shear stress in CD +q_s3=T3*(d3*2**-1)*J3**-1 //N-mm**2 + +//As max shear stress occurs in portion CD,so consider CD + +//Result +printf("\n Angle of twist at free end is %0.5f Radian",theta) +printf("\n Max Shear stress %0.2f N/mm**2",q_s3) diff --git a/3864/CH6/EX6.16/Ex6_16.sce b/3864/CH6/EX6.16/Ex6_16.sce new file mode 100644 index 000000000..76268c16b --- /dev/null +++ b/3864/CH6/EX6.16/Ex6_16.sce @@ -0,0 +1,52 @@ +clear +// +// + +//Initilization of Variables + +L=1000 //mm //Length of bar +L1=600 //mm //Length of Bar AB +L2=400 //mm //Length of Bar BC +d1=60 //mm //Outer Diameter of bar BC +d2=30 //mm //Inner Diameter of bar BC +d=60 //mm //Diameter of bar AB +T=2*10**6 //N-mm //Total Torque + +//Calculations + +//Polar Modulus of Portion AB +J1=%pi*32**-1*d**4 //mm*4 + +//Polar Modulus of Portion BC +J2=%pi*32**-1*(d1**4-d2**4) //mm**4 + +//Let T1 be the torque resisted by bar AB and T2 be torque resisted by Bar BC +//Let theta1 and theta2 be the rotation of shaft in portion AB & BC + +//theta1=T1*L1*(G*J1)**-1 //radians +//After substituting values and further simplifying we get +//theta1=32*600*T1*(%pi*60**4*G)**-1 + +//theta2=T2*L*(J2*G)**-1 //Radians +//After substituting values and further simplifying we get +//theta2=32*400*T2*(%pi*60**4*(1-0.5**4)*G)**-1 + +//Now For consistency of Deformation,theta1=theta2 +//After substituting values and further simplifying we get +//T1=0.7111*T2 ..................................................(1) + +//But T1+T2=T=2*10**6 ...........................................(2) +//Substituting value of T1 in above equation + +T2=T*(0.7111+1)**-1 +T1=0.71111*T2 + +//Max stress in Portion AB +q_s1=T1*(d*2**-1)*(J1)**-1 //N/mm**2 + +//Max stress in Portion BC +q_s2=T2*(d1*2**-1)*J2**-1 //N/mm**2 + +//Result +printf("\n Stresses Developed in Portion:AB %0.2f N/mm**2",q_s1) +printf("\n :BC %0.2f N/mm**2",q_s2) diff --git a/3864/CH6/EX6.17/Ex6_17.sce b/3864/CH6/EX6.17/Ex6_17.sce new file mode 100644 index 000000000..7012e6601 --- /dev/null +++ b/3864/CH6/EX6.17/Ex6_17.sce @@ -0,0 +1,45 @@ +clear +// +// + +//Initilization of Variables + +d1=80 //mm //External Diameter of Brass tube +d2=50 //mm //Internal Diameter of Brass tube +d=50 //mm //Diameter of steel Tube +G_b=40*10**3 //N/mm**2 //Modulus of Rigidity of brass tube +G_s=80*10**3 //N/mm**2 //Modulus of rigidity of steel tube +T=6*10**6 //N-mm //Torque +L=2000 //mm //Length of Tube + +//Calculations + +//Polar Modulus of brass tube +J1=%pi*32**-1*(d1**4-d2**4) //mm**4 + +//Polar modulus of steel Tube +J2=%pi*32**-1*d**4 //mm**4 + +//Let T_s & T_b be the torque resisted by steel and brass respectively +//Then, T_b+T_s=T ............................................(1) + +//Since the angle of twist will be the same +//Theta1=Theta2 +//After substituting values and further simplifying we get +//Ts=0.360*Tb ...........................................(2) + +//After substituting value of Ts in eqn 1 and further simplifying we get +T_b=T*(0.36+1)**-1 //N-mm +T_s=0.360*T_b + +//Let q_s and q_b be the max stress in steel and brass respectively +q_b=T_b*(d1*2**-1)*J1**-1 //N/mm**2 +q_s=T_s*(d2*2**-1)*J2**-1 //N/mm**2 + +//Since angle of twist in brass=angle of twist in steel +theta_s=T_s*L*(J2*G_s)**-1 + +//Result +printf("\n Stresses Developed in Materials are:Brass %0.2f N/mm**2",q_b) +printf("\n :Steel %0.2f N/mm**2",q_s) +printf("\n Angle of Twist in 2m Length %0.3f Radians",theta_s) diff --git a/3864/CH6/EX6.18/Ex6_18.sce b/3864/CH6/EX6.18/Ex6_18.sce new file mode 100644 index 000000000..cf2139d10 --- /dev/null +++ b/3864/CH6/EX6.18/Ex6_18.sce @@ -0,0 +1,39 @@ +clear +// +// + +//Initilization of Variables + +d1=60 //mm //External Diameter of aluminium Tube +d2=40 //mm //Internal Diameter of aluminium Tube +d=40 //mm //Diameter of steel tube +q_a=60 //N/mm**2 //Permissible stress in aluminium +q_s=100 //N/mm**2 //Permissible stress in steel tube +G_a=27*10**3 //N/mm**2 +G_s=80*10**3 //N/mm**2 + +//Calculations + +//Polar modulus of aluminium Tube +J_a=%pi*32**-1*(d1**4-d2**4) //mm**4 + +//Polar Modulus of steel Tube +J_s=%pi*32**-1*d**4 //mm**4 + +//Now the angle of twist of steel tube = angle of twist of aluminium tube +//T_s*L_s*(J_s*theta_s)**-1=T_a*L_a*(J_a*theta_a)**-1 +//After substituting values in above Equation and Further simplifyin we get +//T_s=0.7293*T_a .....................(1) + +//If steel Governs the resisting capacity +T_s1=q_s*J_s*(d*2**-1)**-1 //N-mm +T_a1=T_s1*0.7293**-1 //N-mm +T1=(T_s1+T_a1)*10**-6 //KN-m //Total Torque in steel Tube + +//If aluminium Governs the resisting capacity +T_a2=q_a*J_a*(d1*2**-1) //N-mm +T_s2=T_a2*0.7293 //N-mm +T2=(T_s2+T_a2)*10**-6 //KN-m //Total Torque in aluminium tube + +//Result +printf("\n Steel Governs the torque carrying capacity %0.2f KN-m",T1) diff --git a/3864/CH6/EX6.2/Ex6_2.sce b/3864/CH6/EX6.2/Ex6_2.sce new file mode 100644 index 000000000..2c4184559 --- /dev/null +++ b/3864/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,26 @@ +clear +// +// + +//Initilization of Variables + +P=440*10**6 //N-m/sec //Power transmitted +n=280 //rpm +theta=%pi*180**-1 //radian //angle of twist +L=1000 //mm //Length of solid shaft +q_s=40 //N/mm**2 //Max torsional shear stress +G=84*10**3 //N/mm**2 //Modulus of rigidity + +//Calculations + +//P=2*%pi*n*T*(60)**-1 //Equation of Power transmitted +T=P*60*(2*%pi*n)**-1 //N-mm //torsional moment + +//From Consideration of shear stress +d1=(T*16*(%pi*40)**-1)**0.333333 + +//From Consideration of angle of twist +d2=(T*L*32*180*(%pi*84*10**3*%pi)**-1)**0.25 + +//result +printf("\n Diameter of solid shaft is %0.2f mm",d1) diff --git a/3864/CH6/EX6.20/Ex6_20.sce b/3864/CH6/EX6.20/Ex6_20.sce new file mode 100644 index 000000000..b8f895881 --- /dev/null +++ b/3864/CH6/EX6.20/Ex6_20.sce @@ -0,0 +1,31 @@ +clear +// +// + +//Initilization of Variables + +T=2*10**6 //N-mm //Torque transmitted +G=80*10**3 //N/mm**2 //Modulus of rigidity +d1=40 //mm +d2=80 //mm +r1=20 //mm +r2=40 //mm +L=2000 //mm //Length of shaft + +//Calculations + +//Angle of twist +theta=2*T*L*(r1**2+r1*r2+r2**2)*(3*%pi*G*r2**3*r1**3)**-1 //radians + +//If the shaft is treated as shaft of average Diameter +d_avg=(d1+d2)*2**-1 //mm + +theta1=T*L*(G*%pi*32**-1*d_avg**4)**-1 //Radians + +//Percentage Error +//Let Percentage Error be E +X=theta-theta1 +E=(X*theta**-1)*100 + +//Result +printf("Percentage Error is %0.3f",E) diff --git a/3864/CH6/EX6.21/Ex6_21.sce b/3864/CH6/EX6.21/Ex6_21.sce new file mode 100644 index 000000000..031493439 --- /dev/null +++ b/3864/CH6/EX6.21/Ex6_21.sce @@ -0,0 +1,29 @@ +clear +// +// + +//Initilization of Variables + +G=80*10**3 //N/mm**2 +P=1*10**9 //N-mm/sec //Power +n=300 +d1=150 //mm //Outer Diameter +d2=120 //mm //Inner Diameter +L=2000 //mm //Length of circular shaft + +//Calculations + +T=P*60*(2*%pi*n)**-1 //N-mm + +//Polar Modulus +J=%pi*32**-1*(d1**4-d2**4) //mm**4 + +q_s=T*J**-1*(d1*2**-1) //N/mm**2 + + +//Strain ENergy +U=q_s**2*(4*G)**-1*%pi*4**-1*(d1**2-d2**2)*L + +//Result +printf("\n Max shear stress is %0.2f N/mm**2",q_s) +printf("\n Strain Energy stored in the shaft is %0.2f N-mm",U) diff --git a/3864/CH6/EX6.22/Ex6_22.sce b/3864/CH6/EX6.22/Ex6_22.sce new file mode 100644 index 000000000..573d185e2 --- /dev/null +++ b/3864/CH6/EX6.22/Ex6_22.sce @@ -0,0 +1,32 @@ +clear +// +// + +//Initilization of Variables + +d=12 //mm //Diameter of helical spring +D=150 //mm //Mean Diameter +R=D*2**-1 //mm //Radius of helical spring +n=10 //no.of turns +G=80*10**3 //N/mm**2 +W=450 //N //Load + +//Calculations + +//Max shear stress +q_s=16*W*R*(%pi*d**3)**-1 //N/mm**2 + +//Strain Energy stored +U=32*W**2*R**3*n*(G*d**4)**-1 //N-mm + +//Deflection Produced +dell=64*W*R**3*n*(G*d**4)**-1 //mm + +//Stiffness Spring +k=W*dell**-1 //N/mm + +//Result +printf("\n Max shear stress is %0.2f N/mm**2",q_s) +printf("\n Strain Energy stored is %0.2f N-mm",U) +printf("\n Deflection Produced is %0.2f mm",dell) +printf("\n Stiffness spring is %0.2f N/mm",k) diff --git a/3864/CH6/EX6.23/Ex6_23.sce b/3864/CH6/EX6.23/Ex6_23.sce new file mode 100644 index 000000000..d93dc86f7 --- /dev/null +++ b/3864/CH6/EX6.23/Ex6_23.sce @@ -0,0 +1,35 @@ +clear +// +// + +//Initilization of Variables + +K=5 //N/mm //Stiffness +L=100 //mm //Solid Length +q_s=60 //N/mm**2 //Max shear stress +W=200 //N //Max Load +G=80*10**3 //N/mm**2 + +//Calculations + +//K=W*dell**-1 +//After substituting values and further simplifying we get +//d=0.004*R**3*n ........(1) //mm //Diameter of wire +//n=L*d**-1 ........(2) + +//From Shearing stress +//q_s=16*W*R*(%pi*d**3)**-1 +//After substituting values and further simplifying we get +//d**4=0.004*R**3*n .................(4) + +//From Equation 1,2,3 +//d**4=0.004*(0.0785*d**3)**3*100*d**-1 +//after further simplifying we get +d=5168.101**0.25 +n=100*d**-1 +R=(d**4*(0.004*n)**-1)**0.3333 + +//Result +printf("\n Diameter of Wire is %0.2f mm",d) +printf("\n No.of turns is %0.2f ",n) +printf("\n Mean Radius of spring is %0.2f mm",R) diff --git a/3864/CH6/EX6.24/Ex6_24.sce b/3864/CH6/EX6.24/Ex6_24.sce new file mode 100644 index 000000000..54c23cd26 --- /dev/null +++ b/3864/CH6/EX6.24/Ex6_24.sce @@ -0,0 +1,30 @@ +clear +// +// + +//Initilization of Variables + +m=5*10**5 //Wagon Weighing +v=18*1000*36000**-1 +d=300 //mm //Diameter of Beffer springs +n=18 //no.of turns +G=80*10**3 //N/mm**2 +dell=225 +R=100 //mm //Mean Radius + +//Calculations + +//Energy of Wagon +E=m*v**2*(9.81*2)**-1 //N-mm + +//Load applied +W=dell*G*d**4*(64*R**3*n)**-1 //N + +//Energy each spring can absorb is +E2=W*dell*2**-1 //N-mm + +//No.of springs required to absorb energy of Wagon +n2=E*E2**-1 *10**7 + +//Result +printf("\n No.of springs Required for Buffer is %0.2f ",n2) diff --git a/3864/CH6/EX6.25/Ex6_25.sce b/3864/CH6/EX6.25/Ex6_25.sce new file mode 100644 index 000000000..a1b4c1ee4 --- /dev/null +++ b/3864/CH6/EX6.25/Ex6_25.sce @@ -0,0 +1,27 @@ +clear +// +// + +//Initilization of Variables + +b=180 //mm //width of flange +d=10 //mm //Depth of flange +t=10 //mm //Thickness of flange +D=400 //mm //Overall Depth + +//Calculations + +I_xx=1*12**-1*(b*D**3-(b-t)*(D-2*d)**3) +I_yy=1*12**-1*((D-2*d)*t**3+2*t*b**3) + +//If warping is neglected +J=I_xx+I_yy //mm**4 + +//Since b/d>1.6,we get +J2=1*3**-1*d**3*b*(1-0.63*d*b**-1)*2+1*3**-1*t**3*(D-2*d)*(1-0.63*t*b**-1) + +//Over Estimation of torsional Rigidity would have been +T=J*J2**-1 + +//Result +printf("\n Error in assessing torsional Rigidity if the warping is neglected is %0.2f ",T) diff --git a/3864/CH6/EX6.26/Ex6_26.sce b/3864/CH6/EX6.26/Ex6_26.sce new file mode 100644 index 000000000..4f3185b4c --- /dev/null +++ b/3864/CH6/EX6.26/Ex6_26.sce @@ -0,0 +1,36 @@ +clear +// +// + +//Initilization of Variables + +d1=100 //mm //Outer Diameter +d2=95 //mm //Inner Diameter +T=2*10**6 //N-mm //Torque + +//Calculations + +J=%pi*32**-1*(d1**4-d2**4) //mm**4 //Polar Modulus + +//Shear stress +q_max=T*J**-1*d1*2**-1 //N/mm**2 + +//Now theta*L**-1=T*(G*J)**-1 +//After substituting values and further simplifying we get +//Let theta*L**-1=X +X=T*J**-1 + +//Now Treating it as very thin walled tube +d=(d1+d2)*2**-1 //mm + +r=d*2**-1 +t=(d1-d2)*2**-1 +q_max2=T*(2*%pi*r**2*t)**-1 //N/mm**2 + +X2=T*(2*%pi*r**3*t)**-1 + +//Result +printf("\n When it is treated as hollow shaft:Max shear stress %0.2f N/mm**2",q_max) +printf("\n :Angle of Twist per unit Length %0.3f ",X) +printf("\n When it is very thin Walled Tube :Max shear stress %0.2f N/mm**2",q_max2) +printf("\n :Angle of twist per Unit Length %0.3f ",X2) diff --git a/3864/CH6/EX6.3/Ex6_3.sce b/3864/CH6/EX6.3/Ex6_3.sce new file mode 100644 index 000000000..5d5ac6967 --- /dev/null +++ b/3864/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,27 @@ +clear +// +// + +//Initilization of Variables + +G=80*10**3 //N/mm**2 //Modulus of rigidity +q_s=80 //N/mm**2 //Max sheare stress +P=736*10**6 //N-mm/sec //Power transmitted +n=200 + +//Calculations + +T=P*60*(2*%pi*n)**-1 //N-mm //Torsional moment + +//Now From consideration of angle of twist +theta=%pi*180**-1 +//L=15*d + +d=(T*32*180*15*(%pi**2*G)**-1)**0.33333 + +//Now corresponding stress at the surface is +q_s2=T*32*d*(%pi*2*d**4)**-1 + +//Result +printf("\n Max diameter required is %0.2f mm",d) +printf("\n Corresponding shear stress is %0.2f N/mm**2",q_s2) diff --git a/3864/CH6/EX6.4/Ex6_4.sce b/3864/CH6/EX6.4/Ex6_4.sce new file mode 100644 index 000000000..0c51b1470 --- /dev/null +++ b/3864/CH6/EX6.4/Ex6_4.sce @@ -0,0 +1,28 @@ +clear +// +// + +//Initilization of Variables + +d=25 //mm //Diameter of steel bar +p=50*10**3 //N //Pull +dell_1=0.095 //mm //Extension of bar +l=200 //mm //Guage Length +T=200*10**3 //N-mm //Torsional moment +theta=0.9*%pi*180**-1 //angle of twist +L=250 //mm Length of steel bar + +//Calculations + +A=%pi*4**-1*d**2 //Area of steel bar //mm**2 +E=p*l*(dell_1*A)**-1 //N/mm**2 //Modulus of elasticity + +J=%pi*32**-1*d**4 //mm**4 //Polar modulus + +G=T*L*(theta*J)**-1 //Modulus of rigidity //N/mm**2 + +//Now from the relation of Elastic constants +mu=E*(2*G)**-1-1 + +//result +printf("\n The Poissons ratio is %0.3f ",mu) diff --git a/3864/CH6/EX6.5/Ex6_5.sce b/3864/CH6/EX6.5/Ex6_5.sce new file mode 100644 index 000000000..0ee4239e2 --- /dev/null +++ b/3864/CH6/EX6.5/Ex6_5.sce @@ -0,0 +1,26 @@ +clear +// +// + +//Initilization of Variables + +L=6000 //mm //Length of circular shaft +d1=100 //mm //Outer Diameter +d2=75 //mm //Inner Diameter +R=100*2**-1 //Radius of shaft +T=10*10**6 //N-mm //Torsional moment +G=80*10**3 //N/mm**2 //Modulus of Rigidity + +//Calculations + +J=%pi*32**-1*(d1**4-d2**4) //mm**4 //Polar Modulus + +//Max Shear stress produced +q_s=T*R*J**-1 //N/mm**2 + +//Angle of twist +theta=T*L*(G*J)**-1 //Radian + +//Result +printf("\n MAx shear stress produced is %0.2f N/mm**2",q_s) +printf("\n Angle of Twist is %0.2f Radian",theta) diff --git a/3864/CH6/EX6.6/Ex6_6.sce b/3864/CH6/EX6.6/Ex6_6.sce new file mode 100644 index 000000000..f16af5a6e --- /dev/null +++ b/3864/CH6/EX6.6/Ex6_6.sce @@ -0,0 +1,30 @@ +clear +// +// + +//Initilization of Variables + +d1=200 //mm //External Diameter of shaft +t=25 //mm //Thickness of shaft +n=200 //rpm +theta=0.5*%pi*180**-1 //Radian //angle of twist +L=2000 //mm //Length of shaft +G=84*10**3 //N/mm**2 +d2=d1-2*t //mm //Internal Diameter of shaft + +//Calculations + +J=%pi*32**-1*(d1**4-d2**4) //mm**4 //Polar Modulus + +//Torsional moment +T=G*J*theta*L**-1 //N/mm**2 + +//Power Transmitted +P=2*%pi*n*T*60**-1*10**-6 //N-mm + +//Max shear stress transmitted +q_s=G*theta*(d1*2**-1)*L**-1 //N/mm**2 + +//Result +printf("\n Power Transmitted is %0.2f N-mm",P) +printf("\n Max Shear stress produced is %0.2f N/mm**2",q_s) diff --git a/3864/CH6/EX6.7/Ex6_7.sce b/3864/CH6/EX6.7/Ex6_7.sce new file mode 100644 index 000000000..70abac79a --- /dev/null +++ b/3864/CH6/EX6.7/Ex6_7.sce @@ -0,0 +1,33 @@ +clear +// +// + +//Initilization of Variables + +P=3750*10**6 //N-mm/sec +n=240 //Rpm +q_s=160 //N/mm**2 //Max shear stress + +//Calculations + +//d2=0.8*d2 //mm //Internal Diameter of shaft + +//J=%pi*32**-1*(d1**4-d2**4) //mm**4 //Polar modulus +//After substituting value in above Equation we get +//J=0.05796*d1**4 + +T=P*60*(2*%pi*n)**-1 //N-mm //Torsional moment + +//Now from Torsion Formula +//T*J**-1=q_s*R**-1 ......................................(1) + +//But R=d1*2**-1 + +//Now substituting value of R and J in Equation (1) we get +d1=(T*(0.05796*q_s*2)**-1)**0.33333 + +d2=d1*0.8 + +//Result +printf("\n The size of the Shaft is:d1 %0.3f mm",d1) +printf("\n :d2 %0.3f mm",d2) diff --git a/3864/CH6/EX6.8/Ex6_8.sce b/3864/CH6/EX6.8/Ex6_8.sce new file mode 100644 index 000000000..51b52d047 --- /dev/null +++ b/3864/CH6/EX6.8/Ex6_8.sce @@ -0,0 +1,64 @@ +clear +// +// + +//Initilization of Variables + +P=245*10**6 //N-mm/sec //Power transmitted +n=240 //rpm +q_s=40 //N/mm**2 //Shear stress +theta=%pi*180**-1 //radian //Angle of twist +L=1000 //mm //Length of shaft +G=80*10**3 //N/mm**2 + +//Tmax=1.5*T + +//Calculations + +T=P*60*(2*%pi*n)**-1 //N-mm //Torsional Moment +Tmax=1.5*T + +//Now For Solid shaft +//J=%pi*32*d**4 + +//Now from the consideration of shear stress we get +//T*J**-1=q_s*(d*2**-1)**-1 +//After substituting value in above Equation we get +//T=%pi*16**-1*d**3*q_s + +//Designing For max Torque +d=(Tmax*16*(%pi*40)**-1)**0.33333 //mm //Diameter of shaft + +//For max Angle of Twist +//Tmax*J**-1=G*theta*L**-1 +//After substituting value in above Equation we get +d2=(Tmax*32*180*L*(%pi**2*G)**-1)**0.25 + +//For Hollow Shaft + +//d1_2=Outer Diameter +//d2_2=Inner Diameter + +//d2_2=0.5*d1_2 + +// Polar modulus +//J=%pi*32**-1*(d1_2**4-d2_2**4) +//After substituting values we get +//J=0.092038*d1_2**4 + +//Now from the consideration of stress +//Tmax*J**-1=q_s*(d1_2*2**-1)**-1 +//After substituting values and further simplifying we get +d1_2=(Tmax*(0.092038*2*q_s)**-1)**0.33333 + +//Now from the consideration of angle of twist +//Tmax*J**-1=G*theta*L**-1 +//After substituting values and further simplifying we get +d1_3=(Tmax*180*L*(0.092038*G*%pi)**-1)**0.25 + +d2_2=0.5*d1_2 + +//result +printf("\n Diameter of shaft is:For solid shaft:d %0.2f mm",d) +printf("\n :For Hollow shaft:d1_2 %0.3f mm",d1_2) +printf("\n : :d2_2 %0.3f mm",d2_2) |