diff options
Diffstat (limited to '3864/CH4')
-rw-r--r-- | 3864/CH4/EX4.1/Ex4_1.sce | 47 | ||||
-rw-r--r-- | 3864/CH4/EX4.10/Ex4_10.sce | 53 | ||||
-rw-r--r-- | 3864/CH4/EX4.12/Ex4_12.sce | 43 | ||||
-rw-r--r-- | 3864/CH4/EX4.13/Ex4_13.sce | 41 | ||||
-rw-r--r-- | 3864/CH4/EX4.14/Ex4_14.sce | 53 | ||||
-rw-r--r-- | 3864/CH4/EX4.15/Ex4_15.sce | 33 | ||||
-rw-r--r-- | 3864/CH4/EX4.17/Ex4_17.sce | 54 | ||||
-rw-r--r-- | 3864/CH4/EX4.18/Ex4_18.sce | 36 | ||||
-rw-r--r-- | 3864/CH4/EX4.19/Ex4_19.sce | 30 | ||||
-rw-r--r-- | 3864/CH4/EX4.2/Ex4_2.sce | 35 | ||||
-rw-r--r-- | 3864/CH4/EX4.20/Ex4_20.sce | 48 | ||||
-rw-r--r-- | 3864/CH4/EX4.21/Ex4_21.sce | 40 | ||||
-rw-r--r-- | 3864/CH4/EX4.22/Ex4_22.sce | 38 | ||||
-rw-r--r-- | 3864/CH4/EX4.24/Ex4_24.sce | 40 | ||||
-rw-r--r-- | 3864/CH4/EX4.4/Ex4_4.sce | 52 | ||||
-rw-r--r-- | 3864/CH4/EX4.5/Ex4_5.sce | 49 | ||||
-rw-r--r-- | 3864/CH4/EX4.6/Ex4_6.sce | 63 | ||||
-rw-r--r-- | 3864/CH4/EX4.7/Ex4_7.sce | 40 | ||||
-rw-r--r-- | 3864/CH4/EX4.8/Ex4_8.sce | 65 | ||||
-rw-r--r-- | 3864/CH4/EX4.9/Ex4_9.sce | 48 |
20 files changed, 908 insertions, 0 deletions
diff --git a/3864/CH4/EX4.1/Ex4_1.sce b/3864/CH4/EX4.1/Ex4_1.sce new file mode 100644 index 000000000..be8ad539f --- /dev/null +++ b/3864/CH4/EX4.1/Ex4_1.sce @@ -0,0 +1,47 @@ +clear +// + +//Initilization of Variables + +L=5000 //mm //Length of Beam +a=2000 //mm //Length of start of beam to Pt Load +b=3000 //mm //Length of Pt load to end of beam +A=150*250 //m**2 //Area of beam +b=150 //mm //Width of beam +d=250 //mm //Depth of beam +sigma=10//N/mm**2 //stress +l=2000 //m //Load applied from one end + +//Calculations + +//Moment of Inertia +I=1*12**-1*b*d**3 //m**4 + +//Distance from N.A to end +y_max=d*2**-1 //m + +//Section Modulus +Z=1*6**-1*b*d**2 //mm**3 + +//Moment Carrying Capacity +M=sigma*Z //N-mm + +//Let w be the Intensity of the Load in N/m,then Max moment +//M_max=w*L**2*8**-1 //N-mm +//After substituting values and further simplifying we get +//M_max=w*25*100*8**-1 + +//EQuating it to moment carrying capacity,we get max intensity load +w=M*(25*1000)**-1*8*10**-3 + +//Part-2 + +//Let P be the concentrated load,then max moment occurs under the load and its value +//M1=P*a*b*L**-1 //N-mm + +//Equting it to moment carrying capacity we get +P=M*1200**-1*10**-3 //N + +//Result +printf("\n Max Intensity of u.d.l it can carry %0.3f KN-m",w) +printf("\n MAx concentrated Load P apllied at 2 m from one end is %0.3f KN",P) diff --git a/3864/CH4/EX4.10/Ex4_10.sce b/3864/CH4/EX4.10/Ex4_10.sce new file mode 100644 index 000000000..d09c2efb0 --- /dev/null +++ b/3864/CH4/EX4.10/Ex4_10.sce @@ -0,0 +1,53 @@ +clear +// + +//Initilization of Variables +H=10 //mm //Height +A1=160*160 //mm**2 //area of square section at bottom +L1=160 //mm //Length of square section at bottom +b1=160 //mm //width of square section at bottom +A2=80*80 //mm**2 //area of square section at top +L2=80 //mm //Length of square section at top +b2=80 //mm //Width of square section at top +P=100 //N //Pull + +//Calculations + +//Consider a section at distance y from top. +//Let the side of square bar be 'a' +//a=L2+y*(H)**-1*(b1-b2) +//After further simplifying we get +//a=L2+8*y + +//Moment of Inertia +//I=2*1*12**-1*a*(2)**0.5*(a*((2)**0.5)**-1)**3 +//After further simplifying we get +//I=a**4*12**-1 + +//Section Modulus +//Z=a**4*(12*a*(2)**0.5)**-1 +//After further simplifying we get +//Z=2**0.5*a**3*(12)**-1 //mm**3 + +//Bending moment at this section=100*y N-mm +//M=100*10**3*y //N-mm + +//But +//M=sigma*Z +//After sub values in above equation we get +//sigma=M*Z**-1 +//After further simplifying we get +//sigma=1200*10**3*(2**0.5)**-1*y*((80+80*y)**3)**-1 .......(1) + +//For Max stress df*(dy)**-1=0 +//After taking Derivative of above equation we get +//df*(dy)**-1=1200*10**3*(2**0.5)**-1*((80+8*y)**-3+y(-3)*(80+8*y)**-4*8) +//After further simplifying we get +y=80*16**-1 //m + +//Max stress at this level is +sigma=1200*10**3*(2**0.5)**-1*y*((80+8*y)**3)**-1 + +//Result +printf("\n Max Bending stress is Developed at %0.3f m",y) +printf("\n Value of Max Bending stress is %0.3f N/mm**2",sigma) diff --git a/3864/CH4/EX4.12/Ex4_12.sce b/3864/CH4/EX4.12/Ex4_12.sce new file mode 100644 index 000000000..d1060e823 --- /dev/null +++ b/3864/CH4/EX4.12/Ex4_12.sce @@ -0,0 +1,43 @@ +clear +// + +//Initilization of Variables + +b=200 //mm //Width of timber +d=400 //mm //Depth of timber +t=6 //mm //Thickness +b2=200 //mm //width of steel plate +t2=20 //mm //Thickness of steel plate +M=40*10**6 //KN-mm //Moment +//Let E_s*E_t**-1=X +X=20 //Ratio of Modulus of steel to timber + +//Calculations + +//let y_bar be the Distance of centroidfrom bottom most fibre +y_bar=(b*d*(b+t)+t2*b2*t*t*2**-1)*(b*d+t2*b2*t)**-1 //mm + +//Moment of Inertia +I=1*12**-1*b*d**3+b*d*(b+t-(y_bar))**2+1*12**-1*t2*b2*t**3+b2*t2*t*((y_bar)-t*2**-1)**2 + + +//distance of the top fibre from N-A +y_1=d+t-y_bar //mm + +//Distance of the junction of timber and steel From N-A +y_2=y_bar-t //mm + +//Stress in Timber at the top +Y=M*I**-1*y_1 //N/mm**2 + +//Stress in the Timber at the junction point +Z=M*I**-1*y_2 + +//Coressponding stress in steel at the junction point +Z2=X*Z //N/mm**2 + +//The stress in Extreme steel fibre +Z3=X*M*I**-1*y_bar + +//Result +printf("\n Stress in Extreme steel Fibre %0.2f N/mm**2",Z3) diff --git a/3864/CH4/EX4.13/Ex4_13.sce b/3864/CH4/EX4.13/Ex4_13.sce new file mode 100644 index 000000000..39953ccc4 --- /dev/null +++ b/3864/CH4/EX4.13/Ex4_13.sce @@ -0,0 +1,41 @@ +clear +// + +//Initilization of Variables + +//Timber size +b=150 //mm //Width +d=300 //mm //Depth + +t=6 //mm //Thickness of steel plate +l=6 //m //Span + +//E_s*E_t**-1=20 +//m=E_s*E_t**-1 +m=20 +sigma_timber=8 //N/mm**2 //Stress in timber +sigma_steel=150 //N/mm**2 //Stress in steel plate + +//Let m*t=Y +Y=m*t //mm +L=(2*t+b)*m //mm //Width of flitched beam + +//Calculations + +//Due to synnetry cenroid,the neutral axis is half the depth +I=(1*12**-1*L*t**3+L*t*(b+t*2**-1)**2)*2+1*12**-1*(Y+b+Y)*d**3 //mm**4 + +y_max1=150 //mm //For timber +y_max2=156 //mm //For steel + +//stress in steel +f_t1=1*m**-1*sigma_steel //N/mm**2 + +//Moment of resistance +M=f_t1*(I*y_max2**-1) + +//load +w=8*M*(l**2)**-1*10**-6 //KN/m + +//Result +printf("\n Load beam can carry is %0.2f KN/m",w) diff --git a/3864/CH4/EX4.14/Ex4_14.sce b/3864/CH4/EX4.14/Ex4_14.sce new file mode 100644 index 000000000..dd7431bd4 --- /dev/null +++ b/3864/CH4/EX4.14/Ex4_14.sce @@ -0,0 +1,53 @@ +clear +// + +//Initilization of Variables + +L=6000 //mm //Span of beam +W=20*10**3 //N //Load +sigma=8 //N/mm**2 //Stress +b=200 //mm //Width of section +d=300 //mm //Depth of section + +//Calculations + +//let x be the distance from left side of beam + +//Bending moment +//M=W*2**-1*x //Nmm .......(1) + +//But M=sigma*Z ..........(2) + +//Equating equation 1 and 2 we get +//W*2**-1*x=sigma*Z ............(3) + +//Section Modulus +//Z=1*6*b*d**2 ...............(4) + +//Equating equation 3 and 4 we get +//b*d**2=3*W*x*sigma**-1 .............(5) + +//Beam of uniform strength of constant depth +//b=3*W*x*(sigma*d**2) + +//When x=0 +b=0 + +//When x=L*2**-1 +b2=3*W*L*(2*sigma*d**2)**-1 //mm + +//Beam with constant width of 200 mm + +//We have +//d=(3*W*x*(sigma*d)**-1)**0.5 +//thus depth varies as (x)**0.5 + +//when x=0 +d1=0 + +//when x=L*2**-1 +d2=(3*W*L*(2*sigma*200)**-1)**0.5 //mm + +//Result +printf("\n Cross section of rectangular beam is: %0.2f mm",b2) +printf("\n : %0.2f mm",d2) diff --git a/3864/CH4/EX4.15/Ex4_15.sce b/3864/CH4/EX4.15/Ex4_15.sce new file mode 100644 index 000000000..6991385fa --- /dev/null +++ b/3864/CH4/EX4.15/Ex4_15.sce @@ -0,0 +1,33 @@ +clear +// + +//Initilization of Variables + +L=800 //mm //Span +n=5 //number of leaves +b=60 //mm //Width +t=10 //mm //thickness +sigma=250 //N/mm**2 //Stress + +//Calculations + +//section Modulus +Z=n*6**-1*b*t**2 //mm**3 + +//from the relation +//sigma*Z=M ...................(1) +//M=P*L*4**-1 +//sub values of M in equation 1 we get +P=sigma*Z*4*L**-1*10**-3 //KN //Load + +//Length of Leaves +L1=0.2*L //mm +L2=0.4*L //mm +L3=0.6*L //mm +L4=0.8*L //mm +L5=L //mm + +//Result +printf("\n Max Load it can take is %0.2f KN",P) +printf("\n Length of leaves:L1 %0.2f mm",L1) +printf("\n :L2 %0.2f mm",L2) diff --git a/3864/CH4/EX4.17/Ex4_17.sce b/3864/CH4/EX4.17/Ex4_17.sce new file mode 100644 index 000000000..0477cf682 --- /dev/null +++ b/3864/CH4/EX4.17/Ex4_17.sce @@ -0,0 +1,54 @@ +clear +// +// + +//Initilization of Variables + +F=40*10**3 //N //shear Force + +//I-section + +//Flanges +b=80 //mm //Width of flange +t=20 //mm //Thickness + +//Web +d=200 //mm //Depth +t2=20 //mm //Thickness + +//Flange-2 +b2=160 //mm //Width +t3=20 //mm //Thickness + +D=240 //mm //Overall Depth + +//Calculations + +//Distance of N-A from Top Fibre +y=(b*t*t*2**-1+d*t2*(t+d*2**-1)+b2*t3*(t+d+t3*2**-1))*(b*t+d*t2+b2*t3)**-1 //mm + +//Moment of Inertia +I=1*12**-1*b*t**3+b*t*(y-(t*2**-1))**2+1*12**-1*t2*d**3+t2*d*(y-(t+d*2**-1))**2+1*12**-1*b2*t3**3+t3*b2*((d+t+t3*2**-1)-y)**2 //mm**4 + +//Shear stress bottom of flange +sigma=F*b*t*(y-t*2**-1)*(b*I)**-1 //N/mm**2 + +//At same Level but in web +sigma2=F*b*t*(y-t*2**-1)*(t2*I)**-1 //N/mm**2 + +//for shear stress at N.A +X=b*t*(y-t*2**-1)+t2*(y-t)*(y-t)*2**-1 //mm**3 +sigma3=F*X*(t2*I)**-1 //N/mm**2 + +//Shear stress at bottom of web + +X=b2*t3*((D-y)-t3*2**-1) //mm**3 + +//Stress at bottom of web +sigma4=F*X*(t2*I)**-1 //N/mm**2 + +//Stress at Lower flange +sigma5=F*X*(b2*I)**-1 //N/mm**2 + +//Result +printf("\n The Shear Force Diagram is the result") diff --git a/3864/CH4/EX4.18/Ex4_18.sce b/3864/CH4/EX4.18/Ex4_18.sce new file mode 100644 index 000000000..48f9ecb18 --- /dev/null +++ b/3864/CH4/EX4.18/Ex4_18.sce @@ -0,0 +1,36 @@ +clear +// + +//Initilization of Variables + +F=30*10**3 //N //Shear Force + +//Channel Section +d=400 //mm //Depth of web +t=10 //mm //THickness of web +t2=15 //mm //Thickness of flange +b=100 //mm //Width of flange + +//Rectangular Welded section +b2=80 //mm //Width +d2=60 //mm //Depth + +//Calculations + +//Distance of Centroid From Top Fibre +y=(d*t*t*2**-1+2*t2*(b-t)*((b-t)*2**-1+10)+d2*b2*(d2*2**-1+t))*(d*t+2*t2*(b-t)+d2*b2)**-1 //mm + +//Moment Of Inertia of the section about N-A +I=1*12**-1*d*t**3+d*t*(y-t*2**-1)**2+2*(1*12**-1*t2*(b-t)**3+t2*(b-t)*(((b-t)*2**-1+t)-y)**2)+1*12**-1*d2**3*b2+d2*b2*(d2*2**-1+t-y)**2 + +//Shear stress at level of weld +sigma=F*d*t*(y-t*2**-1)*((b2+t2+t2)*I)**-1 //N/mm**2 + +//Max Shear Stress occurs at Neutral Axis +X=d*t*(y-t*2**-1)+2*t2*(y-t)*(y-t)*2**-1+b2*(y-t)*(y-t)*2**-1 + +sigma_max=F*X*((b+t)*I)**-1 + +//Result +printf("\n Shear stress in the weld is %0.2f N/mm**2",sigma) +printf("\n Max shear stress is %0.2f N/mm**2",sigma_max) diff --git a/3864/CH4/EX4.19/Ex4_19.sce b/3864/CH4/EX4.19/Ex4_19.sce new file mode 100644 index 000000000..319ec29a0 --- /dev/null +++ b/3864/CH4/EX4.19/Ex4_19.sce @@ -0,0 +1,30 @@ +clear +// +// + +//Initilization of Variables + +//Wooden Section +b=300 //mm //Width +d=300 //mm //Depth + +D=100 //mm //Diameter of Bore +F=10*10**3 //N //Shear Force + +//Calculations + +//Moment Of Inertia Of Section +I=1*12**-1*b*d**3-%pi*64**-1*D**4 + +//Shear stress at crown of circle +sigma=F*b*D*(d*2**-1-D*2**-1)*(b*I)**-1 + +//Let a*y_bar=X +X=b*d*2**-1*d*4**-1-%pi*8**-1*D**2*4*D*2**-1*(3*%pi)**-1 //mm**3 + +//Shear Stress at Neutral Axis +sigma2=F*X*((b-D)*I)**-1 //N/mm**2 + +//Result +printf("\n Shearing Stress at Crown of Bore %0.3f N/mm**2",sigma) +printf("\n Shear Stress at Neutral Axis %0.3f N/mm**2",sigma2) diff --git a/3864/CH4/EX4.2/Ex4_2.sce b/3864/CH4/EX4.2/Ex4_2.sce new file mode 100644 index 000000000..029c9dacc --- /dev/null +++ b/3864/CH4/EX4.2/Ex4_2.sce @@ -0,0 +1,35 @@ +clear +// +// + +//Initilization of Variables + +D=70 //mm //External Diameter +t=8 //mm //Thickness of pipe +L=2500 //mm //span +sigma=150 //N/mm**2 //stress + +//Calculations + +//Internal Diameter +d=D-2*t //mm + +//M.I Of Pipe +I=%pi*64**-1*(D**4-d**4) //mm**4 + +y_max=D*2**-1 //mm +Z=I*(y_max)**-1 //mm**3 + +//Moment Carrying capacity +M=sigma*Z //N*mm + +//Max moment int the beam occurs at the mid-span and is equal to +//m=P*L*4**-1 + +//Equating Max moment to moment carrying capacity we get, +//M=P*2.5*L*4**-1 +//After substituting and simplifying we get +P=4*M*(L)**-1*10**-3 //N + +//Result +printf("\n Max concentrated load that can be applied at the centre of span is %0.3f KN",P) diff --git a/3864/CH4/EX4.20/Ex4_20.sce b/3864/CH4/EX4.20/Ex4_20.sce new file mode 100644 index 000000000..f4733fccf --- /dev/null +++ b/3864/CH4/EX4.20/Ex4_20.sce @@ -0,0 +1,48 @@ +clear +// + +//Initilization of Variables + +//flanges +b=200 //mm //width +t1=25 //mm //Thickness + +//web +d=450 //mm //Depth +t2=20 //mm //thickness + +D=500 //mm //Total Depth of section + +//Calculations + +//Moment Of Inertia of the section about N-A +I=1*12**-1*b*D**3-1*12**-1*(b-t2)*d**3 //mm**4 + +//Consider an element in the web at distance y from y from N-A +//Depth of web section=225-y + +//C.G From N-A +//y2=y+(((D*2**-1-t)-y)*2**-1) + +//ay_bar for section at y +//Let ay_bar be X +//X=X1 be of Flange + X2 be of web above y +//X=b*t1*(D*2**-1-t1*2**-1)+t2*(d-t1)*(d-t1+y)*2**-1 +//After Sub values and Further simplifying we get +//X=1187500+10*(225**2-y**2) + +//Shear stress at y +//sigma_y=F*(X)*(t2*I)**-1 + +//Shear Force resisted by the Element +//F1=F*X*t2*dy*(t2*I)**-1 + +//Shear stress resisted by web +//sigma=2*F*I**-1*(X)*dy + +//After Integrating above equation and further simplifying we get +//sigma=0.9578*F + +sigma=0.9578*100 + +//Result diff --git a/3864/CH4/EX4.21/Ex4_21.sce b/3864/CH4/EX4.21/Ex4_21.sce new file mode 100644 index 000000000..d8a38b8be --- /dev/null +++ b/3864/CH4/EX4.21/Ex4_21.sce @@ -0,0 +1,40 @@ +clear +// + +//Initilization of Variables + +//Wooden Beam + +b=150 //mm //width +d=250 //mm //Depth + +L=5000 //mm //span +m=11.2 //N/mm**2 //Max Bending stress +sigma=0.7 //N/mm**2 //Max shear stress + +//Calculations + +//Let 'a' be the distance from left support +//Max shear force +//F=R_A=W*(L-a)*L**-1 + +//Max Moment +//M=W*(L-a)*a*L**-1 + +//But M=sigma*Z +//W*(L-a)*a*L**-1=m*1*6**-1*b*d**2 .....................(1) + +//In Rectangular Section MAx stress is 1.5 times Avg shear stress +F=sigma*b*d*1.5**-1 + +//W*(L-a)*L**-1=F .....................(2) + +//Dividing Equation 1 nad 2 we get +a=m*6**-1*b*d**2*1.5*(sigma*b*d)**-1 + +//Sub above value in equation 2 we get +W=(L-a)**-1*L*F*10**-3 //KN + +//Result +printf("\n Load is %0.2f KN",W) +printf("\n Distance from Left support is %0.2f mm",a) diff --git a/3864/CH4/EX4.22/Ex4_22.sce b/3864/CH4/EX4.22/Ex4_22.sce new file mode 100644 index 000000000..d25a86e08 --- /dev/null +++ b/3864/CH4/EX4.22/Ex4_22.sce @@ -0,0 +1,38 @@ +clear +// + +//Initilization of Variables + +L=1000 //mm //span + +//Rectangular Section + +b=200 //mm //width +d=400 //mm //depth + +sigma=1.5 //N/mm**2 //Shear stress + +//Calculations + +//Let AB be the cantilever beam subjected to load W KN at free end + +//MAx shear Force +//F=W*10**3 //KN + +//Since Max shear stress in Rectangular section +//sigma_max=1.5*F*A**-1 +//After sub values and further simplifyng we get +W=1.5*b*d*(1.5*1000)**-1 //KN + +//Moment at fixwed end +M=W*1 //KN-m +y_max=d*2**-1 //mm + +//M.I +I=1*12**-1*b*d**3 //mm**3 + +//MAx Stress +sigma_max=M*10**6*I**-1*y_max + +//Result +printf("\n Concentrated Load is %0.2f N/mm**2",sigma_max) diff --git a/3864/CH4/EX4.24/Ex4_24.sce b/3864/CH4/EX4.24/Ex4_24.sce new file mode 100644 index 000000000..5b2e0cad5 --- /dev/null +++ b/3864/CH4/EX4.24/Ex4_24.sce @@ -0,0 +1,40 @@ +clear +// + +//Initilization of Variables + +L=4000 //mm //span + +//Rectangular Cross-section +b=100 //mm //Width +d=200 //mm //Thickness + +F_per=10 //N/mm**2 //Max Bending stress +q_max=0.6 //N/mm**2 //Shear stress + +//Calculations + +//If the Load W is in KN/m + +//Max shear Force +//F=w*l*2**-1 //KN +//After substituting values and further simplifying we get +//M=2*w //KN-m + +//Max Load from Consideration of moment +//M=1*6**-1*b*d**2*F_per +//After substituting values and further simplifying we get +w=(1*6**-1*b*d**2*F_per)*(2*10**6)**-1 //KN/m + +//Max Load from Consideration of shear stress +//q_max=1.5*F*(b*d)**-1 //N +//After substituting values and further simplifying we get +F=q_max*(1.5)*b*d //N + +//If w is Max Load in KN/m,then +//2*w*1000=8000 +//After Rearranging and Further simplifying we get +w2=8000*(2*1000)**-1 //KN/m + +//Result +printf("\n Uniformly Distributed Load Beam can carry is %0.2f KN/m",w) diff --git a/3864/CH4/EX4.4/Ex4_4.sce b/3864/CH4/EX4.4/Ex4_4.sce new file mode 100644 index 000000000..40556ec38 --- /dev/null +++ b/3864/CH4/EX4.4/Ex4_4.sce @@ -0,0 +1,52 @@ +clear +// + +//Initilization of Variables + +//Flange (Top) +b1=80 //mm //Width +t1=40 //mm //Thickness + +//Flange (Bottom) +b2=160 //mm //width +t2=40 //mm //Thickness + +//web +d=120 //mm //Depth +t3=20 //mm //Thickness + +D=200 //mm //Overall Depth +sigma1=30 //N/mm**2 //Tensile stress +sigma2=90 //N/mm**2 //Compressive stress +L=6000 //mm //Span + +//Calculations + +//Distance of centroid from bottom fibre +y_bar=(b1*t1*(D-t1*2**-1)+d*t3*(d*2**-1+t2)+b2*t2*t2*2**-1)*(b1*t1+d*t3+b2*t2)**-1 //mm + +//Moment of Inertia +I=1*12**-1*b1*t1**3+b1*t1*(D-t1*2**-1-(y_bar))**2+1*12**-1*t3*d**3+t3*d*(d*2**-1+t2-(y_bar))**2+1*12**-1*b2*t2**3+b2*t2*(t2*2**-1-(y_bar))**2 + + +//Extreme fibre distance of top and bottom fibres are y_t and y_c respectively + +y_t=y_bar //mm +y_c=D-y_bar //mm + +//Moment carrying capacity considering Tensile strength +M1=sigma1*I*y_t**-1*10**-6 //KN-m + +//Moment carrying capacity considering compressive strength +M2=sigma2*I*y_c**-1*10**-6 //KN-m + +//Max Bending moment in simply supported beam 6 m due to u.d.l +//M_max=w*L*10**-3*8**-1 +//After simplifying further we get +//M_max=4.5*w + +//Now Equating it to Moment carrying capacity, we get load carrying capacity +w=M1*4.5**-1 //KN/m + +//Result +printf("\n Max Uniformly Distributed Load is %0.3f KN/m",w) diff --git a/3864/CH4/EX4.5/Ex4_5.sce b/3864/CH4/EX4.5/Ex4_5.sce new file mode 100644 index 000000000..0b6583da4 --- /dev/null +++ b/3864/CH4/EX4.5/Ex4_5.sce @@ -0,0 +1,49 @@ +clear +// +// + +//Initilization of Variables + +//Flanges +b=200 //mm //Width +t=25 //mm //Thickness + +D1=500 //mm //Overall Depth +t2=20 //mm //Thickness of web + +d=450 //mm //Depth of web + +//Calculations + +//Consider,Element of Thickness "y" at Distance "dy" from N.A +//Let Bending stress "sigma_max" + +//Stress on the element +//sigma=y*(D*2**-1)*sigma_max ..............(1) + +//Area of Element +//A=b*dy .................................(2) + +//Force on Element +//F=y*250**-1*sigma_max*b*dy + +//Let M be the Moment of resistance +//M=y*250**-1*sigma_max*b*dy*y + +//Moment of Resistance of top flange after simplification we gget +//M.R=2258333.3*f + +//M.I of I section +I=1*12**-1*(b*D1**3-180*d**3)*10**-8 + +//Moment acting on section +//After simplifying we get +//M=2865833.3*f + +//Percentage moment resistance +M1=2258333.3*2865833.3**-1*100 + +//Percentage moment resisted by web +M2=100-M1 + +//Result diff --git a/3864/CH4/EX4.6/Ex4_6.sce b/3864/CH4/EX4.6/Ex4_6.sce new file mode 100644 index 000000000..d6659cef7 --- /dev/null +++ b/3864/CH4/EX4.6/Ex4_6.sce @@ -0,0 +1,63 @@ +clear +// +// + +//Initilization of Variables + +//Flanges +b1=200 //mm //Width +t1=10 //mm //Thickness + +//Web +d=380 //mm //Depth +t2=8 //mm //Thickness + +D=400 //mm //Overall Depth +sigma=150 //N/mm**2 + +//Calculations + +//Area +A=b1*t1+d*t2+b1*t1 //mm**2 + +//Moment of Inertia +I=1*12**-1*(b1*D**3-(b1-t2)*d**3) + +//Bending Moment +M=sigma*I*(D*2**-1)**-1 + +//Square Section + +//Let 'a' be the side +a=A**0.5 + +//Moment of Resistance of this section +M1=1*6**-1*a*a**2*sigma + +X=M*M1**-1 + +//Rectangular section +//Let 'a' be the side and depth be 2*a + +a=(A*2**-1)**0.5 + +//Moment of Rectangular secction +M2=1*6**-1*a*(2*a)**2*sigma + +X2=M*M2**-1 + +//Circular section +//A=%pi*d1**2*4**-1 + +d1=(A*4*%pi**-1)**0.5 + +//Moment of circular section +M3=%pi*32**-1*d1**3*sigma + +X3=M*M3**-1 + +//Result +printf("\n Moment of resistance of beam section %0.2f mm",M) +printf("\n Moment of resistance of square section %0.2f mm",X) +printf("\n Moment of resistance of rectangular section %0.2f mm",X2) +printf("\n Moment of resistance of circular section %0.2f mm",X3) diff --git a/3864/CH4/EX4.7/Ex4_7.sce b/3864/CH4/EX4.7/Ex4_7.sce new file mode 100644 index 000000000..e50fc587f --- /dev/null +++ b/3864/CH4/EX4.7/Ex4_7.sce @@ -0,0 +1,40 @@ +clear +// + +//Initilization of Variables + +F=12 //KN //Force at End of beam +L=2 //m //span + +//Square section +b=200 //mm //Width and depth of beam +d=200 + +//Rectangular section +b1=150 //mm //Width +d1=300 //mm //Depth + +//Calculations + +//Max bending Moment +M=F*L*10**6 //N-mm + +//M=sigma*b*d**2 +sigma=M*6*(b*d**2)**-1 //N/mm**2 + +//Let W be the central concentrated Load in simply supported beam of span L1=3 m +//MAx Moment +//M1=W*L1*4**-1 +//After Further simplifying we get +//M1=0.75*10**6 //N-mm + +//The section has a moment of resistance +M1=sigma*1*6**-1*b1*d1**2 + +//Equating it to moment of resistance we get max load W +//0.75*10**6*W=M1 +//After Further simplifying we get +W=M1*(0.75*10**6)**-1 + +//Result +printf("\n Minimum Concentrated Load required to brek the beam %0.2f KN",W) diff --git a/3864/CH4/EX4.8/Ex4_8.sce b/3864/CH4/EX4.8/Ex4_8.sce new file mode 100644 index 000000000..73bf0efb6 --- /dev/null +++ b/3864/CH4/EX4.8/Ex4_8.sce @@ -0,0 +1,65 @@ +clear +// + +//Initilization of Variables + +L=3 //m //span +sigma_t=35 //N/mm**2 //Permissible stress in tension +sigma_c=90 //N/mm**2 //Permissible stress in compression + +//Flanges +t=30 //mm //Thickness +d=250 //mm //Depth + +//Web +t2=25 //mm //Thickness +b=600 //mm //Width + +//Calculations + +//Let y_bar be the Distance of N.A from Extreme Fibres +y_bar=(t*d*d*2**-1*2+(b-2*t)*t2*t2*2**-1)*(t*d*2+(b-2*t)*t2)**-1 + +//Moment of Inertia +I=(1*12**-1*t*d**3+t*d*(d*2**-1-y_bar)**2)*2+1*12**-1*(b-2*t)*t2**3+(b-2*t)*t2*(t2*2**-1-y_bar)**2 + +//Part-1 + +//If web is in Tension +y_t=y_bar //mm +y_c=d-y_bar //mm + +//Moment carrying caryying capacity From consideration of tensile stress +M=sigma_t*I*(y_bar)**-1 //N-mm + +//Moment carrying caryying capacity From consideration of compressive stress +M1=sigma_c*I*(y_c)**-1 //N-mm + +//If w KN/m is u.d.l in beam,Max bending moment +//M=wl**2*8**-1 +//After further simplifyng we get +//M=1.125*w*10**6 N-mm +w=M*(1.125*10**6)**-1 //KN + +//Part-2 + +//If web is in compression +y_t2=178.299 //mm +y_c2=71.71 //mm + +//Moment carrying caryying capacity From consideration of tensile stress +M2=sigma_t*I*(y_t2)**-1 //N-mm + +//Moment carrying caryying capacity From consideration of compressive stress +M3=sigma_c*I*(y_c2)**-1 //N-mm + +//Moment of resistance is M2 + +//Equating it to bending moment we get +//M2=1.125*10**6*w2 +//After further simplifyng we get +w2=M2*(1.125*10**6)**-1 + +//Result +printf("\n Uniformly Distributed Load carrying capacity if:web is in Tension %0.2f KN",w) +printf("\n :web is in compression %0.3f KN",w2) diff --git a/3864/CH4/EX4.9/Ex4_9.sce b/3864/CH4/EX4.9/Ex4_9.sce new file mode 100644 index 000000000..93537e581 --- /dev/null +++ b/3864/CH4/EX4.9/Ex4_9.sce @@ -0,0 +1,48 @@ +clear +// +// + +//Initilization of Variables + +b1=200 //mm //Width at base +b2=100 //mm //Width at top + +L=8 //m Length +P=500 //N //Load + +//Calculations + +//Consider a section at y metres from top + +//At this section diameter d is +//d=b2+y*L**-1*(b1-b2) +//After Further simplifying we get +//d=b2+12.5*y //mm + +//Moment of Inertia +//I=%pi*64**-1*d**4 + +//Section Modulus +//Z=%pi*32**-1*(b1+12.5*y)**3 + +//Moment +//M=5*10**5*y //N-mm + +//Let sigma be the fibre stress at this section then +//M=sigma*Z +//After sub values in above equation and further simplifying we get +//sigma=5*10**5*32*%pi**-1*y*((b2+12.5*y)**3)**-1 + +//For sigma to be Max,d(sigma)*(dy)**-1=0 +//16*10**6*%pi**-1*((b2+12.5*y)**-3+y*(-3)*(b2+12.5*y)**-4*12.5) +//After Further simplifying we get +//b2+12.5*y=37.5*y +//After Further simplifying we get +y=b2*25**-1 //m + +//Stress at this section +sigma=5*10**5*32*%pi**-1*y*((b2+12.5*y)**3)**-1 + +//Result +printf("\n Stress at Extreme Fibre is max %0.2f m",y) +printf("\n Max stress is %0.2f N/mm**2",sigma) |